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Introduction

Classical field theories for fundamental interactions
(electroweak, strong, gravitational) of geometrical origin

Quantum field theory for standard model
(electroweak+strong) is renormalisable

Gravity is not renormalisable

Renormalisation group interpretation

space-time being smooth manifold ⇒ gravity scaled away

weakness of gravity determines Planck scale where
geometry is something different

promising approach: noncommutative geometry
(unifies standard model with gravity [as classical field theories])
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Can we make sense of renormalisation in NCG?

First step: construct quantum field theories on simple
noncommutative geometries, e.g. the Moyal space

Moyal space

algebra of rapidly decaying functions over D-dimensional
Euclidean space with ⋆-product

(a ⋆ b)(x)=

∫

dDy
dDk

(2π)D a(x+1
2Θ·k)b(x+y) eiky

where Θ=−ΘT∈MD(R)

⋆-product is associative, noncommutative, and most
importantly: non-local
construction of field theories with non-local interaction
This non-locality has serious consequences for the
renormalisation of the resulting quantum field theory
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The UV/IR-mixing problem and its solution

observation: euclidean quantum field theories on Moyal
space suffer from UV/IR mixing problem which destroys
renormalisability if quadratic divergences are present

Theorem

The quantum field theory defined by the action

S =

∫

d4x
(1

2
φ ⋆
(
∆ + Ω2x̃2 + µ2)φ +

λ

4!
φ ⋆ φ ⋆ φ ⋆ φ

)

(x)

with x̃ = 2Θ−1 · x, φ – real, Euclidean metric
is perturbatively renormalisable to all orders in λ.

The additional oscillator potential Ω2x̃2

implements mixing between large and small distance
scales
results from the renormalisation proof
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Intuitive renormalisation “proof”

Langmann-Szabo duality

x̃ 7−→ p
φ(x) 7−→ 1√

| det πΘ|
φ̂(p)

}

+ Fourier transformation

leaves
∫

d4x (φ ⋆ φ ⋆ φ ⋆ φ)(x) and
∫

d4x (φ ⋆ φ)(x) invariant

transforms
∫

d4x (φ ⋆ ∆φ)(x) into
∫

d4x (φ ⋆ x̃2φ)(x)

with
�� ?? �� __

??��__��
�� ��__ ?? also its LS-dual is divergent

also the LS-dual of oo// //oooo //�� ��OO OO is divergent

renormalisation requires
∫

d4x (φ ⋆ x̃2φ)(x) in initial action
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History of the renormalisation proof

exact renormalisation group equation in matrix base
[H. Grosse, R.W. (2004)]

simple interaction, complicated propagator
power-counting from decay rate and ribbon graph topology

multi-scale analysis in matrix base
[V. Rivasseau, F. Vignes-Tourneret, R.W. (2005)]

rigorous bounds for the propagator (requires large Ω)

multi-scale analysis in position space
[R. Gurau, J. Magnen, V. Rivasseau, F. Vignes-Tourneret (2006)]

simple propagator (Mehler kernel), oscillating vertex
distinction between sum and difference of propagator ends

Schwinger parametric representation
[R. Gurau, V. Rivasseau (2006)]

reduction to Symanzik type hyperbolic polynomials
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The matrix base of the Moyal plane

central observation (in 2D):
f00 := 2e−

1
θ
(x2

1 +x2
2 ) ⇒ f00 ⋆ f00 = f00

left and right creation operators:

fmn(x1, x2)=
(x1+ix2)

⋆m
√

m!(2θ)m
⋆
(

2e−
1
θ
(x2

1 +x2
2 )
)

⋆
(x1−ix2)

⋆n
√

n!(2θ)n

fmn(ρ, ϕ)= 2(−1)m
√

m!
n! eiϕ(n−m)

(√
2
θρ
)n−m

e−
ρ2

θ Ln−m
m (2

θ ρ2)

satisfies: (fmn ⋆ fkl)(x) = δnk fml(x)
∫

d2x fmn(x) =
√

det(2πΘ) δmn

Fourier transformation has the same structure
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Extension to four dimensions

