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Motivations

> Attempt to construct possible candidate(s) for renormalisable actions for
gauge theories on noncommutative D = 4 Moyal “space”. The popular

noncommutative analog of the Yang-Mills action | d*x(F,, *x F,.)(x) has
UV/IR mixing.
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in order to get a renormalisable action for gauge theory?
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> Attempt to construct possible candidate(s) for renormalisable actions for
gauge theories on noncommutative D = 4 Moyal “space”. The popular
noncommutative analog of the Yang-Mills action | d*x(F,, *x F,.)(x) has
UV/IR mixing.

» 77 Examine how to extend, if possible, the Harmonic term to gauge theories
in order to get a renormalisable action for gauge theory?

> Similar investigation using the same way we followed (based on effective
actions) has been carried out independently by H. Grosse and M. Wohlgenannt
[hep-th/0703169]. The basic ingredients (gauge transforms, starting
actions) and the computational tools (x-space formalism versus matrix basis)
are different. But each analysis gave rise to similar candidate actions.
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Motivations

> Attempt to construct possible candidate(s) for renormalisable actions for
gauge theories on noncommutative D = 4 Moyal “space”. The popular
noncommutative analog of the Yang-Mills action | d*x(F,, *x F,.)(x) has
UV/IR mixing.

» 77 Examine how to extend, if possible, the Harmonic term to gauge theories
in order to get a renormalisable action for gauge theory?

> Similar investigation using the same way we followed (based on effective
actions) has been carried out independently by H. Grosse and M. Wohlgenannt
[hep-th/0703169]. The basic ingredients (gauge transforms, starting
actions) and the computational tools (x-space formalism versus matrix basis)
are different. But each analysis gave rise to similar candidate actions.
» Pick Sy(¢,#"), couple it to external A, in a gauge invariant way, integrate
over matter and get effective action I'(A).
» Guess possible form(s) for a candidate as a renormalisable gauge action
> Is there some additional terms that appear in the action, beyond F,, x F..
» How does the harmonic term survive in the resulting effective action?
» Check whether or not 3 some relic of the Langmann-Szabo duality
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The general structure

» The structure of the resulting action:

fe! Q K
St [ @ (P Fo 4z (A AV + S A5 A, )



Noncommutative Induced Gauge Theory, Orsay, 23-27th April 2007

Content

© The noncommutative set-up - Main features
@ Noncommutative connections - Basics
@ The free module case
@ The gauge transformations
@ Invariant connection and natural tensor form
o Curvature

Q Coupling external gauge potential to a scalar model
@ The minimal coupling prescription
@ From coupled scalar action to effective gauge action

e Computation of the one-loop effective action
@ Defining the effective action
@ Diagramatics
@ The structure of the effective action

Jean-Christophe Wallet, LPT-Orsay
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Noncommutative connections - Basics

> Moyal algebra M with Moyal x-product, unital, involutive algebra, assumed to
be equiped with a differential calculus based on d,,. (Recall M=LNR; L
(resp. R): subspace of elements of S'(R*) whose multiplication from right
(resp. left) by any Schwarz function is Schwartz). [see e.g Gracia-Bondia, Varilly,
J.M.P 1988; Grossmann et al., Ann. Inst. Fourier 1968].
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> In NC geometry, the connections defined from set of sections of vector
bundles in ordinary geometry can be generalized to connections on modules
over an algebra.
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> Moyal algebra M with Moyal x-product, unital, involutive algebra, assumed to
be equiped with a differential calculus based on d,,. (Recall M=LNR; L
(resp. R): subspace of elements of S'(R*) whose multiplication from right
(resp. left) by any Schwarz function is Schwartz). [see e.g Gracia-Bondia, Varilly,
J.M.P 1988; Grossmann et al., Ann. Inst. Fourier 1968].

» In NC geometry, the connections defined from set of sections of vector
bundles in ordinary geometry can be generalized to connections on modules
over an algebra.

