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Universality in Some Classical Coulomb Systems of 
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Coulomb systems in which the particles interact through the d-dimensional 
Coulomb potential but are confined in a fiat manifold of dimension d - 1  are 
considered. The actual Coulomb potential acting is defined by particular bound- 
ary conditions involving a characteristic macroscopic distance W in the direc- 
tion perpendicular to the manifold: either it is periodic of period W in that 
direction, or it vanishes on one ideal conductor wall parallel to the manifold at 
a distance W from it, or it vanishes on two parallel walls at a distance W from 
each other with the manifold equidistant from them. Under the assumptions 
that classical equilibrium statistical mechanics is applicable and that the system 
has the macroscopic properties of a conductor, it is shown that the suitably 
smoothed charge correlation function is universal, and that the free energy and 
the grand potential have universal dependences on W (universal means inde- 
pendent of the microscopic detail). The cases d = 2  are discussed in detail, and 
the generic results are checked on an exactly solvable model. The case d =  3 of 
a plane parallel to an ideal conductor is also explicitly worked out. 

KEY WORDS:  Universality; Coulomb systems; finite-size effects; solvable 
models. 

1. I N T R O D U C T I O N  

The present paper is about Coulomb systems, in which the particles inter- 
act through the d-dimensional Coulomb potential (or some variant of it) 
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but live in a space of dimension d -  1 (this is what we call restricted dimen- 
sion). Examples are particles in a plane interacting through the usual 1/r 
Coulomb potential, or particles on a line interacting through the two- 
dimensional - I n  r Coulomb potential. We are interested in the classical 
equilibrium statistical mechanics of some of these systems ("classical" 
means that the quantum effects are disregarded), with the purpose of 
exhibiting universal properties ("universal" means independent of the 
microscopic detail). This universality is closely related to the universality of 
the macroscopic electrostatics of conductors. Therefore, from the begin- 
ning, we assume that the systems under consideration have a macroscopic 
conducting behavior; this excludes, for instance, a two-component one- 
dimensional log-gas at a too low temperature, since this gas in then 
insulating.l' 

The charge correlations have already been shown to be universal for 
several classes of conducting systems of restricted dimension. In the simple 
above-mentioned cases, (2~ the charge-charge correlation function S(r) is 

kBT 
S ( r )  - 4~zEr3 ( 1. l ) 

in a plane with l/r interactions, and 

kaT 
S(r) = ~z2r 2 (1.2) 

in a log-gas on a line; k B is Boltzmann's constant, T the temperature, and 
r the distance. [These expressions (1.1) and (1.2) are only macroscopically 
valid: the distance r must be large compared to the microscopic scale, and 
possible oscillations of the correlation function have to be smoothed 
away.] Another occurrence of universality is for systems with a d-dimen- 
sional Coulomb interaction confined in some appropriate d-dimensional 
domain; then, not only are there universal surface charge correlations, c-'~ 
but also the free energy and the grand potential have universal finite-size 
corrections. (3-51 Here we shall be concerned with infinite flat systems of 
restricted dimension d - 1 ,  with some finite-size effect brought in by a 
boundary condition on the electric potential in the dth dimension. Univer- 
sal behavior will be found both for the charge correlations and the free 
energy or the grand potential. For d =  2, these generic properties will be 
checked on a solvable model. 

For instance, in Section 2, we consider a conducting log-gas on an 
infinite straight line (the x axis) with the logarithmic interaction modified 
by the constraint that it be periodic of period W in the transverse direction 
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y [it has the form (2.2)]. Then, for macroscopic distances, the smoothed 
charge--charge correlation function is found to be 

kB T cosh( rcx/W) 
S(x) = - W2 sinh2(rcx/W) (1.3) 

while the free energy per unit length f and the grand potential per unit 
length co exhibit a finite-W correction as W---, 0o: 

f(IV) = f (oo)  + kB T ~ w +  O ( W -1 ) 
~5 

(1.4a) 

co( W)=co( oo ) + kB T rc - ~ +  o( W -~) (1.4b) 

These generic results (1.3) and (1.4) are checked in the special case of a 
one-component log-gas which is a (partially) exactly solvable model. 

Similar results are obtained for a conducting line at a distance W from 
an ideal conductor in Section 3, and for a conducting line with ideal con- 
ductors on each side of it in Section 4. An example of higher dimension is 
considered in Section 5: a conducting plane at a distance W from an ideal 
conductor. 

