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Methane in our atmosphere

1750.

The atmospheric life time of CH,is about 9+2
years, which makes it a good target for
climate change mitigation, with economically
valuable solutions, less impacting our day-to-
day lifes than CO, mitigation.
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The average concentration of CH, in the
atmosphere is 2.5 times higher than in year * Increasing emissions of methane are

transformed into water in the stratosphere by
chemical reactions.

Methane also contributes to ozone
production in the troposphere, which is a
pollutant with negative impacts on human
health and ecosystems, and a greenhouse

gas.
Sources - Saunois et al, 2016; Kirschke et al 2013, Nature Geoscience; IPCC 2013 BAR; Voulgarakis et al, 2013

CHy is a reduced species in an oxidizing atmosphere
=> chemical sinks: CHy — CO»

s = sources into the atmosphere: to explain that it is still present



Methane sinks: oxidation in the atmosphere and soils

Tropospheric .
chiorine  Soil uptake
Stratospheric 15.40 TgfyT 10-45 Tglyr
chemistry
15-85 Tglyr

Kirschke et al., 2013

Impact of the oxidizing capacity of the atmosphere on [CH4]

@ OH changes could explain part of the variations of [CHy]:
OH \, = [CH4] /
@ BUT magnitude uncertain
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Methane sources: anthropogenic/natural
Three main emitting processes

@ biogenic: Archaea using organic matter in anaerobic
environnements such as natural wetlands, anthropogenically
managed wetlands, landfills, waste-water facilities, the intestines

of wild and domesticated animals
Termites (Saunok et al., 2016; Kirschke et al., 2013) W}SHM%
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Methane sources: anthropogenic/natural
Three main emitting processes

@ biogenic: Archaea using organic matter in anaerobic
environnements such as natural wetlands, anthropogenically
managed wetlands, landfills, waste-water facilities, the intestines
of wild and domesticated animals

@ thermogenic: heat and pressure in the crust breaking down

organic matter, release through natural geologic gas seeps or
during the exp|0|tat|on and dlstrlbutlon of gas, oil and coal

4, petrcieum
* felds

+ macio-seeps (oilgas seeps, mud volcanoes)

& geathermalvalcank: areas (COx-rich)

Etiope et al, 2015 a
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Methane sources: anthropogenic/natural
Three main emitting processes

@ biogenic: Archaea using organic matter in anaerobic
environnements such as natural wetlands, anthropogenically
managed wetlands, landfills, waste-water facilities, the intestines
of wild and domesticated animals

@ thermogenic: heat and pressure in the crust breaking down

organic matter, release through natural geologic gas seeps or
during the exploitation and distribution of gas, oil and coal

@ pyrogenic: incomplete combustion of biomass in wildfires, during
agricultural activites and due to the use of biofuels

Main categories:

@ natural wetlands 25-30%

o fossil-fuel-related 16-19%

@ agriculture and waste 26-34%

@ biomass and biofuel burning 4-6%
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Methane sources: anthropogenic/natural
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Source Saunois et al. 2016, ESSD (Fig 3);
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Methane sources: anthropogenic/natural

Characteristics of methane sources

o large variety
@ many are diffusive
@ strong spatial and temporal heterogeneity

@ some are located in areas difficult to study (the Arctic, tropical
forests, the ocean)

@ some may be highly sensitive to climate change

=> uncertainties in CHy regional and global budgets

How do we quantify these sources and sinks, now and for the
future?

@ bottom-up approaches: inventories and process-based models

@ top-down approaches: data assimilation
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Bottom-up approaches
@ inventories: based on socio-economical data + physical
parameters (emission factors)

@ process-based models: numerical modelling of biogeochemical
processes

Main difficulties

o large sets of very different data to aggregate: time-consuming,
risks of errors, lack of shared and consistent definitions

@ small-scale processes determine the larger scales: large
discrepancies may occur at the regional scales

Methane emission processes in the fresh water systems

Example of Western Siberia lowlands

Source
Bohn et al, 2015
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Top-down approaches: data assimilation
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OPTIMIZED FLUXES + UNCERTAINTIES
Main difficulties

@ lack of information on error statistics => irrelevant fluxes
@ strong assumptions: Gaussian distributions, perfect parameters

o technical difficulties: heavy codes, big and varied data to treat
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BU+TD: what do we know about methane budget?

GLOBAL CARBON
PROJECT

Global methane emissions 2003-2012

Rice
Enteric ferm & manure
Landfills & waste

Coal
Gas & oil

Fresh waters
Wild animals
Wild fires
Termites
Geological

H Oceans
Permafrost
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Bottom-up budget (TgCH,/yr) ‘ Top-down budget

€ Natural wetlands =
€ Agriculture & waste =9

Fossil fuel use = 105 [50%]
€Biomass/biofuel burning=» 34 [55%]
€ Other natural emissions=» | 64 [150%]

167 [80%]
188 [65%]

Mean [uncertainty=

min-max range %

[ Bottom-up budget

)

Process models, inventories,
data driven methods

1

| Mean [min-max range %] |

734 TgCH,/yr [596-884]
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Source : Saunois et al. 2016, ESSD

Mean [uncertainty=
min-max range %]

Top-down budget

Atmospheric inversions

559 TgCH,/yr [540-568]




BU+TD: what do we know about the methane budget?
srosa(carson  Regional Methane Sources (2003-2012)
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Source: Saunois et al. 2016 ESSD (Fig 7)

+ Largest emissions in Tropical
South America, South-East Asia
and China (50% of global
emissions)
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* Uncertain magnitude of wetland emissions in boreal regions between TD and BU
+ Chinese emissions lower in TD than in BU, African emissions larger in TD than in BU

On-going improvements:

@ TD: more data to assimilate

10/14 BU: improved emission inventories and estimates from inland water emissions



IPCC projections and RCPs

p— Anthropogenic Methane Emissions & RCPs
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Highligths

@ methane in the atmosphere is part of a complex cycle with
numerous sources and sinks

@ their quantification is still uncertain, particularly for natural
sources

@ the most probable causes explaining the increase in methane
atmospheric concentrations since 2007 are:

o the increase of one or more microbial sources in the Tropics
a smaller increase of the fossil-fuel-related emissions

a decrease of biomass burning emissions

a decrease or stagnation of the OH sink

o CH,4 atmospheric concentrations ' fast and, since 2014, are
above all but the most greenhouse-gas-intensive scenario.

o CHj4 mitigation offers rapid climate benefits and economic, health
and agricultural co-benefits that are highly complementary to
CO», mitigation.
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Mecanisms

Threshold effect

A phenomenon is suddenly and radically modified when a
quantitative limit, the threshold, is surpassed.

Ratchet effect

No going back is possible once a given stage has been passed.

Feedbacks

The consequences in a chain of processes have effects on the same
chain: the cause-and-effect chain is a loop.

@ positive: the loop keeps increasing the same consequence due to
the same effects

@ negative: the loop keeps decreasing the consequence due to
decreasing effects

13/14



Merci de votre attention



