

Wind energy

Riwal Plougonven Laboratoire de Météorologie Dynamique, Ecole Polytechnique, Palaiseau

ECOCLIM2018 June 13th, 2018

Outline

Main objectives :

- explain how wind turbines work
- Identify key parameters
- provide some orders of magnitude
- briefly introduce some notions on the wind itself

- 1. Introduction and preliminary notions in aerodynamics
- 2. Drag machines
- 3. Qualitative understanding of turbines
- 4. The Betz limit
- 5. Three-bladed turbines : a bit of history
- 6. Variations of the wind near the surface
- 7. Wind resource assessment, and wind forecasts
- 8. Recent trends, perspectives, innovations

1. Introduction

What force does a fluid exert on an object ?

Expectation for the force exerted on the object by the flow ?

Dimensional analysis

 relevant variables : Incoming wind, *U* (*m*/s) Size of the object, say cross-section, *A* (*m*²) Density of the air, ρ (kg/m[^]3)

- Force exerted on the object by the fluid F_D (kg m/s²)

1. Introduction

What force does a fluid exert on an object ?

Expectation for the force exerted on the object by the flow ?

Dimensional analysis

- relevant variables : Incoming wind, U (m/s) Size of the object, say cross-section, A (m²) Density of the air, ρ (kg/m^3)

- Force exerted on the object by the fluid F_D (kg m/s²)

 $\longrightarrow F_D \propto | C_D \frac{1}{2} \rho A U^2$

2. Drag machines

James **Blyth**, 1839-1906

University of Strathclyde, Glasgow **July 1887** : cloth-sailed wind turbine in the garden of his holiday cottage in Marykirk, Kincardineshire

Vertical axis, drag machine

1891 windmill at his cottage in Kincardineshire

(Drag) force on one blade :

Resulting power :

$$F_D = C_D \Big[\frac{1}{2} \rho (U - \Omega r)^2 A \Big]$$
$$P = C_D \Big[\frac{1}{2} \rho A (U - \Omega r)^2 \Big] \Omega r = (\rho A U^3) \Big[\frac{1}{2} C_D \lambda (1 - \lambda)^2 \Big]$$

Let's introduce 2 key dimensionless parameters :

Power coefficient :

$$C_P = \frac{P_{turbine}}{\frac{1}{2}\rho\pi R^2 U^3}$$

Ratio of extracted power over total wind power

(Drag) force on one blade :

Resulting power :

$$F_D = C_D \Big[\frac{1}{2} \rho (U - \Omega r)^2 A \Big]$$
$$P = C_D \Big[\frac{1}{2} \rho A (U - \Omega r)^2 \Big] \Omega r = (\rho A U^3) \Big[\frac{1}{2} C_D \lambda (1 - \lambda)^2 \Big]$$

2. Drag machines

Crude estimate of maximum power coefficient : less than 10 %

Why so poor ?

What we need to optimize is *power* Rotation limited because **blade velocity has to be weaker than the wind** (drag)

1. Introduction

For a stationary, incompressible, inviscid flow, Bernoulli's theorem indicates that along a streamline :

$$\frac{1}{2}U^2 + \frac{P}{\rho} + g\,z = Cst$$

Flow around a symmetric airfoil, zero angle of attack :

1. Introduction

Lift and drag coefficients

Lift and drag coefficients : an example

NB : for one airfoil, for a given Reynolds number

2. fast rotation : lift varies as the square of the relative flow

$$C_l = \frac{Lift/unit span}{\frac{1}{2}\rho U^2 c}$$

3. fast rotation implies few blades

Too many blades \rightarrow blades affected by the wake of the previous blade

Too few \rightarrow some air unaffected by the rotor

?? For a fast rotating rotor, does the lift still contribute to enhancing the rotation ??