2. LOG-GAS ON A LINE WITH TRANSVERSE PERIODIC 
B O U N D A R Y  C O N D I T I O N S  

2.1. The System 

The two-dimensional Coulomb interaction between two point charges 
q and q' located in the xy plane at r = (x, y) and r ' =  (x', y ')  is qq'Go(r, r'), 
with Go(r, r') a solution of the Poisson equation 

AGo(r, r ' ) =  - 2 ~ f i ( r -  r') (2.1) 

In the strip -W/2<~y ,  y'<~W/2, a solution of (2.1) with periodic 
boundary conditions at y = - W/2 and y = W/2 is 

Go(r, r ' ) = - - I n - ~ -  sinh rt(z--~ - ~  (2.2) 

where z = x + iy and z '= x' + iy' are the complex coordinates; the factor 
W/rc in (2.2) ensures that, in the limit W ~  oo, one recovers the usual two- 
dimensional Coulomb interaction - I n  Iz-z'l.  We consider some one- 
dimensional system of charges, on the x axis, with the interaction (2.2), 
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where now z = x and z ' =  x'; some short-range interaction might also be 
present. It may be noted that the interaction 

7t 
v(x-x ' )= - l n  sinh - ~ ( x -  x') (2.3) 

on the x axis interpolates between a logarithmic interaction - I n  I x -  x'[ at 
short distances and a linear interaction (one-dimensional Coulomb inter- 
action) - ( ~ / W )  I x -  x'] at large distances. 

The system is assumed to have the properties which characterize a 
conductor, and to be globally neutral. The period W is macroscopic. 

2.2. Electric Potential  Correlat ions 

For investigating the charge correlations and the thermodynamics, we 
first need information about the correlations of the electric potential. Let 
~b(r) be the microscopic electric potential created at r by the charges of the 
system and let us consider the correlation function (~ ( r )~ ( r ' ) ) .  For r and 
r' at macroscopic distances from the x axis, this correlation function can be 
obtained by the method described in ref. 1, using linear response theory 
and the conducting behavior assumption, as follows. Let us put an 
infinitesimal test charge q at r'. Its interaction with the system is described 
by a Hamiltonian q~b(r'), and by linear response theory the average poten- 
tial at r created by the charges of the system is changed by 

6~(r) = -flq(~b(r) ~b(r')) r (2.4) 

where fl=l/kBT and ( . . . ) r  means a truncated statistical average 
( ( A B ) r = ( A B ) - - ( A ) ( B ) ) ;  here, however, (q~(r))=0,  and the mark 
"truncated" is superfluous. The total potential change at r is qG(r, r'), 
where G(r, r') is given by the macroscopic electrostatics of conductors, i.e., 
G is the solution of the Poisson equation for a point charge q at r', with 
the constraint that it is periodic of period W in y and that it vanishes on 
the x axis y = 0: 

sinh(n/2W)(z-z') if yy'>O (2.5a) 
G(r, r ' ) =  - l n  ~ W ) ( z - f ' )  

cosh(rt/2 IV)(z - -7') 
G(r, r ' ) =  - l n  cosh(r t /2W)(z-Y) if yy' < 0  (2.5b) 

(G does not vanish for yy' <0,  i.e., the conducting line does not screen the 
regions y > 0 and y < 0 from each other; this is an effect of the periodic 
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boundary condition which connects these regions across the boundaries at 
y = + W/2). That part of the total potential change which is created by the 
charges of the system is 

6~b(r) = q[ G(r, r ' ) -  Go(r, r ')] (2.6) 

From (2.4) and (2.6), one obtains for the correlation function 

fl<q~(r) ~b(r'))r= Go(r, r ' ) -  G(r, r') (2.7) 

in terms of (2.2) and (2.5). 

2.3. Charge Correlat ions 

Let a(x) be the charge per unit length on the x axis and let the macro- 
scopically smoothed charge-charge correlation function be S(x -x ' )=  
(a(x)  cr(x')) r. Since 2ha(x) is equal to the discontinuity of the electric 
field component -O(~/Oy across the x axis, and since Go does not con- 
tribute to that discontinuity, one finds from (2.7) 

f lS(x_x')=2 lim [ O~-G(r'r') >o 02G(r'r') ] (2.8) 
_,,._,.'-o aye3)" .. + ay  ay'  ,,,,,<o 

Using (2.5) in (2.8) gives (1.3). 
An alternative derivation of (1.3) can be given by considering only the 

x-axis system, with the interaction (2.3) given, without any reference to 
the "outside world." One starts with the assumption that an external 
infinitesimal linear charge density q exp(ikx) is perfectly screened (for a 
wavenumber k small enough, i.e., macroscopic). Therefore the system 
responds by creating a charge density -qexp(ikx). The interaction 
Hamiltonian of the external charge with the system is qg(k) 6(-k),  where 
~(k) and 6(k) are the Fourier transforms of v(x) and cr(x), respectively. By 
linear response theory, - q  = - f lqf(k)(6(-k)  6(k)) T, i.e., 