> Let H be a right M-module with a hermitean structure h. A connection is
defined by a linear map from H to H verifying a Leibnitz rule:
Ve:H—H
Vumxf)=V,(m)xf+m=%0,f, VymeH, VfeM
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> Moyal algebra M with Moyal x-product, unital, involutive algebra, assumed to
be equiped with a differential calculus based on d,,. (Recall M=LNR; L
(resp. R): subspace of elements of S'(R*) whose multiplication from right
(resp. left) by any Schwarz function is Schwartz). [see e.g Gracia-Bondia, Varilly,
J.M.P 1988; Grossmann et al., Ann. Inst. Fourier 1968].

» In NC geometry, the connections defined from set of sections of vector
bundles in ordinary geometry can be generalized to connections on modules
over an algebra.

> Let H be a right M-module with a hermitean structure h. A connection is
defined by a linear map from H to H verifying a Leibnitz rule:
Ve:H—H
Vumxf)=V,(m)xf+m=%0,f, VymeH, VfeM
» The connection is further assumed to preserve the hermitian structure h, i.e
Oph(my, my) = h(V,,my, my) + h(my, V,my), Vmy,my € H

(Recall that h is a sesquilinear map from H x H to M verifying
h(my x f, mp x ;‘2):1f1T * h(my, my) * f, Vi, heEM, Vmy, myeH)
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The noncommutative set-up - Main features The free module case

The case H = M

> We will assume H = M (the algebra plays the role of the module). This
implies that the connection is determined by V,(I). Set
VA = —iA,
(Setting m=I in the definition of V,, yields V(I x f)= V(L) * f+8,f
=0,f — iA, = f). This can serve as defining a noncommutative analog of the
gauge potential A, € M.
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The case H = M

> We will assume H = M (the algebra plays the role of the module). This
implies that the connection is determined by V,(I). Set

VA = —iA,
(Setting m=I in the definition of V,, yields V(I x f)= V(L) * f+8,f
=0,f — iA, = f). This can serve as defining a noncommutative analog of the
gauge potential A, € M.

» Here, the hermitian structure we will take is
h(fi, f) = £ * f
so that the above connections are hermitian provided AL:AH.
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The case H = M

> We will assume H = M (the algebra plays the role of the module). This
implies that the connection is determined by V,(I). Set
VA = —iA,
(Setting m=I in the definition of V,, yields V(I x f)= V(L) * f+8,f
=0,f — iA, = f). This can serve as defining a noncommutative analog of the
gauge potential A, € M.
» Here, the hermitian structure we will take is
h(fi, ) = fil x
so that the above connections are hermitian provided AL:AH.
> Gauge transformations are defined by the automorphisms of the module M
preserving the hermitian structure h: v € Autp(M). One has
() =vAx )=~y +f, VFfeM
h(fY(fl)fY(fé)) = h(h,h) Vhi,HLeM
The latter relation implies
YD (1) =1
so that the gauge transformations are determined by () € U/(M), where
U(M) is the group of unitary elements of M.
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» Now, we set y(I) = g. Then, the action of the gauge group on any matter
field p € M is
P =gx¢
for any g € U(M) (Gauge transformation is a morphism of module). This is a

kind of noncommutative analog of the transformation of the matter fields
under the “fundamental representation”.
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The gauge transformations

» Now, we set y(I) = g. Then, the action of the gauge group on any matter
field p € M is

P =gxo
for any g € U(M) (Gauge transformation is a morphism of module). This is a

kind of noncommutative analog of the transformation of the matter fields
under the “fundamental representation”.

> The action of the gauge group on the connection V;‘ is defined by

(Vi) (¢) =4(Vi(y9), VoeM.
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The gauge transformations

» Now, we set y(I) = g. Then, the action of the gauge group on any matter
field p € M is
P =gx¢
for any g € U(M) (Gauge transformation is a morphism of module). This is a

kind of noncommutative analog of the transformation of the matter fields
under the “fundamental representation”.

