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The leading term of the exchange  quan tum correction to the free energy of a dense  one- 
componen t  plasma is computed  in the near-classical  limit. Two-body exchange  is dominant .  The 
path- integral  method  is used in its semi-classical  limit. The exchange  free energy is found to be 
exponential ly small, 

1. Introduction 

The one-component  plasma, also called "jel l ium", is a system of identical 
particles of charge e and mass M embedded in a uniform neutralizing 
background of opposite charge. This model, which has been shown to be 
well-behaved~), is believed to provide a good description of certain stellar 
interiors, where the nuclei are the particles and the sea of degenerate 
electrons forms the background. The equilibrium properties of the one- 
component  plasma have been extensively studied by computer  simulation2'3), 
in the case when classical statistical mechanics is valid. Quantum effects, 
when they are small enough, can be added as corrections and computed 4) by a 
Wigner-Kirkwood expansion in powers of h 2. Exchange quantum effects, 
however,  are not taken into account  by the Wigner-Kirkwood method. It has 
been qualitatively argued 4) that the exchange quantum corrections are negli- 
gible compared to the direct quantum corrections. In the present paper, we 
compute the leading term of the exchange correction to the free energy in the 
near-classical limit, and show that this exchange term is indeed exponentially 
small. 

The state of the plasma is defined by the number density O and the 
temperature T, or equivalently the ion-sphere radius a = (3/4~p) 1/3 and the 
two-body average classical distance of closest approach fie 2 (where /3 = 
I IkBT). A convenient  classical dimensionless coupling parameter  is F =/3e2/a. 
Quantum effects depend on the thermal de Broglie wavelength A = 
(2~rh2/3/M) m, where M is the mass of a particle. We are interested here in the 
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near-classical case where A is small enough compared to the other lengths a 
and fie E (note that the condition A ,~/3e 2 is a l o w - t e m p e r a t u r e  requirement),  
but no restriction is made about the value of the coupling parameter  F, which 
is large for the interesting dense matter situations encountered in astrophy- 
sics. 

In section 2, the statistical mechanical problem is reduced to a one-body 
calculation, which is performed in section 3 by path-integral techniques. The 
result is discussed in section 4. 

2. Two-body exchange free energy 

We consider a system of N particles of spin s in a volume O(p = N / O ) .  Let  
H be the hamiltonian. The total free energy F is given by 5) 

[ 3 F = - - l n [ l  f ( { r , r 2 r s . . . r N [ e x p ( - - f l H ) l r , r 2 r s . . . r N )  

N ( N -  1) ] 
--  2 - - ~ - ~ -  i )  ( r l r 2 r 3 " ' "  rN]exp(--l~H)lr2rlr3"'" rN)+'" ")drl...drNJ , 

(1) 

where the upper (lower) sign refers to bosons (fermions). In (1) we have kept 
only the two-body exchange term; it will be shown in section 4 that exchanges 
involving more than two particles give only higher-order corrections. 
Furthermore,  since the two-body exchange term is itself a correction, we can 
expand the logarithm in (1) with respect to that term and we obtain 

F = Fd + Fex, (2) 

where the direct part of the free energy is given by 

" F d = - l n ( N - - - ] . f < r , r 2 r , . . . r N l e x p ( - { 3 H ) l r ,  r 2 r 3 . . . r ~ ) d r , . . . d r N ) ,  (3) 

and the exchange part by 

_ N ( N  - 1) f (rlr2r3 " . .  rNlexp(-- [3H)I r2rlr3 . . . rN)  dr l  . . . d rN  
13Fox = 2(2s + l) F 

I { r j r E r 3 . . .  rNlexp(-  f l H ) l r l r 2 r  3 . . . rN)  dr j  . . .  d rN  

(4) 

We are interested in the behaviour of (4) in the small A limit. Therefore ,  we 
can replace the integral in the denominator by its classical limit Q/A TM, where 
Q is the classical configuration integral. In order to study the matrix element 
in the numerator,  it is convenient  to rewrite it with a slightly different notation 
a s  

jC-(r o, - , r  o) o o o • . = ( r l r2r3  . rOlexp(_ 0 0 0 • . [ 3 H ) l r 2 r l r 3 . . .  r°N), (5) 
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0 using ri to denote  some c-number  value of a position and saving the notation 
ri for the corresponding operator .  The hamiltonian may be split as 