1 
flS(k) - (2.9) ~(k) 

where S(k)= (c7(-k)  ~ (k ) ) r  is the Fourier transform of S(x). Our defini- 
tion of the Fourier transforms is, for instance, 

f% e  xv/x, /210, 
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Using (2.3) in (2.10) gives (in the sense of distributions) 

Wk (2.11) ~(k) = ~  ctnh 2 

and, from (2.9), (1.3) follows. It should be noted that, since pS(k )=  
[O(k)] -~ vanishes as k o 0 ,  the expression (1.3) of S(x), which is not 
valid near x = 0 ,  has to be supplemented by the prescription that 
~-oo S(x) dx = 0. The self-part of S(x) is included when this prescription is 
used. 

2.4. Free Energy or Grand Potential  

The thermodynamic potential to be considered is the free energy per 
unit length f if the canonical ensemble is used, or the grand potential 
per unit length co if the grand canonical ensemble is used. As a starting 
point we consider the derivative Of/O W (at constant densities) or oco/aw 
(at constant fugacities). 

Let us draw some line parallel to the x axis; this line divides the plane 
into two regions, up, U, and down, D. The derivative af/a w or Oco/O w is 
the force per unit length that region U exerts on region D, i.e., the T,.,, com- 
ponent of the Maxwell stress tensor: 

Of Oco 1 
OW OW-  Ty:,,=-~n (E:'(r)2-E"(r)2) (2.12) 

where E(r)=-V~b(r)  is the electric field at r (Tyy should be independent 
of r). Since (E ( r ) )  = 0, we can replace ( . - - )  by ( . . . )  r in (2.12), and using 
the derivative of (2.7) with respect to r and r' (wih the limit r' = r taken at 
the end of the calculation) one finds 

flT~,y- 8 W 2 (2.13) 

By integration of (2.12), one obtains (1.4). 
Alternatively, (1.4) can be derived by considering only the x-axis 

system with the interaction v(x). The partition or grand partition function 
depends on W through v(x), and differentiating it with respect to W gives 
a statistical average of Ov(x)/OW to be taken with the charge correlation 
function S(x) [since Ov(x)/OW vanishes at x = 0, the small-x regularization 
of S(x) plays no role here]: 

flOW rOW 2J_o~ flS(x) dx= _ flS(k) O~(k)dkOw 2~r (2.14) 
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Using (1.3) and (2.3), or (2.9) and (2.11), in (2.14), one recovers the result 
fl Of/O W = fl c3co/0 W = - ~/8 W 2 and (1.4). 

2.5. So lvable  M o d e l  

The one-dimensional one-component plasma with the interaction (2.3) 
is a solvable model for special value(s) of the temperature. The model con- 
sists of particles of charge e, with a particle density v/, and a uniform back- 
ground of charge density - e r /wh ich  ensures overall neutrality. 

The correlations are known at the special temperature such that 
F := fie 2 = 2; they are the same ones as for some quantum zero-temperature 
system/6~ From Eqs. (3.13a) and (3.21a) 3 of ref. 6, 

[1 7 2 
flS(x, x') = - 2  W0'l(0; e-2~'lw) �9 2 sinh(n I x - x ' l / w ) J  + 2 r / 6 ( x - x ' )  

(2.15) 

where 

[(x)=e-~X/2W01 ~+nr/x;  e -~'w (2.16) 

(01 is a Jacobian theta function). The charge-charge correlation function 
S(x, x') does not depend only on the distance Ix-x'l because the system 
has a crystalline structure. For q small, 

01(u; q) ~ 2q TM sin u (2.17) 

For I4" large, (2.17) can be used in (2.15) and (2.16), giving 

1 
flS(x, x') ,,~ W 2 sinh2[ n ( x -  x ' ) /W] 

x [ 2 s i n 2 ( 4 + m l x )  sin2(4--rcqx')e-~C"-"'~/w 

+2s in2(4- - rcqx)  s in2(4+zt , lx ' )e '~ ' ' -""/w 

-- cos 2rtr/x cos 2nl/x'], x 4: x' (2.18) 
A 

3 A factor 2 is missing in the denominator of Eq. (3.21a) in ref. 6. 



366 Forrester e t  al. 

The macroscopically smoothed S ( x - x ' )  is obtained by averaging out the 
microscopic oscillations in (2.18), i.e., replacing the sin 2 terms by 1/2 and 
the cos terms by 0, which gives 

cosh [ ~(x - x ' ) / W ]  

f lS(x-x ' )  ~ W2 sinh2[rc(x_x,)/W ] (2.19) 

in agreement with (1.3). 
The free energy can be computed at the special temperatures such that 

