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Generalities

® tmQCD is a relative newcomer in the family of lattice fermion regularizations

® it consists in modifying the standard Wilson fermion matrix by adding a mass term ,
which is “twisted” in chiral space  _
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without Symanzik counter-terms in the action and the operators)
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Generalities

® tmQCD is a relative newcomer in the family of lattice fermion regularizations

® it consists in modifying the standard Wilson fermion matrix by adding a mass term ,
which is “twisted” in chiral space  _
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® there are several advantages in such a choice:

Pauli matrix in SU(2) flavour space)

® natural infrared cutoff enables a safer approach to the chiral limit (and keeps us safe
from exceptional configurations in the quenched approximation)

in many cases the renormalization properties of WMEs are simplified
in most cases of interest observable quantities are improved “automatically” (i.e.

without Symanzik counter-terms in the action and the operators)

there is a price to pay: flavour symmetry is lost and so are parity and time reversal
(recovered in the continuum limit)

this mini-course emphasizes first principles, illustrated by selected results; it is NOT a
complete review of the tmQCD state of the art
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Classical t mQCD

for simplicity start with two degenerate flavours

the classical QCD theory with SU(2) flavour symmetry is:

L=9Y[D+m+ipt ]y

apparently this is not QCD! (parity breaking? isospin braking? extra mass term?)

but this theory is form invariant under chiral transformations in 3rd isospin direction,
combined with spurionic transformations of the two mass parameters

to see this, define first an invariant mass and a twist angle:

M = /m? + p? tan(w) = Lad
m
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Classical t mQCD

for simplicity start with two degenerate flavours

the classical QCD theory with SU(2) flavour symmetry is:

L=9Y[D+m+ipt ]y

apparently this is not QCD! (parity breaking? isospin braking? extra mass term?)

but this theory is form invariant under chiral transformations in 3rd isospin direction,
combined with spurionic transformations of the two mass parameters

redefine fermionic fields through chiral rotations [ I3(x) - rotations ]:
Qo — — — Q
/ - 3 / - 3
b= ¥ = exp iz U D= ¥ = dexp igyT?

redefine mass parameters through spurionic transformations are:

m — m' = mcos(a) + psin(a)

— u = pcos(a) — m sin(«)
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Classical t mQCD

the form invariance of the theory is:

P [lD + m + WTS%} Y = 9 [lD + M eXp[inS%]} 0

e [lD + m' + ’L./L/T375] ' = {JD + M exp[iw’T?’%]] )’

with the same invariant mass tan(w’)
and a hew twist angle

we have a family of theories, prametrised by their twist angle
they are equivalent, as they are linked by field and mass redefinitions

the quark mass is given by the invariant mass M
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and a hew twist angle

® with I3(&X = W) - rotations we obtain W' =0 & U’ ' =0andm’' = M

® i.e.the special case of zero twist angle is QCD !!




Classical t mQCD

the form invariance of the theory is:

Y {JD + m + z’,u7'3fy5} Y = 1 {JD + M exp[inS%]} Y

e [lD + m' + ’L./L/T375] ' = {JD + M exp[iw’T?’%]] )’

with the same invariant mass tan(w’)
and a hew twist angle

® with I3(&X = W - TT/2) - rotations we obtain W' =T/2 & m =0andy’' =M

® this special case of interest is known as fully twisted QCD or maximally
twisted QCD!!




Classical t mQCD

symmetries are lost only apparently, since at the classical level QCD < tmQCD

parity breaking? isospin braking?
= ) {JD + m + Z',LLTB’}/5} Y = {JD + M eXp[inB*y5]} Y

QCD is obtained from tmQCD (defined at fixed W) with chiral transformations in 3rd
isospin direction [ I3(w)-rotations ], combined with spurionic transformations of the
two mass parameters:

tan(w)

W W

Y — ' = exp [i—%T?’]w Y — P = Pexp [@'-%73}

2 2

m — m =M the symmetry transformations of the fermion
/ fields in the tmQCD formalism are obtained by
w — u = 0 performing the opposite I3(-w)-rotations to the

standard symmetry transformations of the
fields in QCD
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® symmetries are lost only apparently, since at the classical level QCD <« tmQCD

® parity breaking? isospin braking?
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® twisted time-reversal is similarly Tw
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Classical t mQCD

symmetries are lost only apparently, since at the classical level QCD < tmQCD

parity breaking? isospin braking?
Y []D + m + Z',LLTB’)/{)} Y = {lD + M exp[inB%]} Y
NB: instead of twisted parity Pw we may have standard parity Po, combined with
(spurionic) twisted mass sign flip
r = (zV,%)
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® similarly for time-reversal To® [H — =H]



Classical t mQCD

® symmetries are lost only apparently, since at the classical level QCD <« tmQCD

® parity breaking? isospin braking?
L = {]p + m + Z',LLTB’}/5} Y = PD + M exp[in‘g%]} (W

® twisted vector symmetry (isospin) is SUy(2)w tan(w)

Y(r) —  exp [—i%’ygﬁ?’] exp [iegT“} exp {igvgﬁ?’} Y(x)

2
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Classical t mQCD

® symmetries are lost only apparently, since at the classical level QCD <« tmQCD

® parity breaking? isospin braking?
L = {]p + m + Z',LLTB’}/5} Y = PD + M exp[in‘g%]} (W
® by analogy, twisted axial symmetry is SUA(2)w

tan(w)

o, 0% W
Y(xr) —  exp [—25757'3} exp [ZET 75} exp [25757

Y(r) —  P(z) exp [@%%TS} exXp [759;7@’75} exp [—1%%73}

® axial symmetry valid at M =0




Classical t mQCD

® the I3(W)-rotations relating QCD « tmQCD give operator correspondences
cos(w) V) + 3% sin(w) AZ a=1,2
cos(w) A7, + 3% sin(w) Vlf a=1,2
Vi
Al
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Classical tmQCD
® the I3(W)-rotations relating QCD « tmQCD give operator correspondences
3ab _: b __
cos(w) V! + € sin(w) 4, a=1,2

cos(w) A7, + 3% sin(w) Vlf a=1,2

@eﬁned in QCD) @eﬁned in thC@

a=1,2
cos(w) P3 + % sin(w) S°

cos(w) S + 2i sin(w) P?




