École ECOCLIM 2018

Methane: its cycle, sources and sinks

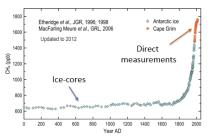
Isabelle Pison,

M. Saunois, P. Bousquet and the Global Carbon Project

Main references:

- the Global Carbon Project for methane: http://www.globalcarbonproject.org/methanebudget
- Saunois *et al.* (2016): The Global Methane Budget 2000-2012, Earth System Science Data, 8, 1-54, http://dx.doi.org/10.5194/essd-8-1-2016
- Kirschke et al. (2013): Three decades of global methane sources and sinks, Nature Climate Change, 6, 813-823, http://dx.doi.org/10.1038ngeo1955

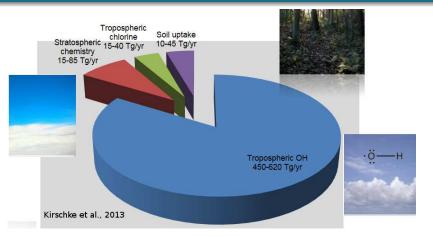
LABORATOIRE DES SCIENCES DU CLIMAT & DE L'ENVIRONNEMENT


Methane in our atmosphere

GLOBAL CARBON

The methane context

- After carbon dioxide (CO₂), methane (CH₄) is the second most important well-mixed greenhouse gas contributing to humaninduced climate change.
- In a time horizon of 100 years, CH_4 has a Global Warming Potential about 30 times larger than CO_2 .
- The concentration increase is responsible for about 20% of the global warming produced by all well-mixed greenhouse gases, with potentially large additional emissions in the future from permafrost.
- The average concentration of CH₄ in the atmosphere is 2.5 times higher than in year 1750.
- The atmospheric life time of CH₄ is about 9±2 years, which makes it a good target for climate change mitigation, with economically valuable solutions, less impacting our day-today lifes than CO₂ mitigation.

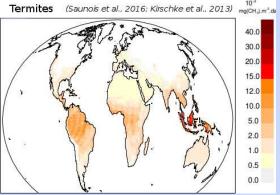

- Increasing emissions of methane are transformed into water in the stratosphere by chemical reactions.
- Methane also contributes to ozone production in the troposphere, which is a pollutant with negative impacts on human health and ecosystems, and a greenhouse gas.

Sources : Saunois et al., 2016; Kirschke et al. 2013, Nature Geoscience; IPCC 2013 5AR; Voulgarakis et al., 2013

CH₄ is a reduced species in an oxidizing atmosphere

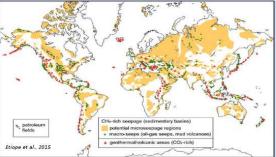
- \Rightarrow chemical sinks: CH₄ \rightarrow CO₂
- \Rightarrow sources into the atmosphere: to explain that it is still present

Methane sinks: oxidation in the atmosphere and soils



Impact of the oxidizing capacity of the atmosphere on [CH₄]

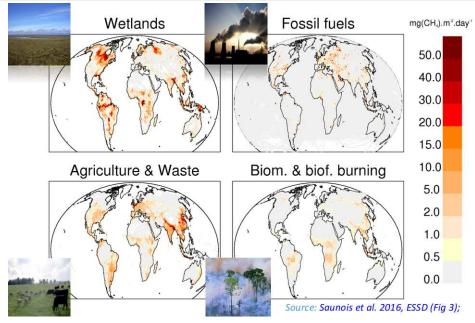
- OH changes could explain part of the variations of [CH₄]: OH $\searrow \Rightarrow$ [CH₄] \nearrow
- BUT magnitude uncertain


Three main emitting processes

• **biogenic**: Archaea using organic matter in anaerobic environnements such as natural wetlands, anthropogenically managed wetlands, landfills, waste-water facilities, the intestines of wild and domesticated animals

Three main emitting processes

- **biogenic**: Archaea using organic matter in anaerobic environnements such as natural wetlands, anthropogenically managed wetlands, landfills, waste-water facilities, the intestines of wild and domesticated animals
- thermogenic: heat and pressure in the crust breaking down organic matter, release through natural geologic gas seeps or during the exploitation and distribution of gas, oil and coal



Three main emitting processes

- **biogenic**: Archaea using organic matter in anaerobic environnements such as natural wetlands, anthropogenically managed wetlands, landfills, waste-water facilities, the intestines of wild and domesticated animals
- thermogenic: heat and pressure in the crust breaking down organic matter, release through natural geologic gas seeps or during the exploitation and distribution of gas, oil and coal
- **pyrogenic**: incomplete combustion of biomass in wildfires, during agricultural activites and due to the use of biofuels