F =  1, 2, 4, starting with the known partition function 17~ for a finite system 
of N particles on a line of length L along the x axis, and an interaction 
which is periodic of period W in the y direction and also periodic of period 
L in the x direction; on the line, this interaction is 

v ( x - x ' ) = - l n  O l ~ ( x ~ x ' ) ; e  - \ +cons t  (2.20) 

[with a suitable choice of the constant, (2.20) goes to (2.3) as L ~  ~ ] .  
Including in the energy the particle-particle, particle-background, and 
background-background interactions, one finds for the partition function 

q-N'-r/s ( 1 - q2,) N---~. CNr (2.21) 
i 1 

where q := e x p ( - n W / L )  and CNr is the configuration integral 

I =  I 1 ~ j < k  

Cur has been computed in ref. 7 for F = 1, 2, 4. In the thermodynamic limit 
N--, or, L/L=q fixed, one finds for the free energy per unit length 
f(F; W) = - l i m  L - '  In ZN(F) 

1 'l " fl/2 [ e - 2- w,,(,," + 2,,, ] 
flf(l;  W ) = ~ q l n ~ + l ~ - - r / ~  dtln ~ ~ .j (2.23a) 

~. I n ( 1 - e  -4"w'v') (2.23b) flf(2; /4") = - q  ln(2~) + ~ - -~ -q  
n ~ l  

7~ 
flf(4; /4I) = -r/ln(8rt2r/) + - -  

12W 

I~ dt In (2n + t) e -4~w'~(':+"'~ (2.23c) 
~ u  

n ~ 
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In the large-W limit, in all cases, 

7~ 
IV(F; w3 ~ pf ( r ;  ~ )  + 8--ff (2.24) 

~f(F; oo) = ~/ 1 -- ln(2ru/) - -~  In ~- + ~ +  In ! - l n ( 2 g ) -  1 

(2.25) 

3. LOG-GAS ON A LINE PARALLEL TO AN IDEAL CONDUCTOR 

3.1. The System 

The region of interest is the half-plane y > 0. The electric potential is 
constrained to vanish on the x axis, i.e., the x axis is an ideal conductor at 
zero potential. A solution of (2.1) with that boundary condition is 

I z - z ' l  
Go(r, r ' ) =  - I n  [ _z - f ' [  (3.1) 

We consider some one-dimensional system of charges, on the line y = W, 
with the corresponding interaction 

1 (x - x ' )  2 
v(x-  x') = - -~ ln  (x_ x,)Z + 4W 2 (3.2) 

plus perhaps some short-range interaction. It may be noted that this 
interaction interpolates between - l n [ x - x ' [  at short distances and 
2W2/(x-x') "- at large distances. W is a macroscopic distance, and the 
system is assumed to have the properties of a conductor. 

3.2. Correlations 

We follow the same steps as in Section 2. Let us first consider the case 
when the conducting system on the line y = W is kept at zero macroscopic 
potential. Now G is the solution of the Poisson equation for a point charge 
q at r' with the constraint that it vanishes on the lines y = 0 and y = W: 

sinh(z~/2 W)(z - z') ] y, 
G ( r , r ' ) = - l n  ~ ~ - ; ~  if 0 < y ,  < W  (3.3a) 

G( r , r ' ) =  - l n  z--~7---2iwZ-Z' if y, y ' > W  (3.3b) 

G( r , r ' )=0 ,  if 0 < y < W ,  y'>W; o r y > W , O < y ' < W  (3.3c) 
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From the analog of (2.8) one now obtains the universal correlation 
function 

1 1 
flS(x) = 2~zx 2 8 W'- sinh2(nx/2 W) (3.4) 

An alternative direct derivation of (3.4) uses (2.9) and the Fourier 
transform 

7[ 
tT(k) = I-~ ( 1 - e-- 'w I~)) (3.5) 

Here, flS(k) ~ 1/2rtW as k --, 0, and the small-x modification of (3.4) must 
be such that fl~2~ S(x) d x =  1/2roW. 