 $\boldsymbol{\alpha}$: angle of attack

 $\boldsymbol{\alpha}$: angle of attack

Relative Wind increases as ΩR

-> lift increases as $\Omega^2 R^2$

-> useful component of lift :

$$L \sin \varphi \propto C_l \frac{1}{2} U_{rel}^2 \rho \frac{U}{\Omega R}$$
$$\propto C_l \frac{1}{2} \rho U \Omega R$$

-> faster rotation is favorable

(as long as the **Mach number** remains small, and as long as **drag** effects remain negligible)

 $\boldsymbol{\alpha}$: angle of attack

4. The Betz limit (momentum theory) ; angular mom. theory

Aim : estimate the **maximum energy that a** *device* **can extract**, Irrespective of how the device would work

4.1 Betz limit, or Lanchester-Betz limit

Albert Betz, 1885-1968, German aerodynamicist Frederic Lanchester, 1868-1946, British aeronautical pioneer)

Incoming flow is uniform (*U*, or *U*1), incompressible*, irrotational **Actuator disk** :

- uniform ('infinite number of blades')
- non-rotating wake
- far upstream and far downstream pressures are equal to ambient pressure

* low Mach number

Steady, incompressible flow :

Conservation of Bernoulli function along streamlines upstream $(1 \rightarrow 2)$ and downstream $(3 \rightarrow 4)$:

$$p_1 + \frac{1}{2}\rho U_1^2 = p_2 + \frac{1}{2}\rho U_2^2 \qquad p_3 + \frac{1}{2}\rho U_3^2 = p_4 + \frac{1}{2}\rho U_4^2$$

Far field pressures are the same (p1=p4), and conservation of mass at the disk yileds U2=U3

Flow rate constant along the stream tube

$$(\rho AU)_1 = (\rho AU)_4 = \dot{m}$$

Axial momentum budget on the volume control indicated above :

$$T = U_1(\rho A U)_1 - U_4(\rho A U)_4$$

where T is the force exerted by the wind on the turbine (« Thrust »)

Relation between thrust and pressure drop at the device :

$$T = A_2(p_2 - p_3)$$

Non-dimensional parameter to quantify the decrease of wind speed : Axial induction factor *a* :

$$a = \frac{U_1 - U_2}{U_1}$$

Obtaining the velocities at different location in the streamtube :

a. using Bernoulli, find an expression for the pressure drop at the disk

$$(p_2 - p_3) = \frac{1}{2}\rho \left(U_1^2 - U_4^2\right)$$

b. equate the two expressions for the thrust and find U2

On one hand we have $T = A_2 (p_2 - p_3) = A_2 \frac{1}{2} \rho (U_1^2 - U_4^2)$, and on the other we have $T = \dot{m} (U_1 - U_4)$, so that, choosing to write $\dot{m} = \rho A_2 U_2$, we find:

$$U_2 = \frac{U_1 + U_4}{2} \,.$$

c. express U2 and U4 in terms of U (or U1) and a

Using the axial induction factor a:

$$U_2 = (1 - a) U_1$$
, and $U_4 = (1 - 2a) U_1$.

What are we really interested in ?

Power 'taken' from the wind :

Substituting for U2 and U4 : $P = \frac{1}{2} \rho A U^3 4a(1-a)^2$

To characterize the performance of a device, we introduce the power coefficient :

$$C_P = \frac{P}{\frac{1}{2}\rho U^3 A} = \frac{\text{Rotor power}}{\text{Power in the wind}}$$

We obtain the power coefficient as a function of a:

$$C_P = 4a(1-a)^2$$

Flux of kinetic energy

 $P = \frac{1}{2}\rho A_2 (U_1^2 - U_4^2) U_2 = \frac{1}{2}\rho A_2 U_2 (U_1 + U_4) (U_1 - U_4)$

which is maximum for a=1/3, yielding :

$$C_{P,\max} = 16/27 = 0.5926$$

Betz limit : the best we can *hope* to extract is ~60 % of the kinetic energy

4.2 Angular momentum theory

Disk is still assumed uniform (*'infinite number of blades'*), but we now take into account that energy is extracted by making the device **rotate**.

By reaction, there is rotation in the wake.

Hence, this further reduces the fraction of energy that we can extract.

