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Generalities
• tmQCD is a relative newcomer in the family of lattice fermion regularizations

• it consists in modifying the standard Wilson fermion matrix by adding a mass term , 
which is “twisted” in chiral space

iµ ψ̄ τ3γ5 ψ
Pauli matrix in SU(2) flavour space
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• natural infrared cutoff enables a safer approach to the chiral limit (and keeps us safe 
from exceptional configurations in the quenched approximation)

• in many cases the renormalization properties of WMEs are simplified

• in most cases of interest observable quantities are improved “automatically” (i.e. 
without Symanzik counter-terms in the action and the operators)
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Generalities
• tmQCD is a relative newcomer in the family of lattice fermion regularizations

• it consists in modifying the standard Wilson fermion matrix by adding a mass term , 
which is “twisted” in chiral space

iµ ψ̄ τ3γ5 ψ
Pauli matrix in SU(2) flavour space

• there are several advantages in such a choice:

• natural infrared cutoff enables a safer approach to the chiral limit (and keeps us safe 
from exceptional configurations in the quenched approximation)

• in many cases the renormalization properties of WMEs are simplified

• in most cases of interest observable quantities are improved “automatically” (i.e. 
without Symanzik counter-terms in the action and the operators)

• there is a price to pay: flavour symmetry is lost and so are parity and time reversal 
(recovered in the continuum limit)

• this mini-course emphasizes first principles, illustrated by selected results; it is NOT  a 
complete review of the tmQCD state of the art



Classical tmQCD
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Classical tmQCD

• apparently this is not QCD! (parity breaking? isospin braking? extra mass term?)

• but this theory is form invariant under chiral transformations in 3rd isospin direction, 
combined with spurionic transformations of the two mass parameters

• to see this, define first an invariant mass and a twist angle:

• for simplicity start with two degenerate flavours

• the classical QCD theory with SU(2) flavour symmetry is: 

ψ̄ = ( ū d̄ )

L = ψ̄ [ /D + m + i µ τ3 γ5 ] ψ

M =
√

m2 + µ2 tan(ω) =
µ

m
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• apparently this is not QCD! (parity breaking? isospin braking? extra mass term?)

• but this theory is form invariant under chiral transformations in 3rd isospin direction, 
combined with spurionic transformations of the two mass parameters

• redefine fermionic fields through chiral rotations [ I3(α) - rotations ]: 

• for simplicity start with two degenerate flavours
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[
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Classical tmQCD

• apparently this is not QCD! (parity breaking? isospin braking? extra mass term?)

• but this theory is form invariant under chiral transformations in 3rd isospin direction, 
combined with spurionic transformations of the two mass parameters

• redefine fermionic fields through chiral rotations [ I3(α) - rotations ]: 

• for simplicity start with two degenerate flavours

• the classical QCD theory with SU(2) flavour symmetry is: 

ψ̄ = ( ū d̄ )

L = ψ̄ [ /D + m + i µ τ3 γ5 ] ψ

ψ → ψ′ = exp
[
i
α

2
γ5τ

3
]
ψ ψ̄ → ψ̄′ = ψ̄ exp

[
i
α

2
γ5τ

3
]

• redefine mass parameters through spurionic transformations are:

m → m′ = m cos(α) + µ sin(α)
µ → µ′ = µ cos(α) − m sin(α)



Classical tmQCD

• the form invariance of the theory is:

• with the same invariant mass 
and a new twist angle

M ′ = M tan(ω′) =
µ′

m′
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Classical tmQCD

• the form invariance of the theory is:

• with the same invariant mass 
and a new twist angle

M ′ = M tan(ω′) =
µ′

m′

ω′ = ω − α

L = ψ̄
[

/D + m + i µ τ3 γ5

]
ψ = ψ̄

[
/D + M exp[iωτ3γ5]

]
ψ

• with I3(α = ω - π/2) - rotations we obtain ω′ = π/2 ⇔ m′ = 0 and μ′ = M

• this special case of interest is known as fully twisted QCD or maximally 
twisted QCD!! 
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[
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]
ψ′ = ψ̄′

[
/D + M exp[iω′τ3γ5]

]
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Classical tmQCD

• QCD is obtained from tmQCD (defined at fixed ω) with chiral transformations in 3rd 
isospin direction [ I3(ω)-rotations ], combined with spurionic transformations of the 
two mass parameters:

• symmetries are lost only apparently, since at the classical level QCD  ↔ tmQCD

• parity breaking? isospin braking?

tan(ω) =
µ

m

ψ → ψ′ = exp
[
i
ω

2
γ5τ

3
]
ψ ψ̄ → ψ̄′ = ψ̄ exp

[
i
ω

2
γ5τ

3
]

L = ψ̄
[

/D + m + i µ τ3 γ5

]
ψ = ψ̄

[
/D + M exp[iωτ3γ5]

]
ψ

m → m′ = M

µ → µ′ = 0
• the symmetry transformations of the fermion 

fields in the tmQCD formalism are obtained by 
performing the opposite I3(-ω)-rotations to the 
standard symmetry transformations of the 
fields in QCD



Classical tmQCD

• twisted parity is Pω

• symmetries are lost only apparently, since at the classical level QCD  ↔ tmQCD

• parity breaking? isospin braking?
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m
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• twisted parity is Pω
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Classical tmQCD

• twisted time-reversal is similarly Tω

• symmetries are lost only apparently, since at the classical level QCD  ↔ tmQCD

• parity breaking? isospin braking?

tan(ω) =
µ

m

NB!