3.3. Free Energy or Grand Potential 

Still assuming that the line y = W is kept at zero macroscopic poten- 
tial, we can use (2.7) (with ( . . . ) r =  ( . . . ) ) ,  (3.1), and (3.3a) for computing 
the T.~,.,, component of the stress tensor at some point r between the ideal 
conductor and the conducting line. One finds 

fiT_,.,. := (E,,(r) 2 - E.,.(r) 2) - 2 4 W 2  (3.6) 

The W dependence of the free energy or grand potential is given by 

Of 8r 
ow o w -  r,,.,, (3.7) 

provided f and co are properly defined with a Hamiltonian which includes 
the self-energy interaction (1/2)q 2 ln(2W) of each particle of charge q with 
its image. It should be noted that, in the limit W - ,  oo, this self-energy and 
the two-body interaction (3.2) generate a well-defined total Hamiltonian 
containing only a two-body interaction - i n  [ x - x ' l ;  therefore f and o) are 
expected to have well-defined limits as W - ,  oo. From (3.6) and (3.7), one 
finds the large- W expansions 

7r 
flf(W) = flf(oo) - 2 ~ +  o( W -1 ) (3.8a) 

7~ 
fl,o(IV) = t im(m)  - 2 ~ +  o( W - l )  (3.8b) 

with the universal finite- W correction - n/24 W. 
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Alternatively, (3.8) can be obtained from (2.14) by using either (3.2) 
and (3.4) [with the integral on x in (2.14) properly regularized at x = 0 ] ,  
or (2.9) and (3.5). Since one must keep the self-contribution from the 
( 1 / 2 ) l n [ ( x - x ' ) 2 + 4 W  2] part of (3.2), it is indeed appropriate to use in 
(2.4) the full correlation function S(x) or rs(k) which includes the self-part; 
when understood as the Fourier transform of firS(k) = 1/g(k) in the sense of 
distributions, (3.4) does represent the full flS(x). 

3.4. Nonzero Potential Difference 

We now consider the more general case when the system on the line 
y =  W is kept at a nonzero macroscopic potential ~; correspondingly, there 
is on that line an average linear charge density 

a = (3.9) 
2nW 

(3.9) is the equivalent of the familiar charge-potential relation in a plane 
condenser. 

Provided one defines the charge correlation function as S (x )=  
(a(O) a(x))7-, where the T (truncated) sign is now relevant, the calculation 
of S(x)  is unchanged and (3.4) is still valid. 

The free energy and grand potential, however, get additional terms. 
Now (Ey(r) )  is no longer zero, and (3.6) must be replaced by 

fiT;,.,, :=4fl--s (E,,(r) 2 - -  E , . ( r )  2 ) 

fl 
= 4---~ [ (Ev(r)2 - E~(r)2) T + "  (Ev(r))  2 ]  

n /3cP 2 
= 2 4 w  2 + _ 2 4 - w  2 + (3.10) 

From (Of/OW)~, = T.,,y one obtains 

f l f  ( W) ~ f l f  ( oo ) - 2 ~  + flmr- W =  f l f  ( oo ) - 2 ~  + -~-n- ~ (3.11a) 

while from (&o/0W)~ = T,,,, one obtains 

n ~g~2 
flco(W)~,&o(oo) 24W 4xW (3.11b) 

It is well known that the macroscopic electrostatic energy ~2/4~W= na 2 
must come with different signs in f and in co. 

822/84/3-4-4 
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3.5. Solvable Model 

The one-dimensional one-component plasma on a line parallel to an 
ideal conductor is a solvable model, ~8"9~ at the special temperature 
F := f i e2= 2; it is a special case of the more general models of two-dimen- 
sional plasmas with an ideal conductor walP m~ or between two ideal 
conductor walls. ~5~ One uses the grand canonical ensemble, with a fixed 
linear charge density -e r /  for the background and a fugacity ( which 
governs the particle density. The distance W between the system and the 
ideal conductor can have any value (not necessarily large) to start with. 

By a simple adaptation of the formalism in previous work, ~5"8'9~ we 
obtain for the grand potential per unit length co (including the background 
self-energy) 

rico = - T r  ln( 1 + K)  + 2nr/2 W (3.12) 

where K is the continuous matrix 

e4ml  Iv  

K(x ,  x ' )  = i( (3.13) 
x - x '  + 2i W 

Using the Fourier transform which diagonalizes K 

K ( k )  = dx '  e i k l ' ' - '~K(x ,  x') = n~e4~,w,- 2kw if k > 0 
-~, if k < O  (3.14) 

and writing the trace (per unit length) as (2n)-1 I dk, one finds 

ff dk + 2n(e4,,, , ,v_2kw] ,&o= - ~-~ ln[ 1 +2nq2W (3.15) 