Classical t mQCD

® similar correspondences occur in Ward identiites

® in tmQCD the PCVC is
9V = —2ue® PP

® intmQCD the PCAC is

0,A% = 2mP® + ipb>* S

® in terms of the QCD currents and densities, they become the standard expressions
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Lattice tmQCD

QCD < tmQCD equivalence carries over to the renormalized quantum level

Ingredients:
® chiral symmetry of Ginsparg-Wilson (GW) fermions
® mass-independent renormalization scheme

® universality of different lattice regularizations in the continuum limit

® twist angle tuned to ratio of renormalized masses tan(w) = pr/mgr

QCD < tmQCD equivalence proceeds through linear mapping between renormalized

Green functions
regularize QCD and tmQCD with GW fermions

GW chiral symmetry guarantees the same considerations of a trivial QCD < tmQCD

equivalence as in the classical case are valid (with minor caveats)

example: bare Green function of the scalar operator (chiral condensate)

[<---SO--->}Z:VD = [COS(W> <--8% . > 4+ sin(w) <---P3--->}

tmQCD

GW
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® QCD < tmQCD equivalence between bare Green functions with GW regularization
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GW GW




Lattice tmQCD

® QCD < tmQCD equivalence between bare Green functions with GW regularization

[<---80--->}Z:VD = [cos(w) <---8% .. > 44 sin(w) <---P3--->}

tmQCD

GW

® QCD < tmQCD equivalence carries over to renormalized quantities, due to mass

independent renormalization schemes (i.e. S° and P? in both QCD and tmQCD have
the same renormalization constant Zs = Zp=Z)

Z (af [ .SV R Z(aii ...80. .. S P
afi) | < > ow = (aft) |cos(w) < > 4+ 4 sin(w) < >

tmQCD

GW




Lattice tmQCD

® QCD < tmQCD equivalence between bare Green functions with GW regularization

[<---80--->}Z:VD = [cos(w) <---8% .. > 44 sin(w) <---P3--->}

tmQCD

GW

® QCD < tmQCD equivalence carries over to renormalized quantities, due to mass

independent renormalization schemes (i.e. S° and P? in both QCD and tmQCD have
the same renormalization constant Zs = Zp=Z)

QCD tmQCD

Z(afi) [<---SO---> = Z(aji) [cos(w) <---8% .. > 4+ sin(w) <---P3--->}

GW GW

® since QCD < tmQCD equivalence holds between renormalized (continuum) Green

functions (proved with GW regularization), evoking universality we claim that this is
also true for renormalized (continuum) Green functions computed with any other
lattice regularization; e.g. tmQCD wih Wilson fermions




Z(afi) [<---SO---> = Z(aji) [cos(w) <---8% .. > 4+ sin(w) <---P3--->}

Lattice tmQCD

QCD < tmQCD equivalence between bare Green functions with GW regularization

[<---80--->}Z:VD = [cos(w) <---8% .. > 44 sin(w) <---P3--->}

tmQCD

GW

QCD < tmQCD equivalence carries over to renormalized quantities, due to mass

independent renormalization schemes (i.e. S° and P? in both QCD and tmQCD have
the same renormalization constant Zs = Zp=Z)

QCD tmQCD

GW GW

since QCD < tmQCD equivalence holds between renormalized (continuum) Green

functions (proved with GW regularization), evoking universality we claim that this is
also true for renormalized (continuum) Green functions computed with any other
lattice regularization; e.g. tmQCD wih Wilson fermions

- >R

j| QCD

= [Cos(w)< . 8% .. > +isinw)< - P

QCD < tmQCD equivalence amounts to operator transcriptions in lattice tmQCD



Lattice tmQCD

® Jattice tmQCD definition: Wilson fermions + twisted mass term:
—rl . 1 . , 3
L Y _§’YH(VM + VH) + §CL7“VMVM + Mo + LUgT V5 W

-1 * 1 * ;
E%(V/ﬁrvu) T §a’rvﬂvﬂ + Mo expliwoT7s] ]¢




Lattice tmQCD

lattice tmQCD definition: Wilson fermions + twisted mass term:

~

(1 1 .
L TﬂLQ’Yu(VM‘FVZﬂ + §GTVZVM + Mo + Wq7'3’75 }w
7}

) 1 .
L ST P

naive derivative




Lattice tmQCD

® Jattice tmQCD definition: Wilson fermions + twisted mass term:

11 1 .
L= 05V +[§arvzvg +omo + gt |

-1 1 .
5 (Vu + Vi) + qarViVi + Myesplicars] ]

Wilson term

® Wilson term cures the fermion doubling problem




Lattice tmQCD

lattice tmQCD definition: Wilson fermions + twisted mass term:

L

b

-1 * 1 * 5
5M(Vu+V3) + 5arViVu + Mo expliwo 5] ]w

1 . 1 . ,
%(v,ﬁvu) + §arVMVM ++ z,unS% ]w

bare
standard
mass

bare standard mass renormalizes as in standard Wilson fermions:

MR = Zm Mo —




Lattice tmQCD

® Jattice tmQCD definition: Wilson fermions + twisted mass term:

|2 2

-1 * 1 * ;
E%(V/ﬁrvu) T §aTVMVM + Mo expliwp77s] ]¢

-1l 1
L= O[3mVut Vi) + 5arViVi + mo + g Ju
A

bare
twisted
mass

bare twisted mass renormalizes multiplicatively (protected by Ward identities):