L = ψ̄
[

/D + m + i µ τ3 γ5

]
ψ = ψ̄

[
/D + M exp[iωτ3γ5]

]
ψ

x = (x0,x) → x′ = (−x0,x)
A0(x) → −A0(x′)
Ak(x) → Ak(x′)

ψ(x) → i γ0γ5 exp
[
iωγ5τ

3
]
ψ(x′)

ψ̄(x) → −i ψ̄(x′) exp
[
iωγ5τ

3
]
γ5γ0



Classical tmQCD

• NB: instead of twisted parity Pω we may have standard parity P0 with twisted mass sign 
flip

• symmetries are lost only apparently, since at the classical level QCD  ↔ tmQCD

• parity breaking? isospin braking?
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[
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]
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[
/D + M exp[iωτ3γ5]

]
ψ

x = (x0,x) → x′ = (x0,−x)
A0(x) → A0(x′)
Ak(x) → −Ak(x′)
ψ(x) → γ0 ψ(x′)
ψ̄(x) → ψ̄(x′) γ0

µ → −µ



Classical tmQCD

• NB: instead of twisted parity Pω we may have standard parity P0, combined with 
(spurionic) twisted mass sign flip

• symmetries are lost only apparently, since at the classical level QCD  ↔ tmQCD

• parity breaking? isospin braking?

L = ψ̄
[

/D + m + i µ τ3 γ5

]
ψ = ψ̄

[
/D + M exp[iωτ3γ5]

]
ψ

• similarly for time-reversal T0 ⊗ [μ  → -μ]

x = (x0,x) → x′ = (x0,−x)
A0(x) → A0(x′)
Ak(x) → −Ak(x′)
ψ(x) → γ0 ψ(x′)
ψ̄(x) → ψ̄(x′) γ0

µ → −µ



Classical tmQCD

• twisted vector symmetry (isospin) is SUv(2)ω

• symmetries are lost only apparently, since at the classical level QCD  ↔ tmQCD

• parity breaking? isospin braking?

tan(ω) =
µ

m

ψ(x) → exp
[
− i

ω

2
γ5τ

3
]

exp
[
i
θa

2
τa

]
exp

[
i
ω

2
γ5τ

3
]

ψ(x)

ψ̄(x) → ψ̄(x) exp
[
i
ω

2
γ5τ

3
]

exp
[
− i

θa

2
τa

]
exp

[
− i

ω

2
γ5τ

3
]

L = ψ̄
[

/D + m + i µ τ3 γ5

]
ψ = ψ̄

[
/D + M exp[iωτ3γ5]

]
ψ



Classical tmQCD

• by analogy, twisted axial symmetry is SUA(2)ω

• symmetries are lost only apparently, since at the classical level QCD  ↔ tmQCD

• parity breaking? isospin braking?

tan(ω) =
µ

m

• axial symmetry valid at M = 0

ψ(x) → exp
[
− i

ω

2
γ5τ

3
]

exp
[
i
θa

2
τaγ5

]
exp

[
i
ω

2
γ5τ

3
]

ψ(x)

ψ̄(x) → ψ̄(x) exp
[
i
ω

2
γ5τ

3
]

exp
[
i
θa

2
τaγ5

]
exp

[
− i

ω

2
γ5τ

3
]

L = ψ̄
[

/D + m + i µ τ3 γ5

]
ψ = ψ̄

[
/D + M exp[iωτ3γ5]

]
ψ



Classical tmQCD

• the I3(ω)-rotations relating QCD ↔ tmQCD give operator correspondences

Va
µ = cos(ω) V a

µ + ε3ab sin(ω) Ab
µ a = 1, 2

Aa
µ = cos(ω) Aa

µ + ε3ab sin(ω) V b
µ a = 1, 2

V3
µ = V 3

µ

A3
µ = A3

µ

defined in QCD defined in tmQCD

Qa
Γ = ψ̄ Γ

τa

2
ψ

S0 = ψ̄ ψ

tan(ω) =
µ

m



Classical tmQCD

• the I3(ω)-rotations relating QCD ↔ tmQCD give operator correspondences

tan(ω) =
µ

m

Va
µ = cos(ω) V a

µ + ε3ab sin(ω) Ab
µ a = 1, 2

Aa
µ = cos(ω) Aa

µ + ε3ab sin(ω) V b
µ a = 1, 2

V3
µ = V 3

µ

A3
µ = A3

µ

defined in QCD defined in tmQCD

Pa = P a a = 1, 2

P3 = cos(ω)P 3 +
i

2
sin(ω) S0

S0 = cos(ω)S0 + 2i sin(ω) P 3

Qa
Γ = ψ̄ Γ

τa

2
ψ

S0 = ψ̄ ψ



Classical tmQCD

• similar correspondences occur in Ward identiites

• in tmQCD the PCVC is 

∂µAa
µ = 2m P a + i µ δ3a S0

∂µV a
µ = −2µ ε3ab P b

• in tmQCD the PCAC is 

Qa
Γ = ψ̄ Γ

τa

2
ψ

S0 = ψ̄ ψ

• in terms of the QCD currents and densities, they become the standard expressions