(non-vanishing components: θ=Θ12=−Θ21=Θ34=−Θ43)

φ(x) =
∑

mi ,ni∈N

φm1
m2

n1
n2

b m1
m2

n1
n2

(x), b m1
m2

n1
n2

(x)=fm1n1(x
1, x2)fm2n2(x

3, x4)

non-local ⋆-product becomes simple matrix product

S[φ]=
√

det(2πΘ)
∑

m,n,k ,l∈N2

(1
2

φmn∆mn;klφkl +
λ

4!
φmnφnkφklφlm

)

∆mn;kl =
(
µ2+2

θ (1+Ω2)(m1+n1+m2+n2+2)
)
δn1k1

δm1 l1δn2k2
δm2 l2

−2
θ (1−Ω2)

(√
k1l1 δn1+1,k1

δm1+1,l1 +
√

m1n1 δn1−1,k1
δm1−1,l1

)
δn2k2

δm2 l2
−2

θ (1−Ω2)
(√

k2l2 δn2+1,k2
δm2+1,l2 +

√
m2n2 δn2−1,k2

δm2−1,l2

)
δn1k1

δm1 l1

important: ∆mn;kl = 0 unless m−l = n−k
(SO(2) × SO(2) angular momentum conservation)
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∆m,m+h;l+h,l = ∆
(h)
ml is band matrix (Jacobi matrix)

diagonalisation of ∆(h) yields recursion relation for Meixner

polynomials Mn(x ;β, c) = 2F1

(
−n,−x

β

∣
∣1−c

)

∆m1
m2

m1+h1
m2+h2

; l1+h1
l2+h2

l1
l2

=

∞∑

y1,y2=0

U(h1)
m1y1

U(h2)
m2y2

(
µ2+4Ω

θ (2y1+2y2+h1+h2+2)
)
U(h1)

y1l1
U(h2)

y2l2

with
U(h)

ny =
√(h+n

n

)(h+y
y

) (1−Ω
1+Ω

)n+y(2
√

Ω
1+Ω

)h+1
2F1

(
−n,−y

1+h

∣
∣ 4Ω
(1+Ω)2

)

closed formula for propagator G(h) = (∆(h))−1 thanks to
∞∑

x=0

(h+x)!
x!h! ax

2F1

(
−m,−x

1+h

∣
∣
∣b
)

2F1

(
−l ,−x
1+h

∣
∣
∣b
)

= (1−(1−b)a)m+l

(1−a)h+m+l+1 2F1

(
−m , −l

1+h

∣
∣
∣

ab2

(1−(1−b)a)2

)

, a < 1
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The propagator

G m1
m2

m1+h1
m2+h2

;
l1+h1
l2+h2

l1
l2

=
θ

8Ω

min(m1,l1)∑

u1=0

min(m2,l2)∑

u2=0

∫ 1

0
dt

t
µ2θ
8Ω +α(1 − t)β

(1 − (1−Ω)2

(1+Ω)2 t)2+2α+β

×
(1−Ω

1+Ω

)β( 4Ω

(1+Ω)2

)2+2α
2∏

i=1

√

mi !li !(mi+hi)!(li+hi)!

(mi−ui)!(li−ui)!(hi+ui)!u!

=
θ

2(1+Ω)2

min(m1,l1)∑

u1=0

min(m2,l2)∑

u2=0

2F1

(
1+β , µ2θ

8Ω −α

2+µ2θ
8Ω +α+β

∣
∣
∣
∣

(1−Ω)2

(1+Ω)2

)

×
(1−Ω

1+Ω

)β

B
(
1+µ2θ

8Ω +α, 1+β
)

2∏

i=1

√

mi !li !(mi+hi)!(li+hi)!