PR = Zupq = Zp g




Lattice tmQCD

® Jattice tmQCD definition: Wilson fermions + twisted mass term:

11 1 .
L= 05V +[§arvzvg +omo + gt |

_1 .
(Vi + Vo)A 5ar ViV, + Myesplisaor™y] ]

® Wilson term causes loss of twisted symmetries: Pw, Tw




Lattice tmQCD

lattice tmQCD definition: Wilson fermions + twisted mass term:

11 1 .
L Y57V + V) +[2WVZVJ +omo + iy |4

YV +V3) §aTVZVM + My expliwgT>7s) }w

2

Wilson term causes loss of twisted symmetries: Pw, Tw

Parity survives if combined either with flavour exchange (defined as Pg', Pg?) ...

W(z) = iy T Y(a) (z) = —i(2)yo 7'
W(z) = iyl Y(a) — —ip(x') o 7°




Lattice tmQCD

® Jattice tmQCD definition: Wilson fermions + twisted mass term:

11 1 .
L Y57V + V) +[2WVZVJ +omo + iy |4

-1 * * ;
L9 T T + Moot

® Wilson term causes loss of twisted symmetries: Pw, Tw

® .. or with a sigh flip of the twisted mass (definedas P ®[ 4 — - U] )




Lattice tmQCD

® Jattice tmQCD definition: Wilson fermions + twisted mass term:

1l 1 .
L= 05V +[§arvzvg +omo + gt |

_1 .
(Vi + Vo)A 5ar ViV, + Myesplisaor™y] ]

® Wilson term causes loss of twisted symmetries: Pw, Tw

® .. or with a sigh flip of the twisted mass (definedas P ®[ 4 — - U] )

@E(x) — —’ME(I/)%
— Hq

® The same holds for time reversal: Te', Te2, T ®[ 4 — - Y] are symmetries




Lattice tmQCD

lattice tmQCD definition: Wilson fermions + twisted mass term:

11 1 .
L Y57V + V) +[2WVZVJ +omo + iy |4

-1 * * ;
L9 T T + Moot

Wilson term causes loss of twisted vector symmetry: SUy(2)w; i.e. flavour symmetry is
hard-broken (Wilson term) in tmQCD

However it is not completely broken; the subgroup Uy3(I) survives (NB: w-
dependence drops out!)

Y(r) — exp {_ig')’57'3} exp [i%lfr“} exp {ig%fg} Y(x)
@(x) — 15(33) eXp [ig%fg} exXp [— i(%aTa} exp [— ’ig’}/E,TS}



Lattice tmQCD

® Jattice tmQCD definition: Wilson fermions + twisted mass term:

1l 1 .
L= 05V +[§arvzvg +omo + gt |

_1 .
(Vi + Vo)A 5ar ViV, + Myesplisaor™y] ]

Wilson term causes loss of twisted vector symmetry: SUy(2)w; i.e. flavour symmetry is
hard-broken (Wilson term) in tmQCD

However it is not completely broken; the subgroup Uy3(I) survives (NB: w-
dependence drops out!)




Lattice tmQCD

® Jattice tmQCD definition: Wilson fermions + twisted mass term:

1l 1 .
L= 05V +[§arvzvg +omo + gt |

_1 .
(Vi + Vo)A 5ar ViV, + Myesplisaor™y] ]

® this hard SUy(2)w — UV3(I) breaking causes a lack of degeneracy between the neutral
pion TT° and the two charged pions TT*

® |t is a discretization effect which vanishes in the continuum limit (SUy(2) restoration)




Lattice tmQCD

lattice tmQCD definition: Wilson fermions + twisted mass term:

11 1 .
L= 05V +[§arvzvg +omo + gt |

1 * 1 * ;
150450+ oot M

axial symmetry SUa(2)w, broken softly by mass term Mo, also hard-broken by
Wilson term in standard fashion

also this symmetry is restored in the continuum and chiral limits




| st advantage:

IR zero-mode
regularization

Alpha Collab., R. Frezzotti, PA. Grassi, S. Sint and P.Weisz, JHEP08 (2001) 058




IR zero-mode regularization

Wilson fermion matrix M = Dw + m, has spurious zero-modes at small quark mass
(lattice artefacts)

In quenched simulations they cause exceptional configurations which impede
simulations at masses lower than, say, half the strange quark mass; mq < ms/ 2

In un-quenched simulations the fermion determinant suppresses these zero-modes in
MC, but an IR cutoff could still be helpful to the approach of the chiral limit

tmQCD introduces an IR mass cutoff (the twisted mass!) which facilitates the approach
to small mass regime

- e Dw + mg + ipys 0
Y Mw ¢ = (ud)( 0 Dw +mo — iuys




IR zero-mode regularization

Wilson fermion matrix M = Dw + m, has spurious zero-modes at small quark mass
(lattice artefacts)

In quenched simulations they cause exceptional configurations which impede
simulations at masses lower than, say, half the strange quark mass; mq < ms/ 2

In un-quenched simulations the fermion determinant suppresses these zero-modes in
MC, but an IR cutoff could still be helpful to the approach of the chiral limit

tmQCD introduces an IR mass cutoff (the twisted mass!) which facilitates the approach
to small mass regime

. e Dw + mo + ipuys y
Y Mw v = (UCZ)( 0 Dw + mg — iuys

det Dw + mqg + tuys 0
0 Dw + mo — 15

det |(Dw + mo)"(Dw + mg) + (]




IR zero-mode regularization

Wilson fermion matrix M = Dw + m, has spurious zero-modes at small quark mass
(lattice artefacts)

In quenched simulations they cause exceptional configurations which impede
simulations at masses lower than, say, half the strange quark mass; mq < ms/ 2