Lattice tmQCD
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Lattice tmQCD

• QCD ↔ tmQCD equivalence carries over to the renormalized quantum level

• Ingredients:

• chiral symmetry of Ginsparg-Wilson (GW) fermions

• mass-independent renormalization scheme

• universality of different lattice regularizations in the continuum limit

• twist angle tuned to ratio of renormalized masses

• QCD ↔ tmQCD equivalence proceeds through linear mapping between renormalized 

Green functions

• regularize QCD and tmQCD with GW fermions

• GW chiral symmetry guarantees the same considerations of a trivial QCD  ↔ tmQCD 

equivalence as in the classical case are valid (with minor caveats)

• example: bare Green function of the scalar operator (chiral condensate)

tan(ω) = µR / mR

[
< · · · S0 · · · >

]QCD

GW
=

[
cos(ω) < · · ·S0 · · · > + i sin(ω) < · · ·P 3 · · · >

]tmQCD

GW



Lattice tmQCD

• QCD ↔ tmQCD equivalence between bare Green functions with GW regularization

[
< · · · S0 · · · >

]QCD

GW
=

[
cos(ω) < · · ·S0 · · · > + i sin(ω) < · · ·P 3 · · · >

]tmQCD

GW



Lattice tmQCD

• QCD ↔ tmQCD equivalence between bare Green functions with GW regularization

• QCD ↔ tmQCD equivalence carries over to renormalized quantities, due to mass 

independent renormalization schemes (i.e. S0  and P3 in both QCD and tmQCD have 
the same renormalization constant ZS = ZP = Z )

[
< · · · S0 · · · >

]QCD

GW
=

[
cos(ω) < · · ·S0 · · · > + i sin(ω) < · · ·P 3 · · · >

]tmQCD

GW

Z(aµ̃)
[

< · · · S0 · · · >
]QCD

GW
= Z(aµ̃)

[
cos(ω) < · · ·S0 · · · > + i sin(ω) < · · ·P 3 · · · >

]tmQCD

GW



Lattice tmQCD

• QCD ↔ tmQCD equivalence between bare Green functions with GW regularization

• QCD ↔ tmQCD equivalence carries over to renormalized quantities, due to mass 

independent renormalization schemes (i.e. S0  and P3 in both QCD and tmQCD have 
the same renormalization constant ZS = ZP = Z )

[
< · · · S0 · · · >

]QCD

GW
=

[
cos(ω) < · · ·S0 · · · > + i sin(ω) < · · ·P 3 · · · >

]tmQCD

GW

Z(aµ̃)
[

< · · · S0 · · · >
]QCD

GW
= Z(aµ̃)

[
cos(ω) < · · ·S0 · · · > + i sin(ω) < · · ·P 3 · · · >

]tmQCD

GW

• since QCD  ↔ tmQCD equivalence holds between renormalized (continuum) Green 

functions (proved with GW regularization), evoking universality we claim that this is 
also true for renormalized (continuum) Green functions computed with any other 
lattice regularization; e.g. tmQCD wih Wilson fermions

[
< · · · S0 · · · >R

]QCD
=

[
cos(ω) < · · ·S0 · · · >R + i sin(ω) < · · ·P 3 · · · >R

]tmQCD



Lattice tmQCD

• QCD ↔ tmQCD equivalence between bare Green functions with GW regularization

• QCD ↔ tmQCD equivalence carries over to renormalized quantities, due to mass 

independent renormalization schemes (i.e. S0  and P3 in both QCD and tmQCD have 
the same renormalization constant ZS = ZP = Z )

[
< · · · S0 · · · >

]QCD

GW
=

[
cos(ω) < · · ·S0 · · · > + i sin(ω) < · · ·P 3 · · · >

]tmQCD

GW

Z(aµ̃)
[

< · · · S0 · · · >
]QCD

GW
= Z(aµ̃)

[
cos(ω) < · · ·S0 · · · > + i sin(ω) < · · ·P 3 · · · >

]tmQCD

GW

• since QCD  ↔ tmQCD equivalence holds between renormalized (continuum) Green 

functions (proved with GW regularization), evoking universality we claim that this is 
also true for renormalized (continuum) Green functions computed with any other 
lattice regularization; e.g. tmQCD wih Wilson fermions

[
< · · · S0 · · · >R

]QCD
=

[
cos(ω) < · · ·S0 · · · >R + i sin(ω) < · · ·P 3 · · · >R

]tmQCD

• QCD ↔ tmQCD equivalence amounts to operator transcriptions in lattice tmQCD 



Lattice tmQCD

• lattice tmQCD definition:  Wilson fermions + twisted mass term:

L = ψ̄
[1
2
γµ(∇µ +∇∗

µ) +
1
2
ar∇∗

µ∇µ + m0 + iµqτ
3γ5

]
ψ

= ψ̄
[1
2
γµ(∇µ +∇∗

µ) +
1
2
ar∇∗

µ∇µ + M0 exp[iω0τ
3γ5]

]
ψ



Lattice tmQCD

• lattice tmQCD definition:  Wilson fermions + twisted mass term:

L = ψ̄
[1
2
γµ(∇µ +∇∗

µ) +
1
2
ar∇∗

µ∇µ + m0 + iµqτ
3γ5

]
ψ

= ψ̄
[1
2
γµ(∇µ +∇∗

µ) +
1
2
ar∇∗

µ∇µ + M0 exp[iω0τ
3γ5]

]
ψ

naive derivative



Lattice tmQCD

• lattice tmQCD definition:  Wilson fermions + twisted mass term:

L = ψ̄
[1
2
γµ(∇µ +∇∗

µ) +
1
2
ar∇∗

µ∇µ + m0 + iµqτ
3γ5

]
ψ

= ψ̄
[1
2
γµ(∇µ +∇∗

µ) +
1
2
ar∇∗

µ∇µ + M0 exp[iω0τ
3γ5]

]
ψ

Wilson term

• Wilson term cures the fermion doubling problem
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• lattice tmQCD definition:  Wilson fermions + twisted mass term:

L = ψ̄
[1
2
γµ(∇µ +∇∗

µ) +
1
2
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µ∇µ + m0 + iµqτ
3γ5

]
ψ
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2
γµ(∇µ +∇∗

µ) +
1
2
ar∇∗

µ∇µ + M0 exp[iω0τ
3γ5]

]
ψ

bare 
standard 

mass

• bare standard mass renormalizes as in standard Wilson fermions:

mR = Zm [m0 −mcr] = Z−1
S [m0 −mcr]
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• lattice tmQCD definition:  Wilson fermions + twisted mass term:
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[1
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3γ5
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2
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µ) +
1
2
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µ∇µ + M0 exp[iω0τ
3γ5]

]
ψ

bare 
twisted 
mass

• bare twisted mass renormalizes multiplicatively (protected by Ward identities):

µR = Zµ µq = Z−1
P µq



Lattice tmQCD

• lattice tmQCD definition:  Wilson fermions + twisted mass term:

L = ψ̄
[1
2
γµ(∇µ +∇∗

µ) +
1
2
ar∇∗

µ∇µ + m0 + iµqτ
3γ5

]
ψ

= ψ̄
[1
2
γµ(∇µ +∇∗

µ) +
1
2
ar∇∗

µ∇µ + M0 exp[iω0τ
3γ5]

]
ψ
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• lattice tmQCD definition:  Wilson fermions + twisted mass term:
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1
2
ar∇∗

µ∇µ + m0 + iµqτ
3γ5

]
ψ

= ψ̄
[1
2
γµ(∇µ +∇∗

µ) +
1
2
ar∇∗

µ∇µ + M0 exp[iω0τ
3γ5]

]
ψ

• Wilson term causes loss of twisted symmetries:  Pω, Tω

• Parity survives if combined either with flavour exchange (defined as PF1 , PF2) ...

ψ(x)→ i γ0 τ1 ψ(x′) ψ̄(x)→ −i ψ̄(x′) γ0 τ1

ψ(x)→ i γ0 τ2 ψ(x′) ψ̄(x)→ −i ψ̄(x′) γ0 τ2



Lattice tmQCD

• lattice tmQCD definition:  Wilson fermions + twisted mass term:

L = ψ̄
[1
2
γµ(∇µ +∇∗

µ) +
1
2
ar∇∗

µ∇µ + m0 + iµqτ
3γ5

]
ψ

= ψ̄
[1
2
γµ(∇µ +∇∗

µ) +
1
2
ar∇∗

µ∇µ + M0 exp[iω0τ
3γ5]

]
ψ

• Wilson term causes loss of twisted symmetries:  Pω, Tω

• ... or with a sigh flip of the twisted mass (defined as P  ⊗[ μ → - μ] )

ψ(x)→ i γ0 ψ(x′) ψ̄(x)→ −i ψ̄(x′) γ0

µq → − µq



Lattice tmQCD

• lattice tmQCD definition:  Wilson fermions + twisted mass term:

L = ψ̄
[1
2
γµ(∇µ +∇∗

µ) +
1
2
ar∇∗

µ∇µ + m0 + iµqτ
3γ5

]
ψ

= ψ̄
[1
2
γµ(∇µ +∇∗

µ) +
1
2
ar∇∗

µ∇µ + M0 exp[iω0τ
3γ5]

]
ψ

• Wilson term causes loss of twisted symmetries:  Pω, Tω

• ... or with a sigh flip of the twisted mass (defined as P  ⊗[ μ → - μ] )

ψ(x)→ i γ0 ψ(x′) ψ̄(x)→ −i ψ̄(x′) γ0

µq → − µq

• The same holds for time reversal:  TF1 , TF2, T  ⊗[ μ → - μ] are symmetries



Lattice tmQCD

• lattice tmQCD definition:  Wilson fermions + twisted mass term:

L = ψ̄
[1
2
γµ(∇µ +∇∗

µ) +
1
2
ar∇∗

µ∇µ + m0 + iµqτ
3γ5

]
ψ

= ψ̄
[1
2
γµ(∇µ +∇∗

µ) +
1
2
ar∇∗

µ∇µ + M0 exp[iω0τ
3γ5]

]
ψ

• Wilson term causes loss of twisted vector symmetry:  SUV(2)ω; i.e. flavour symmetry is 
hard-broken (Wilson term) in tmQCD

• However it is not completely broken; the subgroup UV3(1) survives (NB: ω-
dependence drops out!)

