Modelling synchronized flow at highway bottlenecks

Florian Siebel, Wolfram Mauser

Ludwig-Maximilians-University Munich

Salissou Moutari, Michel Rascle

Université de Nice – Sophia Antipolis

- Motivation
- Balanced vehicular traffic
- Modelling highway bottlenecks

Motivation

Spatio-temporal dynamics of traffic flows

- Kerner's three phases of traffic flow:
 - free flow
 - high velocities and low densities
 - wide moving jams
 - very small velocities and large densities
 - robust, travel through bottlenecks
 - constant propagation velocity of the downstream jam front
 - outflow nearly constant
 - synchronized flow
 - small velocities and large densities
 - wide scattering in the fundamental diagram
 - often localized at a bottleneck
- Capacity drop at highway bottlenecks:
 - outflow from synchronized flow region below maximum capacity of free flow

Aw, Rascle, Greenberg model

- Model by A. Aw and M. Rascle (SIAP 2000), J. Greenberg (SIAP 2001)
 M. Zhang (Transportation Research B, 2002)
- deterministic, effective one-lane-model

continuity equation: $\frac{\partial \rho}{\partial t} + \frac{\partial (\rho v)}{\partial x} = 0$ momentum equation: $\frac{\partial (\rho (v - u(\rho))}{\partial t} + \frac{\partial (\rho v(v - u(\rho)))}{\partial x} = \frac{\rho (u(\rho) - v)}{T}$

ρ: vehicle density
v: velocity
u(ρ): equilibrium velocity
T>0: relaxation time

- hyperbolic system of balance laws
 - anisotropic condition
- motivation for an extension:
 - multi-valued fundamental diagram
 - instabilities
 - instantaneous reaction to the current traffic situation

M. Koshi et al (1983)

Balanced vehicular traffic

Balanced vehicular traffic

continuity equation

momentum equation

$$\lambda_1 = v + \rho u'(\rho) \le v$$

$$\succ \lambda_2 = \mathbf{V}$$

• Effective relaxation coefficients: $\beta(\rho, v)$

- ARG: constant, inverse relaxation time
- > here: function of density ρ and velocity v
- Papers:
 - F. Siebel, W. Mauser, SIAP 66, 1150 (2006)
 - F. Siebel, W. Mauser, PRE 73, 066108 (2006)

Steady state solutions

- Steady state solutions:
 - moving coordinate system: z = x wt
 - continuity equation:
 - steady state solutions lie on straight lines in the fundamental diagram
 - *momentum* equation:
 - trivial solutions:
 - equilibrium velocity $v = u(\rho)$
 - two additional solution branches, the **zeros** of the effective relaxation coefficient $\beta(\rho, v)$
 - » jam line
 - » high flow branch
 - non-trivial solutions:
 - monotonous solutions linking two trivial branches
 - solutions of the ODE

$$(\lambda_1 - w)\frac{dv}{dz} = \beta(\rho, v)(u(\rho) - v), \quad \rho = \frac{q}{v - w}, \quad q = const$$

F. Siebel, W. Mauser, S. Moutari, M. Rascle

Steady state solutions

- Trivial steady-state solutions:
 - white lines
- Non-trivial steady-state solutions
 - regions II and III
- Characteristic curves
 - black dashed lines
 - $\lambda_1 = v + \rho u'(\rho) \le v$
 - $\lambda_2 = v$

Steady state solutions

- Trivial steady-state solutions:
 - white lines
- Non-trivial steady-state solutions
 - regions II and III
- Characteristic curves
 - black dashed lines
 - $\lambda_1 = v + \rho u'(\rho) \le v$
 - $\lambda_2 = v$
- Stability:
 - subcharacteristic condition
- Traffic phases:
 - free flow
 - wide moving jams

Modelling highway bottlenecks

Lane reduction

- Coupling conditions at the interface: Riemann problem for principal part
 - > conservation of vehicle number: $\rho_1^- v_1^- = \rho_2^+ v_2^+ = q$
 - ► "conservation" of the *momentum*: $\rho_1^- v_1^- (v_1^- u_1(\rho_1^-)) = \rho_2^+ v_2^+ (v_2^+ u_2(\rho_2^+))$
 - maximization of the total flux q: determined from the demand and supply
 - coupling conditions: Haut, Bastin (2005), Garavello, Piccoli (2006), Herty, Rascle (2006), Herty, Moutari, Rascle (2006)
 - applicable to a general junction with arbitrary number of incoming and outgoing roads

Lane reduction

• Numerical simulations of constant initial data ρ_0 in equilibrium v = u(ρ_0):

Lane reduction

Static solutions at the bottleneck:

- solutions with constant flow
- non-constant curve sections for density profile correspond to non-trivial steady-state solutions
- interfaces between sections determined by the conservation of mass and *momentum*
- von Neumann state downstream of the shock
- Capacity drop: flow value below maximum in section 2 (about 1900 [1/h/lane])

- determined by the crossing of the static solutions with the jam line (low-flow equilibrium branch)
- consequence of the source term
- on/off-ramps: http://arxiv.org/abs/physics/0609237

Conclusion

- Balanced vehicular traffic model
 - describes traffic flow as a hyperbolic system of balance laws
 - capable of reproducing
 - multi-valued fundamental diagrams
 - metastability of free flow at the onset of instabilities
 - synchronized flow and wide moving jams
 - capacity drop
 - these aspects of traffic flows can be reproduced without modelling
 - lane changes
 - different driver characteristics and vehicle types (trucks)
 - stochastic elements
 - importance of nonlinear instabilities