For obtaining a large-W expansion (r/W,> 1) of (3.15), we make the 
change of variable 4 n r / W - 2 k W = - u ,  split the integral on u into two 
integrals in the u-ranges ( -4nr /W,  0) and (0, m), and write 

lfO 
- - -  du In e" (3.16) 2nr/2 W = 4n W -4,~,,,, 

This leads to the still exact expression 

- -  --4nq ~V dlg in + f l c o = - r / l n ( 2 n ( )  4 ~ [ ~  ~ (1 1 e")  

(3.17) 
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Finally, when r/W>> 1, we can replace the lowest bound of the first integral 
in (3.17) by - o o  and change u into - u ,  which gives, up to exponentially 
small terms, 

1 ~ 1 e - " )  2zrffe-")] / / c o ~ - ~ / l n ( 2 r c ~ ) - 4 - ~ I  ~ duln [ (1  +~-~-~ ( 1 +  

= - 7  ln(2n~) - - [ l n ( 2 n ~ ) ]  2 (3.18) 
24W 8nW 

The corresponding particle density is 

. =  Go 1 
- 0~ (/ /co)~q +~-~ ln(2rc~)  (3.19) 

and the charge density of the system is e ( n - q ) = ( e / 4 n W ) l n ( 2 r c ~ ) .  The 
system is neutral when (~ = 1/2~. Otherwise, its average electric potential is 

= 2ne(n - r/) W =  (e/2) ln(2n~) and therefore, since fie 2 = 2, 

1 
(~ = ~ e ''r (3.20) 

( r  contributes a term e r  to the chemical potential, as expected). Using 
(3.20) in (3.18), w i th / / e2=2 ,  shows that (3.11b) is verified in the present 
solvable model. (3.9) is also verified. Furthermore, for W--* oo, //co(oe)= 
-q ln(2n~) ,  n = q  (independent of (), and the thermodynamic relation 

fl.f = rico + (In ~) n becomes flf( oo ) = - r/ln(2n), in agreement with (2.25). 
The formalism of previous work 15'8"9~ also gives the correlation func- 

tions in terms of the continuous matrix g(x ,  x ' )  defined in matrix notation 
a s  

K 
g = - -  (3.21) 

I + K  

The particle density is 

17 = g ( 0 ,  0 )  

and the charge correlation function is 

S ( x )  = - e  2 Ig(x, 0)12 + e2n~(x)  

(3.22) 

(3.23) 

From (3.21) and (3.14), one finds 

ff r_, d k  e i k x  - g(x ,  O) = 
~2(k) _ i ~ d k  e ik-" 

1 + K(k) o 27r 1 + (1/2rr~') e 2wlk-'- '" 
(3.24) 
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In particular, 

n = g(0, 0) = 4 ~ l n (  1 + 2zt(e 4"~w) (3.25) 

In the case of interest r/W>> 1, (3.25) takes the form (3.19), and (3.24) 
can be rewritten as 

;~  dk e ikx 

g(x, O) ~ 2---~ 1 --~e 2W(k-2mO 

1 1 
2nix 1 + e -4"w 

~:  dk e ikx W 
+ 2n ix 2cosh 2 W ( k - 2 n n )  (3.26) 

where an integration by parts has been performed. For nW>> 1, up to 
exponentially small terms, by extending the last integral in (3.26) to the 
range ( - ~ ,  oo), one finds 

1 [ 1 e ] 
- - +  (3.27) g(x, O)~2-nini x (2W/x) s~nh(xx/2W)J 

The microscopic correlation function S(x) is obtained by using (3.19) and 
(3.27) in (3.23). It has oscillations of period n -~, the average interparticle 
distance. When these oscillations are averaged out, (3.23) with fle2=2 
agrees with the universal form (3.4). 

4. LOG-GAS ON A LINE BETWEEN T W O  IDEAL C O N D U C T O R S  

4.1. The System 

The region of interest is the plane strip 0 ~<y ~< W. The electric poten- 
tial is constrained to vanish on the lines y = 0 and y = W, i.e., these lines 
are ideal conductors at zero potential. A solution of (2.1) with that 
boundary condition is 

sinh(n/2 W)(z - z') 
G0(r, r ' ) =  - I n  ~ ~ - ~ S _ ~ , i  (4.1) 

We consider some one-dimensional system of charges, on the line y = W/2, 
with the corresponding interaction 

v ( x - x ' )  = - I n  tanh ~--~-..(x-x') (4.2) 
z w  
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plus perhaps some short-range interaction. Now v interpolates between 
- I n  ]x -x ' ]  and 2 e x p [ - ( g / W )  I x - x ' ] ] .  Again Wis macroscopic and the 
system is assumed to be a conductor; it is kept at some potential qL 