N 

H = - ~ ,  ( h 2 / 2 M ) A i  + e2/rl2+ W(rl2, R12, r 3  . . . . .  rN), (6) 
i=l 

where W is the total potential  energy minus its explicitly written e2/r12 term; 
for convenience  the positions of particles 1 and 2 are described in (6) by the 
relative and center-of-mass  coordinates  r~2 = r 2 -  rl and R~2 = (r~ + r9 /2 .  When 
looking for the leading term of (5) in the near-classical limit, it is enough to 
take into account  the quantum effects only for  the relative motion of those 
particles 1 and 2 which are exchanged;  therefore,  we can replace in (6) the 
o p e r a t o r s  R l 2 ,  r 3  . . . . .  rN by R°2, r ° . . . . .  r ° .  Fur thermore ,  since the off- 
diagonal range of dV goes to zero in the classical limit, near that limit we can 
replace tie by 0 in the function W which is smooth around r~2 = 0. Thus,  W is 
approximated  by a c -number ,  the contribution of which to (5) can be 
factorized out. 

The contributions to (5) of the kinetic energies of particles 3 to N and of 
the center  of mass  of particles 1 and 2 can also be factorized.  We obtain 

N ( r  ° . . . . .  r ° )  = (2X/2/A 3N-3) e x p [ -  13W(0, R°2, r ° . . . . .  r ° ) ]  

× (r°2[exp{- 13[- (h2/M)A~2 + e2/r~2]}[- r°2), (7) 

where Ai2 is the laplacian with respect  to the relative coordinate r~2. Using the 
expression (7) of (5) in (4) gives 

13Fox - -  - -  2 ~ / 2 A 3  e c f (r°lexp{ - 13[- ( h 2 [ M ) A  + e2/r]}[ - r °) dr  °, (8) 
N + p 2(2s + 1-------) 

where the relative coordinate r~2 has been renamed r for simplicity; the 
constant  C is defined by 

p2eC = N ( N -  1) f e x p [ -  13W(O,R°2,  r ° . . . . .  r° ) ]  d r ° . . ,  d r  ° (9) 
Q 

and is therefore  related to the short-distance behaviour  of the classical pair 
correlation function gc(r) by 

gc(r) = e x p [ -  13e2/r+ C + .  • .]. (10) 

A numerical  fit for C as a function of F has been given in ref. 6 (C is of the 
order of F). 

Through (8), the evaluation of the exchange free energy is reduced to a 
one-body problem involving the thermal Green ' s  function of a particle in a 
Coulomb potential. 

3. Path-integral calculation 

The integral in (8) upon the thermal Green's function 

G(r ' ,  r"; 13) = (r'lexp{- 13[- (h2/ M ) A  + e2/r]}[r '') 
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can be evaluated by manipulations on special functions, as described in the 
Appendix. Here,  we prefer  to use path-integral techniques 5) which shed more 
light on the validity of the approximations which have been made. 

The matrix element in (8) has the path-integral representation 

G ( r ° , - r ° ; f l )  = f ~ r e x p ( - h - '  f [ (M/4) f :+ e2/r]dt},  (12) 
o 

where the functional integral has to be taken on all paths r(t)  which go from 
- r  ° to r ° in a " t ime"  /3h. In the near-classical limit, eq. (12) is dominated by 
the paths which minimize 

~h 

S ( -  r °, r°; flh) = [ [(M/4)r2 + eE/r] dt. (13) 

0 

S is the classical action for a particle of mass M/2 moving in the reversed 
potential - e2/r, and is minimum along a classical t rajectory obeying Kepler 's  
laws. Furthermore,  the integral upon r °, 

A = f G( r  °, - r°;/3) dr  °, (14) 

is dominated by the value of r ° which minimizes the action considered as a 
function of r °. Thus, 

OS(r'.r_"; ¢~h) OS(r', r"; /3h)] = O. (15) 
Or' ~ -Or'--; /_  ~, = : = ,o 

Since 

OS(r', r"; t) OS(r', r"; t) 
Or' = - p'; Or" = p ' '  (16) 

where p'  and p" are the momenta at the end-points r '  and r", eq. (15) means 
that these momenta are opposite. Therefore  the trajectories are half-circles 
(fig. l); the radius is easily found to be 

O" = (2hZ[j2e2/Tr2M) 1/3, (17) 

~o 

_r.o 

Fig. 1. A dominant trajectory for two-particle exchange. 
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the momentum along the t rajectory has the constant magnitude 

P = (TrM2e214hfl) l l3.  (18) 

and the action is 

S = ~('rr2h/3e4M/2) 113. (19) 

This means that (14) is dominated by a factor  e x p ( - S / h ) ,  with S given by 
(19). 