In a nutshell :

Momentum theory (Betz limit)
Conservation of Bernoulli function
Flow rate constant
Axial momentum budget
Input : U, A

Output : *C*_{*p*}(*a*)

Angular momentum theoryConservation of Bernoulli functionFlow rate constantAxial momentum budgetAngular momentum budgetInput : U, A, λ

Output : $C_{P}(a, a', \lambda)$

a' : angular induction coefficient

An essential plot, & variations on it :

(Mach << 1 \rightarrow also in favor of λ not too large)

Characteristics of a wind turbine :

Power curves : for a given wind, power produced

Terminology :

Cut-in speed : for weaker winds, no energy production

Cut-out speed : for stronger winds, turbine stopped

Rated output : power produced for wind speeds between the rated wind speed and the cut-out wind speed

constant power obtained over a range of winds thanks to pitch control

Some important notions on wind turbines :

Pitch-controlled turbines : active adjustment of the pitch angle of each blade (rotation around its axis) to maintain torque below a certain threshold

Stall-controlled turbines : blades aerodynamically designed so that the flow detaches for stronger winds, hence limiting the lift

Yaw control : aims at orienting the turbine so that it always faces the wind

Wakes : flow is slowed down and more turbulent ; to be carefully considered in planning of wind farms

Order of magnitude for wind turbines power

6. Three-bladed or two-bladed : a bit of history

Darrieus rotor

One-bladed

Three-bladed : Very slightly higher Cp Lower $\lambda \rightarrow$ more gearbox

Limited range of λ (69)

Two-bladed : Similar Cp Larger λ Less weight Larger range of λ (**7-15**)

L. Windmill in the park. 2. Vertical socion of the town. 3. Dynamo. 4 "warge balantes. & Regulating appearance. THE WINDMILL DYNAMO AND ELECTRIC LIGHT FLANT OF MR. CHARLES F. BRUSH, CLEVELAND, O.-[See page 539.]

Charles Brush, 1849-1929 American inventor, entrepreneur and philanthropist

1888 : First automatically operated wind turbine.

12kW

Poul la Cour (1846-1908)

Danemark, Askov Breakthrough : less blades, faster rotation

Progress in aerodynamics : airfoils, propellers... Works of Ludwig Prandtl in Germany (Göttingen) Works of A Rateau and G Eiffel in France (Eiffel laboratory in Auteuil)

1923 Louis Constantin

First 'modern horizonatl axis wind turbine' (HAWT)

1929 : Article in 'La Nature' with fundamental principles for modern wind turbines :

- few blades
- fast rotation (importance of the tip speed ratio...)
- schematic of a wind farm and connections...

Attempt for a transition to larger power

Putnam Windmill 1941 First MW size turbine (1250 kW) On Grandpa's Know, Vermont,USA **Downwind 2 blades**

WIND'

After WWII – Germany

Ulrich Hütter

Austrian, worked for Ventimotor (Weimar) until 1943 Further worked on wind turbines, their optimization and <u>aesthetic qualities</u>

1958 : 100kW prototype,2-bladed, downwind, 34m diameter

reminiscent of Darrieus' 2 bladed turbine, but

- more slender blades, made of glass fiber
- teeter rotor
- pitch regulation

In operation for 10 years close to Stuttgart

1980 : 300kW, 52m diameter machine

After WWII – Denmark

Very different development: population familiar with small turbines (Lykkegaard, 30kW) During WWII, F.L. Smidth (a cement company) developed the Aeromotor (60 and 70 kW, 2 or 3 wooden blades)

1959 : Johannes Juul* set up the Gedser turbine Robust, upwind, 3 bladed, 200 kW, 24 m diameter Motors for controling the orientation, 'tip-brake' Asynchronous generator, output sent into the Danish electricity network

In operation until 1967!

After 1973 : U.S.A.

1974-1992: Research program set up by the Dept of Energy (DOE) (330M\$) Carried out by **NASA**, with industrial partners in aeronautics (Lockheed, Boeing, Hamilton) and electricity (General Electric, Westinghouse)

Aim of the programme was to develop utility scale wind turbines, leaping over then state-of-the art turbines

2 bladed, downwind then upwind rotors realized and tested Numerous problems encountered (vibrations, fatigue due to tower shadow*)

MOD 0

MOD 5B

MOD 1

After 1973 : Germany

1982 : 'Growian' – project managed by MBB and MAN, 55M\$ 3MW, 100m diameter, downwind Unssuccessful... similar mistakes...