ψ(x) → exp
[
− i

ω

2
γ5τ

3
]

exp
[
i
θa

2
τa

]
exp

[
i
ω

2
γ5τ

3
]

ψ(x)

ψ̄(x) → ψ̄(x) exp
[
i
ω

2
γ5τ

3
]

exp
[
− i

θa

2
τa

]
exp

[
− i

ω

2
γ5τ

3
]



Lattice tmQCD

• lattice tmQCD definition:  Wilson fermions + twisted mass term:

L = ψ̄
[1
2
γµ(∇µ +∇∗

µ) +
1
2
ar∇∗

µ∇µ + m0 + iµqτ
3γ5

]
ψ

= ψ̄
[1
2
γµ(∇µ +∇∗

µ) +
1
2
ar∇∗

µ∇µ + M0 exp[iω0τ
3γ5]

]
ψ

• Wilson term causes loss of twisted vector symmetry:  SUV(2)ω; i.e. flavour symmetry is 
hard-broken (Wilson term) in tmQCD

• However it is not completely broken; the subgroup UV3(1) survives (NB: ω-
dependence drops out!)

ψ → exp
[
i
α3

2
τ3

]
ψ

ψ̄ → ψ̄ exp
[
− i

α3

2
τ3

]



Lattice tmQCD

• lattice tmQCD definition:  Wilson fermions + twisted mass term:

L = ψ̄
[1
2
γµ(∇µ +∇∗

µ) +
1
2
ar∇∗

µ∇µ + m0 + iµqτ
3γ5

]
ψ

= ψ̄
[1
2
γµ(∇µ +∇∗

µ) +
1
2
ar∇∗

µ∇µ + M0 exp[iω0τ
3γ5]

]
ψ

• this hard SUV(2)ω → UV3(1) breaking causes a lack of degeneracy between the neutral 
pion π0 and the two charged pions π±

• It is a discretization effect which vanishes in the continuum limit (SUV(2) restoration)

ψ → exp
[
i
α3

2
τ3

]
ψ

ψ̄ → ψ̄ exp
[
− i

α3

2
τ3

]



Lattice tmQCD

• lattice tmQCD definition:  Wilson fermions + twisted mass term:

L = ψ̄
[1
2
γµ(∇µ +∇∗

µ) +
1
2
ar∇∗

µ∇µ + m0 + iµqτ
3γ5

]
ψ

= ψ̄
[1
2
γµ(∇µ +∇∗

µ) +
1
2
ar∇∗

µ∇µ + M0 exp[iω0τ
3γ5]

]
ψ

• axial symmetry SUA(2)ω, broken softly by mass term M0,  also hard-broken by 
Wilson term in standard fashion

• also this symmetry is restored in the continuum and chiral limits



1st advantage: 
IR zero-mode 
regularization

Alpha Collab., R. Frezzotti, P.A. Grassi, S. Sint and P.Weisz, JHEP08 (2001) 058 



IR zero-mode regularization

• Wilson fermion matrix M = DW + mq has spurious zero-modes at small quark mass 
(lattice artefacts)

• In quenched simulations they cause exceptional configurations which impede 
simulations at masses lower than, say, half the strange quark mass; mq ≤ ms / 2

• In un-quenched simulations the fermion determinant suppresses these zero-modes in 
MC, but an IR cutoff could still be helpful to the approach of the chiral limit

• tmQCD introduces an IR mass cutoff (the twisted mass!) which facilitates the approach 
to small mass regime

ψ̄ MW ψ =
(
ū d̄

) (
DW + m0 + iµγ5 0

0 DW + m0 − iµγ5

) (
u
d

)



IR zero-mode regularization

• Wilson fermion matrix M = DW + mq has spurious zero-modes at small quark mass 
(lattice artefacts)

• In quenched simulations they cause exceptional configurations which impede 
simulations at masses lower than, say, half the strange quark mass; mq ≤ ms / 2

• In un-quenched simulations the fermion determinant suppresses these zero-modes in 
MC, but an IR cutoff could still be helpful to the approach of the chiral limit

• tmQCD introduces an IR mass cutoff (the twisted mass!) which facilitates the approach 
to small mass regime

ψ̄ MW ψ =
(
ū d̄

) (
DW + m0 + iµγ5 0

0 DW + m0 − iµγ5

) (
u
d

)

det MW = det
(

DW + m0 + iµγ5 0
0 DW + m0 − iµγ5

)

= det
[
(DW + m0)†(DW + m0) + µ2

]



IR zero-mode regularization

• Wilson fermion matrix M = DW + mq has spurious zero-modes at small quark mass 
(lattice artefacts)