There is however  an infinity of classical trajectories obtained from one 
another by rotations around the axis which goes through - r °, the origin, and 
r °. The usual semi-classical approximation7'S), 

G ( r ' ,  r " " / 3 ) =  (27rh) -dn (det  0 2 S ( r  ", r ' ; / 3 h )  [),/2 ( 1 ) ' - &r '&r~ exp - - h S ( r " , r ' ; / 3 h )  

(20) 

(where d is the number of dimensions and where the indices a, /3 denote 
cartesian components)  comes from keeping only the paths in the neighbor- 
hood of one extremal one9). If applied directly to G ( r  °, - r°;/3), eq. (20) would 
give a divergent answer because of the rotational degeneracy.  The above 
difficulty may be circumvented by writing 

G ( r  °, - r°;/3) = f G ( r  °, r ; / 3 / 2 ) G ( r ,  - r°;/3/2) dr .  (21) 

The integral in (21) is dominated by contributions from r in the neighborhood 
of the equatorial circle; integration along that circle will take care of the 
rotational degeneracy.  It is now possible to use the approximation (20) for the 
Green 's  functions in the right-hand side of (21). When r is on the equatorial 
circle and the 3-axis chosen tangent to that circle, by using (16) it is easy to 
see that the only action derivatives involving the 3-axis are 

0 2 S ( r  '', r ' ; / 3 h  = c~2S(r '', r ' : / 3 h )  [ _ p 
(22) 

cgr~cgr~ ~, . . . .  ,, ,gr~&r '~ ] ~" - r  0"" 
r '  - -  r r '  - r ° 

Using (22) in (20) gives, when r is in the neighborhood of the equatorial circle, 

G ( r ,  - r°;/3/2) = (p /21rhtr) l / :G2(r ,  - r°;/3/2); 

G( r  °, r;/3/2) = ( p / 2 7 r h t r ) l n G : ( r  °, r ; / 3 / 2 ) ,  (23) 

where G: denotes a two-dimensional Green 's  function in the (r °, r) meridian 
plane. Using (23) in (21), approximating the volume element dr  by 27r~r d2r 
where d2r is a surface element in the meridian plane, and applying the 
convolution property (21) to the two-dimensional Green 's  functions, we 
obtain 

G( r  °, - r°;/3) = ( p / h ) G E ( r  °, - r°;/3). (24) 

The semi-classical expression (20) can now be used for the two-dimensional 
Green 's  function G2 in (24). The exponent  h -~ S ( -  r °, r°;/3h) can be expanded 
around r ° = tr up to the (r ° -  tr) 2 term, and the integral (14) computed in that 
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saddle-point approximation: 

4~rtrZP ( I 02S(r"r";[3h)l  ),/2 
A = h det - Or'Or~ r,=- r,,, 

1-. ,_ [d2S( - r °, r°; fib)) ]-1/2 

where det means now a 2 x 2 determinant. 
The second derivatives of the action in (25) can be explicitly computed by 

studying elliptical orbits in the neighborhood of the half-circle of radius tr. 
We omit the detail. The result is 

A = (fle4M/31rh2) 112 e x p [ -  ](zr2fle4M/2h2)m]. (26) 

Using (26) in (8) gives 

2 2 2 2 4 I/3 flFex _ 19 e c47rh [3 e f 3_[7r [3e M ~  ] 
- ~ = + 2 s + l  ~ e x p [ - 2 ~  ~ ) J. (27) 

4. Discussion 

The above derivation shows that two-body exchange effects primarily arise 
from particles which are at a distance tr of one another,  given by (17). As tr 
becomes small in the near-classical limit, the replacement of r~2 by 0 in the 
function W of eq. (6) becomes justified*. From (27) it is seen that the 
two-body exchange term decreases exponentially as h ~ 0 ;  it may be noted, 
however,  that this decrease is less drastic than in the hard-sphere case~°), 
where the exchange term behaves like exp-(~rMd2/413h ~) for  spheres of 
diameter d. 