Research programs also in UK and Sweden...

2 bladed turbines remain attractive until end of the 90's:

- less weight
- less gearbox
- wider λ -range

Downwind is attractive because it is self-orienting

1980-1985 : Californian rush

1978 : National Energy Act + subsidies from Californian state \rightarrow 50 % of price of wind farms subsidized

 \rightarrow 1700 MW set up between 1980 and 1985, 17 000 machines of 20 to 350 kW

American machines, and ~ 7500 danish turbines e.g. Vestas : 1983, stall regulated 55 kW turbine 1988, pitch-regulated, 200 kW turbine

Power for one turbine : order of magnitude

Source: International Energy Agency (IEA)

Remarks from the history of wind turbines

 \rightarrow turbines for electricity have existed for **more than a century**

(re-)developed several times, hindered by cheap oil

- \rightarrow maturity and economic viability have required
 - Combination of **public and private** programs
 - Gradual buildup from small to large turbines
 - **Policies** to support the initial development

Trend : development of offshore wind energy

Stronger winds Less wind shear Less turbulence More predictable Limited environmental impact

Hostile environment Complex conditions Costs Connection to grid Limited to shallow water at present

Figure 11.1 Offshore wind farm capacity worldwide (1991–2012)

(Costly) ship dedicated to the transport and installation of turbines

7. Some meteorological considerations

Statistical description of the wind :

Distribution such that cumulative distribution function (CDF) is 0 for U=0, and vanishes for large U :

Figure 2.31 Example of Weibull probability density function for $\overline{U} = 6$ m/s

Dynamical understanding of the wind :

cf other courses on atmospheric circulation, environmental fluid dynamics...

Measuring the wind

Standard meteorological measurement : 10m wind Desired observations for prospection for wind energy : 80 or 100m wind (+ shear)

Some vocabulary :

- *accuracy* : closeness to the true value (associated by systematic errors)

- *precision* : closeness within a set of measurements (associated with random errors)

Instruments :

- in situ : anemometers
- remote sensing : lidars, sodars

Sonic anemometer

GLOBAL ANNUAL INSTALLED WIND CAPACITY 2001-2016

8. Wind energy today

Source : Global Wind Energy Council (GWEC) 2017 report

Summary

Aerodynamics of the flow around a turbine

Optimize **power** Large tip-speed ratio λ most favorable to energy extraction Less blades (no interaction with wake of previous blade)

Over a century of development

Dominance of **three-bladed design** ('Danish model') : Good aerodynamic performance, but also other reasons : stability, acceptability (visual and noise)

Trend towards offshore systems (in shallow water, e.g. North Sea)

Mature technology

Today's machines typically 100m : Mast ~ 100m, diameter ~ 100m

> A few MW per turbine (e.g. 3 MW on land, 8 MW offshore)

'In 2013 wind generated almost 3% of the worlds total electricity.'

[from Wikipedia page on World Energy Consumption, Historical Data Workbook, 2013]

Perspectives

Floating offshore platforms

Wind Kites ?

Advantages : Generator at the bottom

- \rightarrow lower center of mass
- \rightarrow easier maintenance

No yaw mechanism

Disadvantage : Lower power coefficient

Structure to support the blade

Further reading

Wind Energy Explained, J.F. Manwell et al, Wiley Wind Energy Handbook, T. Burton et al, Wiley Aerodynamics of Wind Turbines, M.O.L. Hansen, Earthscan

Sustainable energy – without the hot air, David Mackay

L'énergie éolienne, Marc Rapin, Jean-Marc Noël, Dunod

Reports from IEA, GWEC, EWEA :

http://www.ieawind.org/ http://www.gwec.net/ http://www.ewea.org/

Database :

http://www.thewindpower.net/

8. Wind energy today

New wind capacity installed each year, and global cumulative wind capacity

Source : Global Wind Energy Council (GWEC) 2014 report

Subjects that have not been treated :

Wind resource : Dynamic meteorology Wind resource assessment Wind variability Essential challenge of wind energy : Intermittency

> Need for forecasts Need for economic models Need for adaptation of the grid