4.2. Correlations 

Now, using 

sinh(g/4 W)(z - z') 
G(r, r ' ) = - I n  ~ ~ i  W 

if 0 < y ,  y ' <  (4.3a) 
2 

W W 
G ( r , r ' ) = 0  if 0 < y < - ~ - ,  - ~ - < y ' < W ;  or 

W W 
-~- < y < W, 0 < y' <-~- (4.3b) 

and using the analog of (2.8), one finds the universal correlation function 

1 
flS(x) = W'- sinh2(gx/W) (4.4) 

Alternatively, one can use (2.9) and the Fourier transform 

g Wk (4.5) g(k) = ~  tanh 2 

4.3.  Free Energy or Grand Potential 

Now the stress tensor component Ty.,, is found to be such that 

g . p~2 

/~Ty, - 8 W" + g W 2 

The charge density is 

Thus, 

2q~ 
g W  

g pg 2W g pr 

(4.6) 

(4.7) 

(4.8a) 



374 

and 

Forrester e t  al. 

i1r 2 
flco ~ flco( oo ) (4.8b) 8W nW 

4.4. Solvable Model  

The one-component plasma is again a solvable model, with the present 
boundary conditions, when F : =  fie2= 2. The formalism of ref. 5 is appli- 
cable, with now 

e nq W 

K( x, x' ) = ;~W cosh[ ( x/2 W)( x _ x, ) ] (4.9) 

and 

eml w 

R(k) = ~ - -  (4. I0) 
cosh Wk 

Thus 

f l co=_f~  dk [ e'~qw ] 1 _~ ~-~ In 1 + ~r co-~ ~vkj + ~ rol2W (4.11) 

For obtaining a large-W expansion of (4.11), we rewrite it as 

p'co = - J o  f-~ --dk In 1 + e-2wk + 2rcCe w(,,~- k) IU'~ dk 
re 1 + e  -2~* + - - l n e  w(~'l-~') (4.12) 

~0  

extract from the first integral in (4.12) the factor 

~ o -  = rc ( 4 . 1 3 )  dkre ln(l + e - 2 ~ )  24W 

and regroup the other terms into two integrals on the k-ranges (0, nr/) and 
(m/, ~) .  After simple changes of variable, neglecting exponentially small 
terms (which allows us to extend one of the integration ranges), one 
obtains 

flco~_qln(2rc~)+ rc 1 f :  ~ [ ( 1 ) ]  24W ~ duln (1 +2fete-") 1 + ~ e - "  

rc 1 
=- r / ln (2n~)  8W 2feW [ln(2r~)]z (4.14) 
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The corresponding particle density is 

d 1 
n = - ~  ~(flco) ~ t /+  ~-~ln(2n~) (4.15) 

Neutrality still occurs when 2n~= 1, (3.20) is still valid, and (4.8b) is 
verified by (4.14). 

The correlation function is still given by (3.21) and (3.23) now with 
(4.10). Thus 

; ~' dk e i'~x 

g(x, 0 ) =  _-~ 2n 1 +(1/rc~) e-~'lWcosh Wk 

f :  dk cos kx 
~ ~ 1 + 2 e  . . . .  rVcosh Wk 

sin(nnx) (4.16 ) 
W sinh(nx/HI) 

and 

1 - cos(2nnx) 
flS(x) = W2 sinh2(nx/W ) (4.17) 

When the oscillations of (4.17) are averaged out, the universal expression 
(4.4) is verified. 

5. COULOMB SYSTEM IN A PLANE PARALLEL TO AN 
IDEAL CONDUCTOR 

5.1. The System 

The universal properties discussed in Sections 2--4 can be generalized 
to systems of higher dimension. As an example, in three-dimensional space 
xyz, we consider a conducting classical system of charges confined in the 
plane z = W and kept at an average potential ~, while the plane z = 0 is an 
ideal conductor at potential zero. Such a model might be relevant for 
describing electrons trapped at the surface of liquid helium in front of an 
electrode located under the surface. II~ We transpose the derivations and 
results of Section 3 to the present system. 