In un-quenched simulations the fermion determinant suppresses these zero-modes in
MC, but an IR cutoff could still be helpful to the approach of the chiral limit

tmQCD introduces an IR mass cutoff (the twisted mass!) which facilitates the approach
to small mass regime

5 f [GeV] ' ' ' ' XLF Collab. K. Jansen, M. Papiutto,
Ps ' A. Shindler,C. Urbach, |. Wetzorke
JHEPQO9 (2005) 071

& Wilson tmCD at 2
O NP Oia) improved Wilson |

- Alpha Collab. M.Guagnelli, J.Heitger,
5 5 R.Sommer, H.Wittig
My [GeV 17 Nucl. Phys. B560 (1999) 465
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2nd advantage:

simplified
renormalization

Alpha Collab., R. Frezzotti, PA. Grassi, S. Sint and P.Weisz, JHEP08 (2001) 058




tmQCD and renormalization

® Wilson fermions renormalization may be complicated due to loss of chiral symmetry
® this may be simplified in tmQCD through judicious choices of the twist angle
® example |:the chiral condensate < SO > = <« ?ﬁ@b >

® multiplicatively renormalizable with chirally symmetric regularization

< Tzw >p = Lo < Zzw > Zs is log.ly divergent




tmQCD and renormalization

® Wilson fermions renormalization may be complicated due to loss of chiral symmetry
® this may be simplified in tmQCD through judicious choices of the twist angle
® example |:the chiral condensate < SO > = <« 77;?7& >

® multiplicatively renormalizable with chirally symmetric regularization

® additive renormalization (power subtraction) with Wilson fermions

< Tzw >p = Lo < Zzw > Zs is log.ly divergent

<77E¢>R ZSO[<@Z¢>

® without chiral symmetry, the condensate mixes with the identity operator




tmQCD and renormalization

® Wilson fermions renormalization may be complicated due to loss of chiral symmetry
® this may be simplified in tmQCD through judicious choices of the twist angle
® example |:the chiral condensate < SO > = <« 77;?7& >

® multiplicatively renormalizable with chirally symmetric regularization

® additive renormalization (power subtraction) with Wilson fermions

< Tzw >p = Lo < Zzw > Zs is log.ly divergent

<77E¢>R ZSO[<@Z¢>

® without chiral symmetry, the condensate mixes with the identity operator

® power divergences are vigorous and would better be avoided
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tmQCD and renormalization

® Wilson fermions renormalization may be complicated due to loss of chiral symmetry
® this may be simplified in tmQCD through judicious choices of the twist angle
® example |:the chiral condensate < SO > = <« &w >

® multiplicatively renormalizable with chirally symmetric regularization

® additive renormalization (power subtraction) with Wilson fermions

< Tzw >p = Lo < Zzw > Zs is log.ly divergent

<77E¢>R ZSO[<@Z¢>

without chiral symmetry, the condensate mixes with the identity operator

power divergences are vigorous and would better be avoided

. 3 _ 3 - 3
other operators are mult.ly renormalizable: PR — WT 75¢]R = ZpP

the same renormalization constants Zs (Zp) apply to S° (P?) in both QCD and tmQCD
(in mass-independent renormalization schemes)




tmQCD and renormalization

Wilson fermions renormalization may be complicated due to loss of chiral symmetry
this may be simplified in tmQCD through judicious choices of the twist angle
example |:the chiral condensate < SO > = <« 77;?7& >

® multiplicatively renormalizable with chirally symmetric regularization

® additive renormalization (power subtraction) with Wilson fermions

recall that the renormalized condensate insertion is computed from the bare tmQCD
theory as:

for twist angle W = T1/2 this means that in tmQCD the condensate is obtained from
the mult.ly renormalizable pseudoscalar density

<) > = iZp [ < P3 > ]mQCD




tmQCD and renormalization

Wilson fermions renormalization may be complicated due to loss of chiral symmetry
this may be simplified in tmQCD through judicious choices of the twist angle
example |I: the pion/kaon decay constant

® with Wilson fermions, axial current normalization factor Zs required

® using tmQCD it is obtained without any (re)normalization factor

in maximally tmQCD symmetries appear lopsided; this is also true of Ward identities

PCVC is exact:

0% <V, (z) P?(0) > = —2u < P*(z) P*(0) >
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tmQCD and renormalization

Wilson fermions renormalization may be complicated due to loss of chiral symmetry
this may be simplified in tmQCD through judicious choices of the twist angle
example |I: the pion/kaon decay constant

® with Wilson fermions, axial current normalization factor Zs required

® using tmQCD it is obtained without any (re)normalization factor

in maximally tmQCD symmetries appear lopsided; this is also true of Ward identities

PCVC is exact:

0% <V, (z) P?(0) > = —2u < P*(z) P*(0) >

my < 0| V3 (0)|m>= 2u< 0| P30)|r >

this fully tmQCD bare vector current in the continuum gives the axial current

e [<0]AL(0) |7 >£]™" = lim [< 0|V (0) |7 >

. CD
11 :Ith
a—0




tmQCD and renormalization

Wilson fermions renormalization may be complicated due to loss of chiral symmetry
this may be simplified in tmQCD through judicious choices of the twist angle
example |I: the pion/kaon decay constant

® with Wilson fermions, axial current normalization factor Zx required

® using tmQCD it is obtained without any (re)normalization factor

in maximally tmQCD symmetries appear lopsided; this is also true of Ward identities

PCVC is exact:

0% <V, (z) P?(0) > = —2u < P*(z) P*(0) >

my < 0| V3 (0)|m>= 2u< 0| P30)|r >

this fully tmQCD bare vector current in the continuum gives the axial current

o [<0]4L©) |7 >r]%" = lim [< 0[V}(0)|r >]™P

thus the pion decay constant is
< 0] A§(0) | m >g]QCP 2
g, = < 0 A0) |7 >r — lim == < 0| P*(0)|7 >
M a—0 Mz




tmQCD and renormalization

® Wilson fermions renormalization may be complicated due to loss of chiral symmetry
® this may be simplified in tmQCD through judicious choices of the twist angle

® example lll: the kaon B-parameter
® indirect CP-violation

® can be expressed in terms of K%- K° mixing

® dominant EWV process is FCNC (2 W exchange)

lex| = Ce Bk Im{V};Vis} {Re{V,;Ves i So(xc) — 173 So(xc, xt)
long distanc@

<KO|OASZZ \KO>

By —

812 .. 2
3 b my




Bk — a renormalisation classic

In the presence of explicit chiral symmetry breaking four-fermion operators
of different chiralities mix under renormalisation.

Martinelli 1984; Bernard, Draper, (Hockney), Soni 1987,1998;
Gupta et al. 1993; Donini et al. 1999

072 = [(57,d) (574d) + (Fyuysd) (754)] — [(57ud) (57 75d) + (57754) (57, )]

-’ - -’

Ve V.

OVViAA Ova+Av
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In the presence of explicit chiral symmetry breaking four-fermion operators
of different chiralities mix under renormalisation.

0”52 — [574d) (87ud) + (37 y5d) (57uv5d)] — [(87d) (Svpuysd) + (37 v5d) (S7pd)]

OvViAA Ova+Av

4
Ovviaa = 611111(1) Zyvian (86, am) |Ovviaa(a) + Y Ax(85)0k(a)
- k=1
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Vanishes if chiral symmetry is preserved
(at least partially)




Bk — a renormalisation classic

In the presence of explicit chiral symmetry breaking four-fermion operators
of different chiralities mix under renormalisation.

0”572 = [(57,d) (5ypd) + (5vursd) (5vuysd)] — [(574d) (Syuvsd) + (57uv5d) (57ud)]

- -’ - -’

aVa V.

OvViAA Ova+Av

4
Ovviaa = 611111(1) Zyvian (86, am) |Ovviaa(a) + Y Ax(85)O0k(a)
- k=1

Vanishes if chiral symmetry is preserved
(at least partially)

Vanishes for staggered, GV, DW fermions




Bk — a renormalisation classic

In the presence of explicit chiral symmetry breaking four-fermion operators
of different chiralities mix under renormalisation.

072 = [(57,d) (574d) + (Fyuysd) (754)] — [(57ud) (57 75d) + (57754) (57, )]

-’ - -’

aVa V.

OvViAA Ova+Av

4
Ovviaa = 611111(1) Zyvian (86, am) |Ovviaa(a) + Y Ax(85)0k(a)
- k=1

Ovatav = 61113(1) Zyasav (85, am) Ovarav(a)

Protected from mixing by discrete symmetries C P S(s < d)




Getting rid of mixing

® Straightforward option: preserve chiral symmetry — possibly exactly.

® Wilsonl:axial Ward identity (3-point function with Ovv+aa = 4-point function
with Ova+av)

<K’ 60g |K'> = <K Ogl0,A,—2mP]|K° >

M standard

5OR — [OVV+AA] R 1.20 @ w/o subtractions

Ovatav)r Mk

=~

2 i
1.00 -

0.90 |

O subtractions traded off for fluctuations
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Getting rid of mixing

® Straightforward option: preserve chiral symmetry — possibly exactly.

® Wilsonl:axial Ward identity (3-point function with Ovv+aa = 4-point function
with Ova+av)

D.Becirevic et al. Phys.Lett.B487(2000)74; Eur.Phys.].C37(2004)3 15

® Wilson 2: tmQCD (3-point function with Ova+av)
ALPHA M.Guagnelli, ].Heitger, C.Pena, S.Sint, A.V. JHEP 03 (2006) 088

F.Palombi, C.Pena, S.Sint JHEP 03 (2006) 089
ALPHA P.Dimopoulos, |.Heitger, FPalombi, C.Pena, S.Sint, A.V. NPB 749 (2006) 69

ALPHA P.Dimopoulos, |.Heitger, FPalombi, C.Pena, S.Sint, A.V.NPB 776 (2007) 258

® tmQCD bonus: push safely towards low quark masses in quenched simulations.




tmQCD regularisations for Bg

T1/2 strategy:

5= Z{¢£(x) [Dw,sw + my + i]“l€'7573] (X,y)lpg(]/) + S_(x) [DWrSW + ms] (x,y)s(y)}
XY

my, U tuned to have myr =0

T1/4 strategy (specially devised for quenched case):

S =) AP(x) [Dwsw + mg+iugvs1] (x, )9 (y)}
b7l

My, Hq tuned to have mgr = ug

: twist
in both cases: OvviAA RULN Ovai AV

NB: we never have only fully twisted quarks — Frezzotti-Rossi O(a)
improvement argument does not apply.




Approach to continuum: non-perturbative renormalisation

® SF technique via finite size scaling: split renormalisation into

O Renormalisation at a low, hadronic scale where contact with typical large-
volume values of B is made.

O NPdrunning to very high scales (~100 GeV) where contact with PT is
made.

I T T TTTI I IIIIIIII I IIIIIIII

SF, scheme, N,=0

1-loop v, 2—loop B
2—loop v, 3—loop B

IIIIIIIIIIIIIIIIIIIIIIIII

| llllllll | llllllll | llllllll |

10 100 1000
p/ A




Continuum limit

® Combined linear extrapolation of the two regularisations, using ALPHA
determination of current normalisations and improvement coefficients.

1.1

[ T, 1
/<
me
. extr.