> The action of the gauge group on the connection V;‘ is defined by
(Vi) (8) =1(Vi(r7'9)), VoeM.
» This implies the following gauge transformation for A,
A8 :g*AH*gT + ig*@ugT
(Combine y(¢) = (I x ¢) = g * ¢ with V() = 0,¢ — iA, * ¢ and
(Ve =8, — iA8)
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The gauge transformations

» Now, we set y(I) = g. Then, the action of the gauge group on any matter
field p € M is
P =gx¢
for any g € U(M) (Gauge transformation is a morphism of module). This is a

kind of noncommutative analog of the transformation of the matter fields
under the “fundamental representation”.

> The action of the gauge group on the connection V;‘ is defined by
(VR)'(0) = V(v 7'9)), VYo e M.
» This implies the following gauge transformation for A,
A8 =gxA,xg' +igx0.g'
(Combine y(¢) = (I x ¢) = g * ¢ with V() = 0,¢ — iA, * ¢ and
(Ve =8, — iA8)
> In M, the derivative d,, is an inner derivative, since one has

a,u¢ = [’{m ¢]*7 fu = _@;,}Xu
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Gauge-invariant connections

o A 1-form ¢ such that df = [€, f], Vf € M defines a canonical gauge-invariant connection
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Gauge-invariant connections

> Inner derivations implies the existence of a (canonical) gauge-invariant
connection. Not specific to Moyal. Reflects general theorem lof
derivation-based noncommutative frameworks valid when the algebra = the
module; already occurs within matrix-valued models.
[see e.g Dubois-Violette, Kerner, Madore, JMP 1990; Dubois-Violette, Masson,
J.Geom.Phys.1998].

o LA 1-form ¢ such that df = [€, f], Vf € M defines a canonical gauge-invariant connection
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Gauge-invariant connections

> Inner derivations implies the existence of a (canonical) gauge-invariant
connection. Not specific to Moyal. Reflects general theorem lof
derivation-based noncommutative frameworks valid when the algebra = the
module; already occurs within matrix-valued models.
[see e.g Dubois-Violette, Kerner, Madore, JMP 1990; Dubois-Violette, Masson,
J.Geom.Phys.1998].

> Here, this canonical connection is defined by §,== —@;l}xl,. It verifies
55 = gu
can be checked from general form of gauge transformations for A,, combined
with 8,¢ = [i€,, ¢]+. (Other way: V5, verifies V5,¢= 0,0 — i€, x o= —ip* &,
where the last equality stems from 9,¢ = [i{,,, ¢].. Then,
(Vi)E(0) = g x (Vi(g" x 0)) = —ipx & = V¢ so that £ = &,.)

o A 1-form ¢ such that df = [€, f], Vf € M defines a canonical gauge-invariant connection
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Gauge-invariant connections

> Inner derivations implies the existence of a (canonical) gauge-invariant
connection. Not specific to Moyal. Reflects general theorem lof
derivation-based noncommutative frameworks valid when the algebra = the
module; already occurs within matrix-valued models.
[see e.g Dubois-Violette, Kerner, Madore, JMP 1990; Dubois-Violette, Masson,
J.Geom.Phys.1998].

> Here, this canonical connection is defined by §,== —@;l}xl,. It verifies

55 = gu
can be checked from general form of gauge transformations for A,, combined
with 8,¢ = [i€,, ¢]+. (Other way: V5, verifies V5,¢= 0,0 — i€, x o= —ip* &,
where the last equality stems from 9,¢ = [i{,,, ¢].. Then,
(Vi)E(0) = g x (Vi(g" x 0)) = —ipx & = V¢ so that £ = &,.)
» The above gauge-invariant connection can be used to define the following

tensorial form

Va— Vi =—i(A - &)= —iA,
which coincides with the so called covariant coordinates.

o LA 1-form ¢ such that df = [€, f], Vf € M defines a canonical gauge-invariant connection
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Curvature