The magnitude of the n-body exchange effects can be estimated by a 
generalization of the method which has been used for the two-body case. The 
cyclical exchange of n particles is dominated by a classical motion in which n 
particles are regularly spaced on a ring which is rotated around it axis by an 
angle 2~r/n. The generalization of (15) is then satisfied since particle i has a 
final momentum equal to the initial momentum of particle i + I. The radius of 
the ring, as determined by classical mechanics, is easily found to be 

R = nZh2~Ze2/16~r2M) ~ [sin(l~r/n)] -1 , (28) 
/=1  

and the corresponding contribution to the free energy contains a factor 

exp ( -S /h )  = exp[-3(nTr2~e4M/4h2)l'3(~__l l [sin(17r/n)]-l)2'3]. (29) 

* Corrections of higher-order in h can be obtained by expanding W in a Taylor series around the 
configuration (0, R°2, r ° . . . . .  r °) and using a Dyson expansion for exp(-/3H)6). One finds, as a first 
correction to (27), a multiplicative factor exp(-/31rpe2~r2/3). 
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Therefore ,  the largest contribution does come f rom two-body exchanges.  It 
may be noted that this result differs f rom the hard-sphere one since for hard 
spheres three-body exchanges have been found to be dominantS%. 
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Appendix 

We give here an alternative computat ion of the integral A defined by (14). 
This integral is closely related to a previously studied one~2). Let  

H2 = - (h2/M) A + e2/r (30) 

by the hamiltonian for the two-body relative motion. The thermal Green ' s  
function is related to the " t ime independent"  one by 

= - 7r i Im ~ e x p ( -  ~hZk2/M)[k 2 - (M/h2)H2]-12k dk (31) e x p ( -  /3H2) 
0 

(where k is assumed to have an infinitesimal positive imaginary part). There-  
fore,  we can use the explicit expression ~3) 

(rl[k 2 - (M/h2)H2]-~I - r) = - (87rr)-~F(l + iu)W-~,~/2(- 4 ikr), (32) 

where v = Me2/2h2k and W is a Whit taker  function, and write 

a = ~r-' Im f drr f dkk exp ( -  ~h2k2/M)F(l + i v )W i~.~n(-4 ikr). (33) 

0 0 

The integral representat ion ~4) 

F(I  + iu) W_iv,1/2(- 4 ikr) = - 4 ikr f exp[4 ikr(u + ½)][u/(l  u ) ]  i~ + du, (34) 
J 

after  the change of variable 

u / ( l + u ) = e  t, 

gives 

A = I m ( - i / T r )  f d r r 2 f d k k 2 e x p (  - 
0 0 

x exp[2 ikr coth(t/2) - ivtl. 

h2kz/M) f dt[sinh(t/2)]-2 
0 

(35) 

(36) 
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We per form first the integration upon r: 

A = (4~r) -~ ( dkk -~ e x p ( -  ~h2kZ/M) ( dt sinh(t/2)[cosh(t/2)] -3 sin pt. (37) 
0 0 

By an integration by parts which brings the integral upon t to a tabulated 
form'4), one obtains 

A = ½(MeZ/2h2) ~ ( dkk -3 e x p ( -  flh2k2/M)[sinh(~rMeZ/2h2k)] -l. (38) 

0 

In the near-classical limit h ~ 0, 

A ~- (Me:/2h2)2[ dkk -3 e x p [ -  (flh2kZ/M) - (~rMe2/2h2k)]; (39) 

0 

eq. (26) is recovered when a saddle-point approximat ion is used for (39). 
The opposite limiting case, h fixed and e ~ 0, can also be studied. Eq. (38) 

becomes ,  through an obvious change of variable, 

A = (2"n '2)  - l  ( dxx-3(sinh x - l )  - I  

0 

+ (27r2) -l ( dxx-3(sinh x-J)-J{exp[ - (Tr2fle4M[4h2)x 2] - 1}. (40) 

0 

In the small e limit, sinh x -~ can be replaced by x -~ in the second integral of 
(40): 

A = 1_ (flM/167rh2)l/2e2+... .  (41) 

We are now in the case /3e2,~ •, and the restriction to two-body exchanges 
which has been made in (8) is valid only at low density (;~ ,~ a),  which implies 
that C ~ 1. Using then (41) in (8), we correct ly recover  the high-temperature 
result 

~Fex p { I rh~3 /2~  7rph2~2e 2 
N - * 2(2s + 1) \---M--/ - ( 2 - - ~  1111-~" (42) 

The first term of (42) is the degeneracy correction to the ideal gas part  of the 
free energy,  the second term is the exchange correct ion 15) to the potential part  
of the free energy. 
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