Eii :

0 0.02 0.04 006

a/(2ro)

0.08

0.1

B = 0.735(71)




Comparison with quenched literature

[ L L [
- RBC 05
. CP-PACS 01

Bx = 0.735(71)

B¥5(2 GeV) = 0.534(52)

ALPHA 06 Difference with other Wilson fermion

SPQ. R 04 computations mainly due to method
CD

SPQ.,R 00 employed to extract Bk.

3ol Lee et al 04
—— JLQCD 97
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Comparison with quenched literature

C. Pena, PoS(Lat2006)019

T 1T 1 I T 1 T
e RBC 05
. CP-PACS 01

ALPHA 06

SPQ.,R 04
SPQ.,R 00

P Lee et al 04
F—— JLQCD 97
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0.6 0.8 1
B

K



Comparison with quenched literature

Bx = 0.735(71)

BMS(2 GeV) = 0.534(52)

T 1T 1 I T 1 T
e RBC 05
. CP-PACS 01

A very precise result, based on DW
fermions, has come out recently
ALPHA 06

SPQ.,R 04
SPQ.,R 00

- Lee et al 04

. oD e 3 = 0.782(5)(7)

11 I 1 1 1 I 1 1 1 I 11
0.6 08 1 B3 (2GeV) = 0.565(4)(5)
B

K



tmQCD and renormalization

® Wilson fermions renormalization may be complicated due to loss of chiral symmetry
® this may be simplified in tmQCD through judicious choices of the twist angle
® example I[V: Al = 1/2 rule (related to K =TT TT transitions)

® with Wilson fermions, relevant dim=6 operators are subject to power
subtractions

using tmQCD these “soften” from quadratic to linear (for K—TT transitions)

in they quenched approximation they even become finite

C.Pena, S.Sint & A.V. JHEP09(2004)069

using a variant of tmQCD (Osterwalder/Seiler) they disappear altogether
(and improvement is saved) at the cost of having different regularizations in
the valence and sea sector

R.Ferezzotti & G.C. Rossi JHEP10(2004)070




3rd advantage:

automatic improvement

R. Frezzotti, G.C. Rossi, JHEPO8 (2004) 007




Automatic improvement

NB: the fully twisted case W = T1/2 is of particular interest. Classically we have:
L= 1 [lD+MeXp[z§T 75]]¢ = &[ﬂ —|—z',u73’y5}w

the lattice version requires introduction of the Wilson term but also of the critical
standard mass mcr in order to ensure full twist

| 1 .
Y {_VM(VM+VZ) + sarV,V, + me + i T Y5 }lb

2 2

NB: the concept of twist angle at the quantum level requires renormalized masses:

Ly g
Zm [mO _ mcr]

tan(w) =



Automatic improvement
recall twisted vector symmetry (isospin) is SUy(2)w broken to Uy3(I) by Wilson term

-1l . 1 . ,
Y [§%(vﬂ+vu) -+ §afrvuvu + Mer + z,uq7-375 }@b

at W = T1/2 different subgroups of SUy(2)mr/2 remain unbroken by either the (twisted)
mass term or the Wilson term

Uy!(1) and Uy?(I): unbroken by p-mass term; hard-broken by Wilson and me,-terms

ol this is Uy!(I) ; similarly for Uv3(1)

@D —  exp {’L'—’)/{)Tﬂ Zﬂ i.e. vector symmetry in fully tmQCD

Y

2

| has an axial form

— (87
— w exp {@'—757-2} it is a vector (flavour) symmetry as it
2 is preserved by the mass term



Automatic improvement

recall twisted vector symmetry (isospin) is SUy(2)w broken to Uy3(I) by Wilson term

-1l . 1 . ,
Y [§%(vﬂ+vu) -+ §afrvuvu + Mer + z,uq7-375 }@b

at W = T1/2 different subgroups of SUa(2)m/2 remain unbroken by either the (twisted)
mass term or the Wilson term

Ua!(I) and Ua?%(1): softly-broken by p-mass term; unbroken by Wilson and mer-terms

this is Ua' (1) ; similarly for Ua2(1)

Y —  exp [i%TQ]w

i.e. axial symmetry in fully tmQCD
has an vector form

_ _ al
Y — Y exp [ — i—Tﬂ it is a axial symmetry as it is restored
2 at vanishing mass (in the continuum)

® NB: in the fuly tmQCD the p-mass term and the Wilson/mc-terms transform

“orthogonally”




Automatic improvement

the study of discretization effects of lattice observables is based on the Symanzik
expansion

the lattice action close to the continuum is described in terms of an effective theory

‘SLa,tt — SO + Clgl + - = /d4y£0 + /d4y£1 + ...

for the fully twisted lattice action

11 . 1 . .
L = b%(V,NLVM) + iarvuvu T Mer T qug% W

the Symanzik expansion counter-terms are:
Lo 15{@ + iMRTS%]w
Li = dcsw W o-Fop) + cu puix (Y9)

the Symanzik expansion for a lattice field operator is:

Pratt = Po + aP; +




Automatic improvement

the study of discretization effects of lattice observables is based on the Symanzik
expansion

the lattice action close to the continuum is described in terms of an effective theory

SLatt — SO + Clgl + - = /d4y£0 + /d4y£1 + ...

for the fully twisted lattice action

11 . 1 . .
L = b%(vwvu) + §a7°VMVM T Mer T qug% W

the Symanzik expansion counter-terms are:
Lo 15{@ + iMRTg%]w
Li = dcsw W o-Fop) + cu puix (Y9)

the Symanzik expansion for a lattice field operator is:

dimension d




Automatic improvement

the study of discretization effects of lattice observables is based on the Symanzik
expansion

the lattice action close to the continuum is described in terms of an effective theory

SLatt — SO + Clgl + - = /d4y£0 + /d4y£1 + ...