» The curvature for the connection Vf} defined as
A _ oA A
FHV = I[V/_HVV]*
takes the usual form
Fuw = 04A, — 0, A, — i[AL, Al
or alternatively in terms of A,

Fuv = Ot = il A, = FS, — i A A

10
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Curvature

» The curvature for the connection Vf} defined as
A _ oA TA
FHV = I[V/_HVV]*
takes the usual form
Fuw = 04A, — 0, A, — i[AL, Al
or alternatively in terms of A,
Fuv = Ok = il A, = FS, — iAu, Al
> The gauge transformations for 4, and F:‘y are given by
A8 = gxA,*gl, (F”f‘y)g :g*FI’:‘V*gT

10
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Curvature

» The curvature for the connection Vf} defined as
A _ oA TA
FHV = I[V/_HVV]*
takes the usual form
Fuw = 04A, — 0, A, — i[AL, Al
or alternatively in terms of A,
Fuv = Ok = il A, = FS, — iAu, Al
> The gauge transformations for 4, and F:‘D are given by
A8 = gxA,*gl, (F”f‘y)g :g*Fl’:‘V*gT

> Note that the invariant connection defined by &, is a constant curvature
connection since one has

—1
FEW =0,

10
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Other " gauge transformations”? |

> Other type of transformations considered by H.G and M.W:
¢V = Ux o U = a(e)
for any U € U(M). ~NC analog of " gauge transformation in the adjoint
representation”. The corresponding " covariant derivative” is

Du(¢) = 9,9 — i[Au, 0.

11
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Other " gauge transformations”? |

> Other type of transformations considered by H.G and M.W:
¢V = Ux o U = a(e)
for any U € U(M). ~NC analog of "gauge transformation in the adjoint
representation”. The corresponding " covariant derivative” is

Du(¢) = 8u¢ - i[Auv ¢]*
» Covariance under the above: (D, (¢))V=U % (D,(¢)) = U' is insured provided
AY = Ux A, x UT + iU %0, Ut

11
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Other " gauge transformations”? |

> Other type of transformations considered by H.G and M.W:

¢V = Ux o U = a(e)
for any U € U(M). ~NC analog of "gauge transformation in the adjoint
representation”. The corresponding " covariant derivative” is

Du(¢) = 0.6 — i[Au, d]x
Covariance under the above: (D, (¢))V=U* (D,(¢))* Ut is insured provided

AY = Ux A, x UT + iU %0, Ut
It defines an automorphism « of algebra:
a(p1 * ¢2) = ap1) * a(h2)
D,, satisfies a Leibnitz rule
Dyu(¢1x ¢2) = Du(1) * 2 + g1 * Dyu(¢2)

so that D, is a derivation. These NC analogs of " gauge transformation in the
adjoint representation” can be understood in terms of actual NC gauge
transformations provided the initial algebra M is enlarged to M by M ® M?°,

where MZ° is the opposite algebra which amounts to deal with real structure
instead of hermitian structure.
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Coupling external gauge potential to a scalar model

o Coupling external gauge potential to a scalar model
@ The minimal coupling prescription
@ From coupled scalar action to effective gauge action

12
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The 4-dimensional “harmonic” complex scalar model

» Start from the simplest complex-valued extension of the initial ¢} with
harmonic term.
[Grosse, Wulkenhaar, CMP 2005; Gurau, Magnen, Rivasseau, Vignes-Tourneret, CMP 2006]
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Coupling external gauge potential to a scalar model

The 4-dimensional “harmonic” complex scalar model

» Start from the simplest complex-valued extension of the initial ¢} with
harmonic term.

[Grosse, Wulkenhaar, CMP 2005; Gurau, Magnen, Rivasseau, Vignes-Tourneret, CMP 2006]
» The action is

S(¢) = / d*x(0,0" x 0,0 + Q2 (%,0)T * (Xu0) + m*¢! x ) (x) + Sine

Here, ¢ is a complex scalar field with mass m, Q€[0,1] and X, = 20} x,.