• In quenched simulations they cause exceptional configurations which impede 
simulations at masses lower than, say, half the strange quark mass; mq ≤ ms / 2

• In un-quenched simulations the fermion determinant suppresses these zero-modes in 
MC, but an IR cutoff could still be helpful to the approach of the chiral limit

• tmQCD introduces an IR mass cutoff (the twisted mass!) which facilitates the approach 
to small mass regime

Alpha Collab. M.Guagnelli, J.Heitger,  
R.Sommer, H.Wittig

Nucl. Phys. B560 (1999) 465

χLF Collab. K. Jansen, M. Papiutto, 
A. Shindler,C. Urbach, I. Wetzorke

JHEP09 (2005) 071     



2nd advantage: 
simplified 

renormalization

Alpha Collab., R. Frezzotti, P.A. Grassi, S. Sint and P.Weisz, JHEP08 (2001) 058 



tmQCD and renormalization

• Wilson fermions renormalization may be complicated due to loss of chiral symmetry

• this may be simplified in tmQCD through judicious choices of the twist angle

• example 1: the chiral condensate

• multiplicatively renormalizable with chirally symmetric regularization

< ψ̄ψ >R = Zs0 < ψ̄ψ > ZS is log.ly divergent

< S0 > = < ψ̄ψ >
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• additive renormalization (power subtraction) with Wilson fermions
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• Wilson fermions renormalization may be complicated due to loss of chiral symmetry

• this may be simplified in tmQCD through judicious choices of the twist angle

• example 1: the chiral condensate

• multiplicatively renormalizable with chirally symmetric regularization

• additive renormalization (power subtraction) with Wilson fermions

• without chiral symmetry, the condensate mixes with the identity operator

• power divergences are vigorous and would better be avoided

• other operators are mult.ly renormalizable:

• the same renormalization constants ZS (ZP) apply to S0  (P3) in both QCD and tmQCD 
(in mass-independent renormalization schemes)

< ψ̄ψ >R = Zs0 < ψ̄ψ >

< ψ̄ψ >R = Zs0

[
< ψ̄ψ > +
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a3

]
ZS is log.ly divergent
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• Wilson fermions renormalization may be complicated due to loss of chiral symmetry

• this may be simplified in tmQCD through judicious choices of the twist angle

• example 1: the chiral condensate

• multiplicatively renormalizable with chirally symmetric regularization

• additive renormalization (power subtraction) with Wilson fermions

• recall  that the renormalized condensate insertion is computed from the bare tmQCD 
theory as:

• for twist angle ω = π/2 this means that in tmQCD the condensate is obtained from 
the mult.ly renormalizable pseudoscalar density 

tmQCD and renormalization

< ψ̄ψ > = iZP [< P 3 > ]tmQCD

< S0 > = < ψ̄ψ >

[
< · · · S0 · · · >R

]QCD
=

[
cos(ω) < · · ·S0 · · · >R + i sin(ω) < · · ·P 3 · · · >R

]tmQCD



• Wilson fermions renormalization may be complicated due to loss of chiral symmetry

• this may be simplified in tmQCD through judicious choices of the twist angle

• example I1: the pion/kaon decay constant

• with Wilson fermions, axial current normalization factor ZA  required

• using tmQCD it is obtained without any (re)normalization factor

• in maximally tmQCD symmetries appear lopsided; this is also true of Ward identities

• PCVC is exact:

•   

tmQCD and renormalization

∂∗µ < Ṽ 1
µ (x) P 2(0) > = −2µ < P 2(x) P 2(0) >
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• example I1: the pion/kaon decay constant

• with Wilson fermions, axial current normalization factor ZA  required

• using tmQCD it is obtained without any (re)normalization factor
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• Wilson fermions renormalization may be complicated due to loss of chiral symmetry

• this may be simplified in tmQCD through judicious choices of the twist angle

• example I1: the pion/kaon decay constant

• with Wilson fermions, axial current normalization factor ZA  required

• using tmQCD it is obtained without any (re)normalization factor

• in maximally tmQCD symmetries appear lopsided; this is also true of Ward identities

• PCVC is exact:

•   

tmQCD and renormalization

lattice backward derivative point-split vector current

∂∗µ < Ṽ 1
µ (x) P 2(0) > = −2µ < P 2(x) P 2(0) >



• Wilson fermions renormalization may be complicated due to loss of chiral symmetry

• this may be simplified in tmQCD through judicious choices of the twist angle

• example I1: the pion/kaon decay constant

• with Wilson fermions, axial current normalization factor ZA  required

• using tmQCD it is obtained without any (re)normalization factor

• in maximally tmQCD symmetries appear lopsided; this is also true of Ward identities

• PCVC is exact:

•   

tmQCD and renormalization
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0 (0) | π > = 2µ < 0 | P 2(0) | π >
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µ (x) P 2(0) > = −2µ < P 2(x) P 2(0) >



• Wilson fermions renormalization may be complicated due to loss of chiral symmetry

• this may be simplified in tmQCD through judicious choices of the twist angle

• example I1: the pion/kaon decay constant

• with Wilson fermions, axial current normalization factor ZA  required

• using tmQCD it is obtained without any (re)normalization factor

• in maximally tmQCD symmetries appear lopsided; this is also true of Ward identities