We denote a position as r =  (x,y, z ) =  (p, z), where p =  (x,y). In the 
half-space z > 0, the Green function Go, solution of 

AGo(r, r') = - 4 ~ ( r  - r ') (5.1) 
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constrained to vanish on the plane z = 0 and at infinity, is 

1 1 
G0(r, r ' )=  - -  (5.2) 

I r - r ' l  I r - r ' * l  

where r'* =(x' ,  y ' - z ' )  is the image of r'. In the plane z=  IV, the interac- 
tion is 

1 1 
v(p, p')-/I'P--P'~-q [-(P--P')"+4W"] '/2 (5.3) 

5 . 2 .  C o r r e l a t i o n s  

The Green function 
planes is 

which vanishes on both the ----0 and z = W  

G(r , r ' )=  ~. Go(r,r '+2nWu) if 0<z ,  z ' < W  (5.4a) 

where u is the unit vector along the z axis, 

1 1 
G(r,r')-lr_r,----- q [ ( p _ p , ) 2 + ( z + _ ,  2W)2]1/2 if z , z ' > W  (5.4b) 

G( r , r ' )=0  if 0 < z < W ,  : '> IV;  or - > W ,  0 < z ' < W  (5.4c) 

The potential correlation function is given by (2.7), and from the analog of 
(2.8) one finds for the surface charge tr(r) correlation function in the plane 
2 = W  

f lS(p-p ' )  := f l ( t r (p )a (p , ) ) r=  1 ~ (p--p')2-2(2nW)'- 
4zc2 [ ( p _  p,)2 + (2n W)215/2 (5.5) 

n ~ 0  

At short distances, f l S ~ -  1/4~z2(p-p') 3, in agreement with the formula 
(1.1) for a plane alone; at long distance, the Euler-MacLaurin summation 
formula gives f lS  ~ - 1/8n2(p - p,)3. 

An alternative direct derivation of (5.5) uses (2.9) and the two-dimen- 
sional Fourier transform 

. 2n _e_2Wikl ) vIk)= {1 (5.6) 



Universality in Coulomb Systems 377 

5.3. Free Energy or Grand Potent ia l  

In the region 0 < z < W, using (2.7) gives for the T= component of the 
Maxwell stress tensor the force per unit area, 

1 / ~ 1 , \  kBT((3) ~2 
T= :=-~n (xE--~ E- ) - -~-~3 +8zrW-----3 (5.7) 

where ((3) = 1.202... is a value of the Riemann zeta funtion. The last term 
of (5.7) is the standard attractive force between the plates of a plane 
condenser. The (usually much smaller) thermal term k B 7"((3)/8g W 3 can be 
obtained as the classical limit of the celebrated Lifshitz theory I ~2)of van der 
Waals-type forces between macroscopic bodies. 4 

By integrating (Of/OW)~ = (&o/OW)~ = 7"___, one obtains 

((3) ~5 2 
flf(I4,') =flf(oo) 16~W 2 ~-8-~W (5.8a) 

((3) q52 
flco(IV) = f l f ( o v ) -  16~zW~ 87zW (5.8b) 

Alternatively the thermal term of (5.8) can be obtained by using (2.9), 
the analog of (2.14), and (5.6). 

For the d-dimensional analog of the present system, the thermal part 
of the force per unit area is found to be 

kB T (d -  1) F(d/2) ((d) 
z~d/2(2 I4I) d (5.9) 

6. C O N C L U S I O N  

The occurrence of universal properties in conducting classical Coulomb 
systems is especially visible in systems of restricted dimensionality. The 
simplest, already known, example is the smoothed charge-charge correla- 
tion function S(r) for particles in a plane with l/r interactions, as given by 
Eq. ( 1.1 ). If (1.1) is understood as the two-dimensional Fourier transform 
of kB T ]kl/2g in the sense of distributions, the prescription for regularizing 
its integral is 

f S(r) d2r = kB T~ d2r 
-- 4~ 2 3 7 - = 0  (6.1) 

and therefore (1.1) represents the smoothed full S(r), including its self-part 
term, since (6.1) correctly expresses the screening rule. 

4 Our result agrees with Eq. (5.5) of ref. 12, with eo = oo and the integral evaluated exactly. 
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In the present paper, we have derived universal smoothed charge 
correlation functions for other geometries involving some boundary con- 
ditions for the electric potential outside the system of charges. These 
boundary conditions involve some macroscopic length scale IV, and we 
have exhibited universal W dependences of the free energy and the grand 
potential. 

In Sections 2-4, we have considered one-dimensional systems with a 
two-dimensional Coulomb interaction, because, for these systems, we had 
at hand exactly solvable models on which we could test our generic results. 
However, similar generic results can be easily derived for any dimension, 
and in Section 5 we gave an example involving the usual three-dimensional 
Coulomb law. 

A by-product of Section 4 is a new one-dimensional solvable model: 
particles on a line, interacting through the potential - e  2 In I tanh[(~/2W) 
( x - x ' ) ] l ,  without any background or self-energy. When F:=fle2=2, the 
correlations and the thermodynamics can be obtained exactly, by a minor 
adaptation of Section 4. 
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