13
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The 4-dimensional “harmonic” complex scalar model

» Start from the simplest complex-valued extension of the initial ¢} with
harmonic term.

[Grosse, Wulkenhaar, CMP 2005; Gurau, Magnen, Rivasseau, Vignes-Tourneret, CMP 2006]
» The action is

S(¢) = / d*x(0,0" x 0,0 + Q2 (%,0)T * (Xu0) + m*¢! x ) (x) + Sine

Here, ¢ is a complex scalar field with mass m, Q€[0,1] and X, = 20} x,.
» The interaction term S;,; is

St = S0, + SO — /W % 6% B % 8)(x) + £(61 % 6T % 6% B)(x)

13
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The 4-dimensional “harmonic” complex scalar model

13

Start from the simplest complex-valued extension of the initial ¢} with
harmonic term.
[Grosse, Wulkenhaar, CMP 2005; Gurau, Magnen, Rivasseau, Vignes-Tourneret, CMP 2006]

The action is

5(6) = [ d*x(0u6' % 0,6 + R (Ru0)' * (%,0) + 1! % 0)(x) + Sim
Here, ¢ is a complex scalar field with mass m, Q€[0,1] and X, = 20,7,
The interaction term S is

Sine = SO, 4 SO —/A(qﬁww**@(x)+m(¢u¢**¢*¢)(x)

S(®) restricted to S2, (k=0) is renormalisable for any value of Q. Notice that

the action is covariant under the Langmann-Szabo duality.
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The 4-dimensional “harmonic” complex scalar model

13

Start from the simplest complex-valued extension of the initial ¢} with
harmonic term.
[Grosse, Wulkenhaar, CMP 2005; Gurau, Magnen, Rivasseau, Vignes-Tourneret, CMP 2006]

The action is
S(6) = / 5 (B, 8" % B + Q(Fud)! * (%) + M2t * 8)(x) + Sine

Here, ¢ is a complex scalar field with mass m, Q€[0,1] and X, = 20} x,.

The interaction term S;,; is
S = S0+ S0 = [ N6 #96 w 9)(x) + 5(1 # w 65 6)(0)

S(®) restricted to S2, (k=0) is renormalisable for any value of Q. Notice that

the action is covariant under the Langmann-Szabo duality.

The effect of the inclusion of non-orientable interactions on the
renormalisability is not known.
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The minimal coupling prescription

» Owing to the special role played by £,,, the minimal coupling prescription can
be conveniently written as (de Goursac, JCW, Wulkenhaar, hep-th/0703075)

0t — Vid = 0,0 — iAu* &,
X = —2iV4h + iVid =X+ Ay x ¢.
(Vigf) = 0,¢ — i§,, * ¢). Prescription consistent with structure of modules

over algebra. Roughly, this permits one to introduce covariant derivatives
where it is needed in the action.

14
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The minimal coupling prescription

» Owing to the special role played by £,,, the minimal coupling prescription can
be conveniently written as (de Goursac, JCW, Wulkenhaar, hep-th/0703075)

0t — Vid = 0,0 — iAu* &,
X = —2iV4h + iVid =X+ Ay x ¢.
(Vigf) = 0,¢ — i§,, * ¢). Prescription consistent with structure of modules

over algebra. Roughly, this permits one to introduce covariant derivatives
where it is needed in the action.

» As a consequence, gauge invariance of the resulting action functional will be
obtained thanks to the relation

(Vi (9))f = g x (V*(9))

14
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Coupling external gauge potential to a scalar model The minimal coupling prescription

The minimal coupling prescription

» Owing to the special role played by £,,, the minimal coupling prescription can
be conveniently written as (de Goursac, JCW, Wulkenhaar, hep-th/0703075)

0t — Vid = 0,0 — iAu* &,
X = —2iV4h + iVid =X+ Ay x ¢.
(Vigf) = 0,¢ — i§,, * ¢). Prescription consistent with structure of modules

over algebra. Roughly, this permits one to introduce covariant derivatives
where it is needed in the action.