• PCVC is exact:

•   

• this fully tmQCD bare vector current in the continuum gives the axial current

•  

tmQCD and renormalization

[
< 0 |A1

µ(0) | π >R

]QCD = lim
a→0

[
< 0 | Ṽ 1

µ (0) | π >
]tmQCD

mπ < 0 | Ṽ 1
0 (0) | π > = 2µ < 0 | P 2(0) | π >

∂∗µ < Ṽ 1
µ (x) P 2(0) > = −2µ < P 2(x) P 2(0) >



• Wilson fermions renormalization may be complicated due to loss of chiral symmetry

• this may be simplified in tmQCD through judicious choices of the twist angle

• example I1: the pion/kaon decay constant

• with Wilson fermions, axial current normalization factor ZA  required

• using tmQCD it is obtained without any (re)normalization factor

• in maximally tmQCD symmetries appear lopsided; this is also true of Ward identities

• PCVC is exact:

•   

• this fully tmQCD bare vector current in the continuum gives the axial current

•  

• thus the pion decay constant is

tmQCD and renormalization

[
< 0 |A1

µ(0) | π >R

]QCD = lim
a→0

[
< 0 | Ṽ 1

µ (0) | π >
]tmQCD

mπ < 0 | Ṽ 1
0 (0) | π > = 2µ < 0 | P 2(0) | π >

fπ =
[< 0 | A1

0(0) | π >R]QCD

mπ
= lim

a→0

2µ

m2
π

< 0 | P 2(0) | π >

∂∗µ < Ṽ 1
µ (x) P 2(0) > = −2µ < P 2(x) P 2(0) >



• Wilson fermions renormalization may be complicated due to loss of chiral symmetry

• this may be simplified in tmQCD through judicious choices of the twist angle

• example II1: the kaon B-parameter

• indirect CP-violation

• can be expressed in terms of  K0 -  K0  mixing

• dominant EW process is FCNC (2 W exchange)

tmQCD and renormalization

|εK| ≈ Cε B̂K Im{V
∗
tdVts} {Re{V

∗
cdVcs}[η1 S0(xc) − η3 S0(xc, xt)] − Re{V

∗
tdVts}η2 S0(xt)]}

long distance NP

B̂K =

〈K̄0|Ô∆S=2|K0〉
8

3
F2

K
m2

K

d u,c,t s

s
-

d
-

u,c,t

W W
O

d s

s
-

d
-

Ô∆S=2
=

[

s̄γL
µ d

] [

s̄γL
µ d

]



BK − a renormalisation classic

In the presence of explicit chiral symmetry breaking four-fermion operators 
of different chiralities mix under renormalisation.

Martinelli 1984; Bernard, Draper, (Hockney), Soni 1987,1998; 
Gupta et al. 1993; Donini et al. 1999

O
∆S=2 = [(s̄γµd)(s̄γµd) + (s̄γµγ5d)(s̄γµγ5d)

︸ ︷︷ ︸

OVV+AA

] − [(s̄γµd)(s̄γµγ5d) + (s̄γµγ5d)(s̄γµd)
︸ ︷︷ ︸

OVA+AV

]
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BK − a renormalisation classic

O
∆S=2 = [(s̄γµd)(s̄γµd) + (s̄γµγ5d)(s̄γµγ5d)

︸ ︷︷ ︸

OVV+AA

] − [(s̄γµd)(s̄γµγ5d) + (s̄γµγ5d)(s̄γµd)
︸ ︷︷ ︸

OVA+AV

]

Vanishes if chiral symmetry is preserved
(at least partially)

ŌVV+AA = lim
a→0

ZVV+AA(g2
0, aµ)

[

OVV+AA(a) +
4

∑
k=1

∆k(g2
0)Ok(a)

]

Vanishes for staggered, GW, DW fermions

In the presence of explicit chiral symmetry breaking four-fermion operators 
of different chiralities mix under renormalisation.

Martinelli 1984; Bernard, Draper, (Hockney), Soni 1987,1998; 
Gupta et al. 1993; Donini et al. 1999



BK − a renormalisation classic

O
∆S=2 = [(s̄γµd)(s̄γµd) + (s̄γµγ5d)(s̄γµγ5d)

︸ ︷︷ ︸

OVV+AA

] − [(s̄γµd)(s̄γµγ5d) + (s̄γµγ5d)(s̄γµd)
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OVA+AV

]

ŌVA+AV = lim
a→0

ZVA+AV(g2
0, aµ) OVA+AV(a)

Protected from mixing by discrete symmetries C P S(s ↔ d)

ŌVV+AA = lim
a→0

ZVV+AA(g2
0, aµ)

[

OVV+AA(a) +
4

∑
k=1

∆k(g2
0)Ok(a)

]

In the presence of explicit chiral symmetry breaking four-fermion operators 
of different chiralities mix under renormalisation.

Martinelli 1984; Bernard, Draper, (Hockney), Soni 1987,1998; 
Gupta et al. 1993; Donini et al. 1999



Getting rid of mixing

Straightforward option: preserve chiral symmetry ⎯ possibly exactly.