(mi−ui)!(li−ui)!(hi+ui)!u!

with α = 1
2

∑2
i=1(hi + 2ui) ≥ 0 β =

∑2
i=1(mi + li − 2ui) ≥ 0

all matrix elements Gmn;kl non-negative, all sums finite

G(µ=0)
m
0

m
0 ; m

0
m
0

= θ
2(1+Ω)2(m+1) 2F1

(
1,−m
m+2

∣
∣
∣
(1−Ω)2

(1+Ω)2

)

∼ θ/8
q

4
π

(m+1)+Ω2(m+1)2

G(µ=0)
m1
m2

m1
m2

; 0
0

0
0

= θ
2(1+Ω)2(m1+m2+1)

(
1−Ω
1+Ω

)m1+m2
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Ribbon graphs

Feynman graphs are ribbon graphs with V vertices
�� ?? �� __

??��__��

m

m

n n
k

k

l
l

and

I edges oo //
m l

n k
= Gmn;kl and N external legs

leads to F faces, B of them with external legs
ribbon graph can be drawn on Riemann surface of genus
g = 1 − 1

2(F − I + V ) with B holes

// oo�� MMQQ

//oo oo// 7→ // oo�� MMQQ

 F = 1 g = 1
I = 3 B = 1

V = 2 N = 2

oo//

�� OO

//oo//oo

OO��
OO

��

//oo

OO��

OO

//

7→ //oo

OO

��OO

//
L = 2 g = 0
I = 3 B = 2

V = 3 N = 6
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First proof: exact renormalisation group equations

QFT defined via partition function Z [J] =

∫

D[φ] e−S[φ]−tr(φJ)

Wilson’s strategy: integration of
field modes φmn with indices ≥ θΛ2

yields effective action L[φ,Λ]

0
×

θΛ2
×

2θΛ2

1

χm(Λ)

m

not integrated

integrated

�
�
�
�
�
�
�
�
�
�

OO

_______________ //
variation of cut-off function χ(Λ)
with Λ modifies effective action:

exact renormalisation group equation [Polchinski equation]

Λ
∂L[φ, Λ]

∂Λ
=
∑

m,n,k ,l

1
2

Qmn;kl(Λ)

(

∂L[φ, Λ]

∂φmn

∂L[φ, Λ]

∂φkl
− 1

VΘ

∂2L[φ, Λ]

∂φmn ∂φkl

)

with Qmn;kl(Λ) = Λ
∂(Gmn;kl χmn;kl(Λ))

∂Λ VΘ =
√

det(2πΘ)

renormalisation = proof that there exists a regular solution
which depends on only a finite number of initial data
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Second proof: multi-scale analysis

propagator cut into slices: Gmn;kl =
∑∞

i=1 Gi
mn;kl

estimations:

0 ≤ Gi
mn;kl ≤ K1M−i e−c1M−i (‖m‖+‖n‖+‖k‖+‖l‖) δm−l ,−(k−n)

∑

l

(

max
n(l),k(l)

Gi
mn;kl

)

≤ K2M−i e−c2M−i‖m‖

induces scale attribution iδ ∈ N
+ for each edge δ of the graph

SO(2) × SO(2)
symmetry
implemented by
dual graphs
(vertices ⇔ faces)

__��

�� ??

��
//

__

-- ��

OO //oo

//oo

��

OO

1

2

3 4 7→ ������ �����W
O
E9 1 + & ! � � � �xĵ

T
K

g
o
y� 
 � � � ! & - 6F

T̀
j

s

cc##

{{ ;;
//oo //oo

OO��

�� OO

�� ��SS YY

1

2

34

index-difference (= angular momentum) conserved at
propagators and vertices
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index assignment in dual graphs

given external indices

reference indices at each internal vertex

index differences between opposite sides of propagators in
the complement of a maximal tree

⇒
∑

index differences → factor M−i preserved
∑

reference indices → factor M2i from
∑

m∈N2 e−M−i‖m‖

power-counting degree of divergence for dual subgraphs
2 #(inner vertices) − #(edges)
= 2(F−B)− I = 4−4g−2V+I−2B = (2−N

2 ) − 2(2g+B−1)

Conclusion

All non-planar graphs and all planar graphs with ≥ 4 external
legs are convergent
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Renormalisation

Problem: infinitely many planar 2- and 4-leg graphs diverge
Solution: discrete Taylor expansion about reference graphs:

�� ?? �� __

??��__��
�� ��__ ??

m

m
k

k
l l

n n

p p

=





�� ?? �� __

??��__��
�� ��__ ??

m

m
k

k
l l

n n

p p −
�� ?? �� __

??��__��
�� ��__ ??

m

m
k

k
l l

n n

p p

0 0

0 0





︸ ︷︷ ︸

+
�� ?? �� __

??��__��

m

m

l l
k

k

n
n

︸ ︷︷ ︸

=1

�� ?? �� __

??��__��
�� ��__ ??