» As a consequence, gauge invariance of the resulting action functional will be
obtained thanks to the relation

(Vi (0))E =g+ (V(9))
> This minimal coupling prescription is applied to the D = 4 action S(¢).

14
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From coupled scalar action to effective gauge action

» The resulting gauge invariant coupled action is given by
S(p,A) =S(9) + / d*x ((1 + Qopl x (X AL) * @

(L= Q)T x Ay x fx Ty (L + YO Ay x Ay x 6) (),

o

where S(¢) involves only the orientable part of the interaction terms S7,.
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From coupled scalar action to effective gauge action

» The resulting gauge invariant coupled action is given by
S(p,A) =S(9) + / d*x ((1 + Qopl x (X AL) * @

(L= Q)T x Ay x fx Ty (L + YO Ay x Ay x 6) (),

o

where S(¢) involves only the orientable part of the interaction terms S7,.

> Next step: Compute at the one-loop order the effective action ['(A) obtained
by integrating over the scalar field ¢ in S(¢, A), for any value of Q € [0, 1]
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From coupled scalar action to effective gauge action

» The resulting gauge invariant coupled action is given by
S(p,A) =S(9) + / d*x ((1 + Qopl x (X AL) * @

(L= Q)T x Ay x fx Ty (L + YO Ay x Ay x 6) (),

o

where S(¢) involves only the orientable part of the interaction terms S7,.

> Next step: Compute at the one-loop order the effective action ['(A) obtained
by integrating over the scalar field ¢ in S(¢, A), for any value of Q € [0, 1]
> Goals:
> Guess possible form(s) for a candidate as a renormalisable gauge action
> Is there some additional terms that appear in the action, beyond the expected
[P 5% [P
» How does the harmonic term survive in the resulting effective action?
» Check whether or not some relic of the Langmann-Szabo shows up in the
effective action
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Computation of the one-loop effective action

e Computation of the one-loop effective action
@ Defining the effective action
@ Diagramatics
@ The structure of the effective action
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The one-loop effective action
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The one-loop effective action

» The effective action is formally obtained through the evaluation of the
following functional integral

oA = / DDt e=S(6:A) — / DDt e 5@ e=Smn(6.A),

Sint(¢, A) denotes the terms involving the external gauge potential A,,.
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The one-loop effective action

» The effective action is formally obtained through the evaluation of the
following functional integral

oA = / DDt e=S(6:A) — / DDt e 5@ e=Smn(6.A),

Sint(¢, A) denotes the terms involving the external gauge potential A,,.
> At the one-loop order, the above functional reduces to

efrlloop(A) = /D¢D¢T Sfree ¢)e INt(¢7A)
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The one-loop effective action

» The effective action is formally obtained through the evaluation of the
following functional integral

o T = / DDt e=S(6:A) — / DDt e 5@ e=Smn(6.A),

Sint(¢, A) denotes the terms involving the external gauge potential A,,.
> At the one-loop order, the above functional reduces to

efrlloop(A) = / D¢D¢T Sfree ¢)e mt(¢yA)

> The effective action I'1jo0,(A) can be conveniently obtained in the x-space
formalism. Compute relevant diagrams using the Mehler-type propagator

C(x,y) = (p(x)dt(y)) (set Q = 22 and x Ay = 2x,050y1)

0?2 o dt Q 3 2_8 S 2_ 2

C x,y) = / _ exp(_f coth(Qt)(x—y)"— % tanh(Qt)(x+y) —m"t)
(o) m202 Jo sinh?(2Qt)

combined with the vertex whose generic expression is

/ dx(fix o fyx B)(3) = o / T o)) ) )

5 1)+t .
X 0(x1 — Xo 4 x3 — xg )@ i/ (FV NN
17
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Diagramatics

o
o

R
-G+l
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The structure of the effective action
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The structure of the effective action