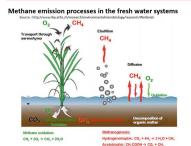
Main categories:

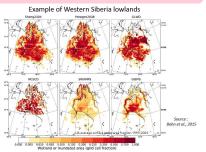
- natural wetlands 25-30%
- fossil-fuel-related 16-19%
- agriculture and waste 26-34%
- biomass and biofuel burning 4-6%

Characteristics of methane sources

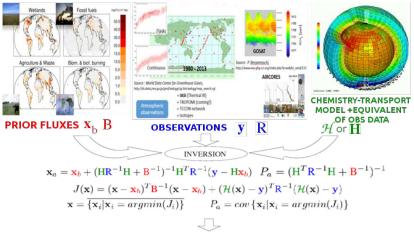
- large variety
- many are diffusive
- strong spatial and temporal heterogeneity
- some are located in areas difficult to study (the Arctic, tropical forests, the ocean)
- some may be highly sensitive to climate change
- \Rightarrow uncertainties in CH_4 regional and global budgets

How do we quantify these sources and sinks, now and for the future?


- bottom-up approaches: inventories and process-based models
- top-down approaches: data assimilation


Bottom-up approaches

- inventories: based on socio-economical data + physical parameters (emission factors)
- process-based models: numerical modelling of biogeochemical processes


Main difficulties

- large sets of very different data to aggregate: time-consuming, risks of errors, lack of shared and consistent definitions
- small-scale processes determine the larger scales: large discrepancies may occur at the regional scales

Top-down approaches: data assimilation

OPTIMIZED FLUXES + UNCERTAINTIES

Main difficulties

- lack of information on error statistics ⇒ irrelevant fluxes
- strong assumptions: Gaussian distributions, perfect parameters
- technical difficulties: heavy codes, big and varied data to treat

BU+TD: what do we know about methane budget?

Source : Saunois et al. 2016, ESSD

559 TgCH₄/yr [540-568]


BU+TD: what do we know about the methane budget?

Regional Methane Sources (2003-2012)

Source: Saunois et al. 2016 ESSD (Fig 7)

GLOBAL CARBON

- Largest emissions in Tropical South America, South-East Asia and China (50% of global emissions)
- Dominance of wetland emissions in the tropics and boreal regions
- Dominance of agriculture & waste in India and China
- Balance between agriculture & waste and fossil fuels at midlatitudes

- Uncertain magnitude of wetland emissions in boreal regions between TD and BU
- · Chinese emissions lower in TD than in BU, African emissions larger in TD than in BU

On-going improvements:

10/14

- TD: more data to assimilate
- BU: improved emission inventories and estimates from inland water emissions

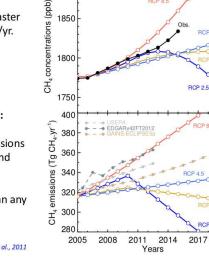
IPCC projections and RCPs

GLOBAL CARB

Anthropogenic Methane Emissions & RCPs

1900

1850


1800

Atmospheric concentrations (top plot):

- Methane concentrations rose even faster in 2014 and 2015, more than 10 ppb/yr.
- The recent atmospheric increase is approaching the RCP8.5 scenario

Anthropogenic emissions (bottom plot):

- EDGARv4.2 infers an increase in emissions that is roughly twice as fast as EPA and GAINS-ECLIPSE5a before 2010
- Bottom-up inventories are higher than any RCPs scenarios, except RCP8.5

BCP 4.5

2020

Highligths

- methane in the atmosphere is part of a complex cycle with numerous sources and sinks
- their quantification is still uncertain, particularly for natural sources
- the most probable causes explaining the increase in methane atmospheric concentrations since 2007 are:
 - the increase of one or more microbial sources in the Tropics
 - a smaller increase of the fossil-fuel-related emissions
 - a decrease of biomass burning emissions
 - a decrease or stagnation of the OH sink
- CH₄ mitigation offers rapid climate benefits and economic, health and agricultural co-benefits that are highly complementary to CO₂ mitigation.

Threshold effect

A phenomenon is suddenly and radically modified when a quantitative limit, the threshold, is surpassed.

Ratchet effect

No going back is possible once a given stage has been passed.

Feedbacks

The consequences in a chain of processes have effects on the same chain: the cause-and-effect chain is a loop.

- positive: the loop keeps increasing the same consequence due to the same effects
- negative: the loop keeps decreasing the consequence due to decreasing effects

Merci de votre attention