for the fully twisted lattice action

11 . 1 . .
L = b%(vwvu) + §a7°VMVM T Mer T quS% W

the Symanzik expansion counter-terms are:
Lo 15{@ + iMR7375]¢
Li = dcsw W o-Fop) + cu puix (Y9)

the Symanzik expansion for a lattice field operator is:

Pratt = Po )+
dimension d dimension d+ |




Automatic improvement

® automatic improvement is based on the following field transformations

. 1
® discrete “chiral” transformations Rs' : lb — 175 T lb

, : : 1, R 1
® |attice action terms tranform as Rs' eigenstates v — Y iysT

—rl 1 :
R

L — terms R;

0 [37(T5 + V)4

" [%arv;vu }w
1) Mer )

0 {’i/quTS% ]@b




Automatic improvement

automatic improvement is based on the following field transformations
. S : f ?
operator dimensionality transformations D : Uu(z) — UM(—x — afi)

lattice action terms tranform as D eigenstates @b(x) — eXp[Biﬂ/Q] (—:U)

P(z) —  P(—=z)exp[3ir/2]

_ 1 .
= ¥ b%(vquvu) + SarV,Ve + Ma + g Vs | ¢

L — terms R; D

0 [37(T5 + V)4

" [%arv;vu }w
1) Mer )

0 {’i/quTS% ]@b




Automatic improvement

automatic improvement is based on the following field transformations
. S : f ?
operator dimensionality transformations D : Uu(z) — UM(—x — afi)

lattice action terms tranform as D eigenstates @b(x) — eXp[Siﬂ/Q] (—:U)

P(z) —  P(—=z)exp[3ir/2]

1 1 ]
L = §[5mVa+ Vi) + 5arViV, + ma + iy |

L — terms R; D

0 [37(T5 + V)4

" [%arv;vu }w
1) Mer )

0 {’i/quTg% ]@b

® NB: massless theory invariant under Rs'




Automatic improvement

® automatic improvement is based on the following field transformations
® twisted mass sign flip 4 = —u

® |attice action terms tranform as sign flip eigenstates

%L(Vu + V;)] Y

1

2

P [%a’rv;vu }w
1; Mer

@Z [iﬂq7375 ]@b

.z;[

® NB: massive theory invariant under Rs' ® D ® [y = —|]




Automatic improvement

the lowst-order Symanzik expansion for the vev of an operator @ is:

<P>=<DPy>g +a <P > —a/d4y < ®y L1 >0

the LHS is a lattice vev, determined by the lattice fully twisted action

for an operator ® with positive Rs' parity and even dimension d, the LHS is invariant
under Rs! ® D ® [J = —]

also the RHS must be invariant under Rs' ® D ® [J — —]

the RHS operators and vev are continuum quantities determined by the continuum
tmQCD action with positive Rs' parity, ['O

Lo VP + iuRT?’%] Y
L4 — 1 Cow (@ZO‘Flb) =+ Cu :u%{ (&@D)

the lattice operator ®¢ has positive Rs! parity and even dimension d
P P parity

the lattice operator @ has odd dimension d+/ and therefore negative Rs' parity

thus < ®| >¢ vanishes as it is Rs' odd, weighted by an Rs' even action ['O



Automatic improvement

the lowst-order Symanzik expansion for the vev of an operator @ is:

<P>=<DPy>g +a <P > —a/d4y < ®y L1 >0

the LHS is a lattice vev, determined by the lattice fully twisted action

for an operator ® with positive Rs' parity and even dimension d, the LHS is invariant
under Rs! ® D ® [J = —]

also the RHS must be invariant under Rs' ® D ® [J — —]

the RHS operators and vev are continuum quantities determined by the continuum
tmQCD action with positive Rs' parity, ['O

Lo VP + iuRT?’%] Y
L4 — 1 Cow (@ZO‘Flb) =+ Cu :u%{ (&@D)

the continuum O(a) counterterm of the action is /1, with negative Rs' parit
1 g parity

thus < ®gL >( vanishes as it is Rs' odd, weighted by an Rs' even action [,0




Automatic improvement

the lowst-order Symanzik expansion for the vev of an operator @ is:

<P>=<DPy>g +a <P > —a/d4y < ®y L1 >0

NB (subtlety): the proof rests on the vanishing of the continuum vev
< Dol >0 < (1)1 >0
they vanish due to their breaking of the discrete “chiral” symmetry Rs', which is a
symmetry of the continuum tmQCD [,0
BUT: is this true, i.e. do these “chiral condensates” vanish in a theory with SSB?

YES! because the term generating SSB is the twisted mass term, while O(a) counter-
tems are generated by the “chirally orthogonal” Wilson term

stated differently, the discrete “chiral symmetry” Rs' is a specific vector rotation
Uv2%(1), which does not generate SSB

Y | D+ i,uRTB%] 0
iCow (Vo -F ) + Cp N%{ (Y1)




Automatic improvement

the lowst-order Symanzik expansion for the vev of an operator @ is:

<P>=<DPy>g +a <P > —a/d4y < ®y L1 >0

NB (subtlety): the proof rests on the vanishing of the continuum vev

< BoL1 >0 < Dy >

they vanish due to their breaking of the discrete “chiral” symmetry Rs', which is a
symmetry of the continuum tmQCD [,0

BUT: is this true, i.e. do these “chiral condensates” vanish in a theory with SSB?