> The result for any Q€[0, 1] can be writen as

[(A) = 47r2(i2j92)3 (/d4u (A% A, — iu’ﬂ) (1 P |n(e)>
- 192(712_(% (/d4u FW*FW> In(e)

8772 1+Qz)4 </d“(F # 18 A A Al = ( )))'n(€)+-~-’
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The structure of the effective action

> The result for any Q€[0, 1] can be writen as

[(A) = 47r2(i2j92)3 (/d4u (A% A, — im) (i P |n(e)>

_ 192(712_(% (/d4u FW*FW> In(e)
+ 87T2(]§.2-:QZ)4 </d4u (Fuw * Fup + {A, ALY — 1(52)2)) In(e) + ...,

> It is similar to the expression obtained by Grosse and Wohlgenannt from a
matrix base approach using heat kernel expansion.

19



Jean-Christophe Wallet, LPT-Orsay
The structure of the effective action

Noncommutative Induced Gauge Theory, Orsay, 23-27th April 2007
Computation of the one-loop effective action

The structure of the effective action

> The result for any Q€[0, 1] can be writen as

[(A) = W(?jgw (/d4u (A% A, — im) (i P |n(e)>
- 192(712_(% (/d4u FW*FW> In(e)

87r2 1+Q2)4 </d u (Fuw % Fuy + {Au, AYS — 1(52)2)) In(e) + ..,

> It is similar to the expression obtained by Grosse and Wohlgenannt from a
matrix base approach using heat kernel expansion.

> It involves, beyond the usual expected Yang-Mills contribution
~ fd“x Fuv * F, additional gauge invariant terms of quadratic and quartic

order in .A#, ~ [d* A, x A, and ~ [d*x {A,, A, }2.
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The structure of the effective action

> The result for any Q€[0, 1] can be writen as

r(A) = 4772(?;22)3 (/ u (A, * A, —lu )) (1+m2|n(e))
— 192(712_(% (/d4u FW*FW> In(e)

Q4 4 2 I ~2\2
+ 8r2(1+Q2)* </d u (Fuw x Fuw + { Ay, A}y — Z(U ) )) In(e) + ...,

> It is similar to the expression obtained by Grosse and Wohlgenannt from a
matrix base approach using heat kernel expansion.

> It involves, beyond the usual expected Yang-Mills contribution
~ fd4x Fuv * F, additional gauge invariant terms of quadratic and quartic
order in A#, ~ [d* A, x A, and ~ [d*x {A,, A, }2.

> It involves a mass-type term for the gauge potential A, (a bare mass term for
a gauge potential is forbidden by gauge invariance in commutative Yang-Mills
theories).
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The structure of the effective action Il
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The structure of the effective action Il

» The fact that the tadpole is non-vanishing is a rather unusual feature for a
Yang-Mills type theory. Indicates that A, has a non vanishing expectation
value.
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The structure of the effective action Il

» The fact that the tadpole is non-vanishing is a rather unusual feature for a
Yang-Mills type theory. Indicates that A, has a non vanishing expectation
value.

» Action "symmetric” under [,],S{, }.: ~ [ d*x {A,, A,}? accompanying the
Yang-Mills term ~ [A4,,, A,]2.
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The structure of the effective action Il

» The fact that the tadpole is non-vanishing is a rather unusual feature for a
Yang-Mills type theory. Indicates that A, has a non vanishing expectation
value.

» Action "symmetric” under [,],S{, }.: ~ [ d*x {A,, A,}? accompanying the
Yang-Mills term ~ [A4,,, A,]2.

» Conjecture that the following class of actions
5 /d4 4 2F,u.l/*Flu,y+ 4 2{./4/“./4 }2 A/L*Alt>

involves suitable candidates for renormallsable actions for gauge theory
defined on Moyal spaces.
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Next step

» Clarify the vacuum problem

» What goes on for IR singularity in the polarisation tensor?