0

0
0

0
0 0

0 0

p p

0 0

0 0

︸ ︷︷ ︸

difference expressed in terms of
|Gnp;pn−G0p;p0| ≤ K3M−i ‖n‖

M i e−c3‖p‖
put to renor-
malised value

similar for all Aplanar
mn;nk ;kl ;lm Aplanar

mn;nm and Aplanar
m1+1

m2
n1+1

n2 ; n1

n2
m1

m2

Renormalisation of noncommutative φ4
4-model to all orders

by normalisation conditions for mass, field amplitude, coupling
constant and oscillator frequency
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The β-function

one-loop calculation
λ[Λ]

Ω2[Λ]
= const

Ω2[Λ] ≤ 1

(λ[Λ] diverges in commutative
case)

�
�
�
�
�
�
�
�
�
�
�
�

OO

________________ //

−0.8

−0.6

−0.4

−0.2

0
+
30

+
6π2

125λR

+
90

+
120

103 ln Λ2θ

λ[Λ]

Λ2
R = 1

θ

λR = 1
125

ΩR = 1
10

perturbation theory remains valid at all scales!

non-perturbative construction of the model seems possible!

How does this work?

four-point function renormalisation with usual sign

∃ one-loop wavefunction renormalisation which
compensates four-point function renormalisation for Ω → 1
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The self-dual model

Ω = 1 leads to constant matrix indices for each face

angular momentum ℓ is zero
exponential decay in |ℓ| for general case
⇒ self-dual model also captures general behaviour

powerful techniques from matrix models available

exactly solvable complex scalar model
[E. Langmann, R. Szabo, K. Zarembo, 2003]
renormalisation of φ3

6 by relation to Kontsevich model
[H. Grosse, H. Steinacker, 2006]

ingenious idea [M. Disertori, V. Rivasseau (2006)]

compute β-function for Ω = 1
→ model is asymptotically safe up to three loops
(cancellations established by formidable graph calculation)
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Asymptotic safety to all orders

[M. Disertorti, R. Gurau, J. Magnen, V. Rivasseau (2006)]

Theorem

Γ4(0, 0, 0, 0) = λ(1 − (∂Σ)(0, 0))2 to all orders in λ (up to irr.)

where (∂Σ)(0, 0) := Σ(1, 0) − Σ(0, 0) Taylor subtraction

Ward identity: (a − b) GFED@ABC

����
����

�� ��

CC
CC
CC

CC
!!!!

.
.
.
.

.

		 		

a

b

= GFED@ABC

����
����

�� ��

CC
CC
CC

CC
!!!!

.
.
.
.

.

b

b

− GFED@ABC

����
����

�� ��

CC
CC
CC

CC
!!!!

.
.
.
.

.

a

a

Dyson
equation

GFED@ABCoooo ////

�� ��

OOOO
0

0

0

0
=

/.-,()*+

/.-,()*+

oooo
////

�� ��

OOOO0

0

0

0 7→1

+
/.-,()*+

/.-,()*+

oooo

��
���

�
????

BB
B
BB

B
````����

0
0

0

00

+
∑

p

?>=<89:;oooo ////
�� ��
�� ��

3333 YYYY0

0

0

0

p
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Summary

Renormalisation is compatible with noncommutative
geometry

We can renormalise models with new types of degrees of
freedom, such as dynamical matrix models

Equivalence of renormalisation schemes is confirmed

Important tools (multi-scale analysis) are worked out

Rigorous construction of noncommutative quantum field
theories is promising

Other models

1) Gross-Neveu model [F. Vignes-Tourneret (2006)]

2) induced Yang-Mills theory
[A. de Goursac, J.-C. Wallet, R.W.; H. Grosse, M. Wohlgenannt (2007)]
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