YES! because the term generating SSB is the twisted mass term, while O(a) counter-
tems are generated by the “chirally orthogonal” Wilson term

stated differently, the discrete “chiral symmetry” Rs' is a specific vector rotation
Uv2%(1), which does not generate SSB

NB: in simulations we must take extra care that the continuum limit is approached
before the chiral limit; the chiral phase of the vacuum must be driven by the mass term
and not by the Wilson term

po> aldep




Automatic improvement

numerical evidence supports automatic improvement

result shown is quenched

XLF Collab. K. Jansen, M. Papiutto,
A. Shindler,C. Urbach, |. Wetzorke
JHEPQO9 (2005) 071

—e— mpg = 515 MeV

—&— TNpg = 718 MeV
L

0.0125




Automatic improvement

® numerical evidence supports automatic improvement

® result shown is unquenched Nr= 2

ETMC Collab.,C. Urbach, PoS(LAT2007) 022

romps = 0.70 —=—|
romps = 0.90 —=—
rgmpg = 1.10




Shortcoming:

loss of flavour
symmetry




Flavour symmetry violation

it generates mass splittings between, say, neutral and charged pions
it is a discretization effect, which should vanish in the continuum

very preliminary studies suggest that this is a big effect in the quenched approximation,
but diminishes significantly in the Nf= 2 case

the quenched case offers an interesting play-field for explorative studies of flavour
breaking, as it is possible (and cheap) to compare, on the same ensemble, mesons with
the following valence quark content:

® 2 twisted flavours
® 2 untwisted flavours (the standard Wilson case, without flavour breaking)
® | twisted and | untwisted flavour

further detailed unquenched studies are required

the main difficulty is an accurate and efficient computation of disconnected
diagrams for neutral pions; cf. C. Michael et al in various recent conference
proceedings




Flavour symmetry violation

mass splittings between, say, neutral and charged Kaons

4 quenched flavours organized in two maximally twisted doublets
K® made of an “up” and a “down” twisted flavour

K* made of two “up” twisted flavours

at the smallest lattice spacing, neutral-charged Kaon splitting is mgo - mg+ - ~ 50 MeV

A.M.Abdel-Rehim, R. Lewis, R.M.
Woloshyn, J.M.S.Wu,
Phys.Rev.D74(2006)014507




Flavour symmetry violation

mass splittings between, say, neutral and charged pions

4 quenched flavours organized in two maximally twisted doublets
T1° made of an “up” and a “down” twisted flavour

TT" made of two “up” twisted flavours

comparison between Wilson/Clover discretizations, at a singe lattice spacing, for very
small quark masses

=
& Nrmowiton, rn';r

& Min-Clover, m,o©

connecled diagrams only

D. Becirevic Ph. Boucaud,V.Lubicz,
G.Martinelli, FMescia, S.Simula,

C.Tarantino
Phys.Rev.D74(2006)03450 |




Flavour symmetry violation

mass splittings between, say, neutral and charged Kaons

4 quenched flavours organized in a maximally twisted and an untwisted doublet
pseudoscalars made of twisted (u-d), untwisted (s-c) and mixed (s-d) valence quarks
NB: the untwisted (s-c) case is the standard Wilson one, without flavour breaking

comparison at a several lattice spacings, for very quark masses “above” strangeness

(M yM)* —E—
(Myg/Mye)* —O—

p=60|q 104F

4 102 F

- I -

ALPHA P.Dimopoulos, |.Heitger,
FPalombi, C.Pena, S.Sint, A.V.
NPB 776 (2007) 258




Flavour symmetry violation

mass splittings between, say, neutral and charged Kaons

4 quenched flavours organized in a maximally twisted and an untwisted doublet
pseudoscalars made of twisted (u-d), untwisted (s-c) and mixed (s-d) valence quarks
NB: the untwisted (s-c) case is the standard Wilson one, without flavour breaking

comparison at a several lattice spacings, for very quark masses “above” strangeness
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Selected ETMC results




Selected ETMC results

Using tmQCD fermions with Nt = 2 the ETM-Collaboration reports:

one lattice spacing a ~ 0.1 fm; one lattice volume L ~ 2.4 fm

light quark masses (sea) 300 MeV < mn < 550 MeV
no axial current (and no Z,) is needed, due to tmQCD Ward identity

due to tmQCD @ twist angle & = T / 2, we have automatic O(a)

improvement
07 1 T " T T T T ]

I (afps)

fr = 121.3 + 0.7

fit to 5 points
fit to 4 points




Selected ETMC results

Using tmQCD fermions with Nt = 2 the ETM-Collaboration reports:

® one lattice spacing a ~ 0.1 fm; two lattice volumes L ~ 2.4 fm

3.85 &= 0.12 =+ 0.40 MeV

100 £ 3+ 9 MeV
27.3 £ 0.3 1.2

161.7 4

1.227 -

1.2 +£ 3.1 MeV
0.009 + 0.024




Selected ETMC results

Using tmQCD fermions with Nt = 2 the ETM-Collaboration reports:
ETMC B. Blossier et al., arXiv:0709.4574v| [hep-lat]

® one lattice spacing a ~ 0.1 fm; two lattice volumes L ~ 2.4 - 3.0 fm
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Concluding remarks




Concuding remarks

tmQCD has several advantages, making it an efficient alternative to GW-type
computations with dynamical fermions; novel results have been obtained at Nf= 2

the simplest quantities (pseudoscalar masses, decay constants, quark masses etc.) are
currently being measured, close to the “physical regime” (lightish pions ~ 300MeV)

it is possible to overcome the limitation of two degenerate flavours in the formalism
without losing tmQCD advantages; Nr= 2+ 1+ simulations are under way

the main drawback is the lack of flavour symmetry at finite UV cutoff
® cearly studies have given a quenched, partilly satisfactory answer

® detailed unquenched studies are being carried out; the overall qualitative
behaviour points out to the vanishing of such effects in the continuum

one must also be aware that tuning of the theory bare parameters to maximal twist is
an issue requiring extra care (not covered here)

the phase diagramme of tmQCD has also been under study in order to gain further
insight to the issues related to symmetry breaking and their restoration in the
continuum (not covered here)

an important theoretical issue is the combination of tmQCD with Schrodinger
Functional: (not covered here)