21
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Vertices involving A,

Jean-Christophe Wallet, LPT-Orsay
The structure of the effective action

of & ot Ay,

® Ay ® &u
o Ay ot Ay
Eu [} ) A
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Tadpole diagram |
The amplitude for the tadpole diagram is
Q? > dt e .
T = /d4x d*u d4z/ = € = Au(u) e =Nz

470 o sinh*(Qt) cosh*(Qt)

X e~ 4(coth(Qt)z +tanh(Qt)(2x+z)2((1 o 92)(2)(# + ZH) _ 2“#«)
Introduce the following 8-dimensional vectors X, J and the 8 x 8 matrix K defined
by

N o 4tanh(Qt)I 2tanh(Qt)I — 2i©~1 S (0
\z)7 7 \2tanh(Qt)[ +2i©~1  (tanh(Qt) +coth(Qt)I)’ ~  \il

This permits one to reexpress the amplitude in a form such that some Gaussian
integrals can be easily performed:

Q? o dt e—tm’
Tzi/d4xd4ud4z/ — — A, (u
" 4ng6 0 sinh?(Qt) cosh?(Qt) ()

x @ BXKXHS. X((l - Qz)(ZZL +2,) — 24,)

By performing the Gaussian integrals on X, we find

dt e=tm ~ tanh(Qt)
ni-- o[ AT o
! 7202(1 + Q2)3 1-|-Q2 sinh?(Qt) cosh?(Qt) p ()t
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Tadpole diagram |l

Inspection of the behaviour of 7; for t — 0 shows that this latter expression has a
quadratic as well as a logarithmic UV divergence. From Taylor expansion:

Q2 4 ~ 1 m2Q2 4~
73——47.[_2(1_'_&22)3</d UU“AH(U)> g _M(/d UUN'A:U'(U)> In

Q' 4 o~
T PP D) (/d uu uuAﬂ(u)> In(e) +...,
where € — 0 is a cut-off and the ellipses denote finite contributions.
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Higher order terms

> The regularisation of the diverging amplitudes is performed in a way that
preserves gauge invariance of the most diverging terms. In D = 4, these are
UV quadratically diverging so that the cut-off € on the various integrals over
the Schwinger parameters ( f:o dt) must be suitably chosen.

> We find that this can be achieved with [ dt for T," while for 7, the
regularisation must be performed with f:/j.

» In field-theoretical language, gauge invariance is broken by the naive
e-regularisation of the Schwinger integrals and must be restored by adjusting
the regularisation scheme. Note that the logarithmically divergent part is
insensitive to a finite scaling of the cut-off.

25



Noncommutative Induced Gauge Theory, Orsay, 23-27th April 2007 Jean-Christophe Wallet, LPT-Orsay
Computation of the one-loop effective action The structure of the effective action

Higher order terms |l
» The one-loop effective action can be expressed in terms of heat kernels:
1 o0
M l00p(®, A) = —5/ %Tf(e_tH((b’A) — o= H00)) (2)
0

- —% lim [(s) Tx(H~*(¢, A) — H~*(0,0)),
where H(¢, A) = TG, Expanding:
H=*(0,A) = (1+ (6, A)s + ax(6, A)s® + ... |H*(0,0),  (3)
we obtain ]
rioop (@ A) = = lim Tr((r(erl)al(qS,A)+5F(s+1)ag(¢, A)+.. .)H*S(O,O)).
With T(s +1) =1—sy+ ... we have

Mioop(9, A) = — lim T (a1(9, A)H~*(0,0))

= %Resszo Tr((ag(¢, A) — yai(o, A)) H=*(0, O)) (4)
The second line is the Wodzicki residue which corresponds to the
logarithmically divergent part of the one-loop effective action. The
quadratically divergent part f% lims_o Tr(alH*S(O, 0)) in the action which

6  Cannot be gauge-invariant.
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