Wilson1: axial Ward identity (3-point function with OVV+AA → 4-point function 
with OVA+AV)

subtractions traded off for fluctuations

D.Becirevic et al. Phys.Lett.B487(2000)74; Eur.Phys.J.C37(2004)315

0.00 0.05 0.10 0.15 0.20

a / r
0

0.80

0.90

1.00

1.10

1.20

B
K  
rg

i

standard

w/o subtractions

Figure 3: Extrapolation to the continuum limit. Empty symbols correspond to the results obtained

at fixed lattice spacing, whereas the filled ones are the results of the linear extrapolations. The
shapes of the symbols correspond to two different strategies to compute B̂K , as indicated in the
legend.

quenched theory would suffer from the (divergent) quenched chiral logarithms. To assess
some uncertainty due to the degeneracy we may take the relative difference between the
chiral logarithmic part known in the degenerate and non-degenerate case in full ChPT.
With Λχ = 1 GeV, we obtain that B̂K for the kaon with non-degenerate quarks would
be only 2% smaller than the one with degenerate quarks. Finally since our calculations
are made in the quenched approximation, our result cannot make impact on the world
average value for B̂K , which is actually completely dominated by the errors due to the use
of quenched approximation [20]. 3 It is worth mentioning that the short distance piece in the
unquenched scenario would lead to B̂K larger by only 1% ÷ 2% compared to the quenched
one. Such an estimate arises after replacing nf = 0 by nf = 4 in eq. (14) and in αs(µ), and

by using Λ(nf=4)

MS
= 294+42

−38 MeV [21].

4 Conclusion

In this letter we presented the results for the renormalisation group invariant bag parameter,
B̂K , computed on the lattice with Wilson quarks. Besides the standard procedure, which
requires a delicate subtraction of the spurious mixing with other ∆S = 2, dimension-six,

3A complete list of results for BK by using other quark actions with recently updated references can be
found in ref. [20].
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< K̄
0| δOR |K0

> = < K̄
0| OR [∂µAµ − 2mP ] |K0

>

OR = [OV A+AV ]R

δOR = [OV V +AA]R



Getting rid of mixing

Straightforward option: preserve chiral symmetry ⎯ possibly exactly.

Wilson1: axial Ward identity (3-point function with OVV+AA → 4-point function 
with OVA+AV)

D.Becirevic et al. Phys.Lett.B487(2000)74; Eur.Phys.J.C37(2004)315

Wilson 2: tmQCD (3-point function with OVA+AV)
ALPHA M.Guagnelli, J.Heitger, C.Pena, S.Sint, A.V. JHEP 03 (2006) 088

F.Palombi, C.Pena, S.Sint JHEP 03 (2006) 089

ALPHA P.Dimopoulos, J.Heitger, F.Palombi, C.Pena, S.Sint, A.V. NPB 749 (2006) 69

tmQCD bonus: push safely towards low quark masses in quenched simulations.

ALPHA P.Dimopoulos, J.Heitger, F.Palombi, C.Pena, S.Sint, A.V. NPB 776 (2007) 258



tmQCD regularisations for BK

π/2 strategy:

π/4 strategy (specially devised for quenched case):

m!, µ! tuned to have m!,R = 0

mq, µq tuned to have mR = µR

S = ∑
x,y

{ψ̄!(x) [Dw,sw + m! + iµ!γ5τ3] (x, y)ψ!(y) + s̄(x) [Dw,sw + ms] (x, y)s(y)}

S = ∑
x,y

{ψ̄(x) [Dw,sw + m! + iµ!γ5τ3] (x, y)ψ(y)}

in both cases: OVV+AA

twist
−−→ OVA+AV

NB: we never have only fully twisted quarks → Frezzotti-Rossi O(a) 
improvement argument does not apply.

q

0

0



Approach to continuum: non-perturbative renormalisation

SF technique via finite size scaling: split renormalisation into

Renormalisation at a low, hadronic scale where contact with typical large-
volume values of β is made.

NP running to very high scales (∼100 GeV) where contact with PT is 
made.

Figure C.3: Left column: The step scaling function σ+
VA+AV;s(u) (discrete points) as

obtained non-perturbatively from combined fits to Clover and Wilson data. The
shaded area is the result of fit D to the points (see text). The dotted (dashed) line is
the LO (NLO) perturbative result. Right column: RG running of O+

VA+AV obtained
non-perturbatively (discrete points) at specific values of the renormalization scale µ,
in units of Λ (taken from ref. [4]). The lines are perturbative results at the indicated
order for the Callan-Symanzik β-function and the operator anomalous dimension γ.

41

ALPHA, Palombi et al., JHEP 03 (2006) 089ALPHA, Guagnelli et al., JHEP 03 (2006) 088



Continuum limit

Combined linear extrapolation of the two regularisations, using ALPHA 
determination of current normalisations and improvement coefficients. 

B̂K = 0.735(71)

B̄
MS
K (2 GeV) = 0.534(52)

ALPHA P.Dimopoulos, J.Heitger, F.Palombi, C.Pena, S.Sint, A.V. NPB 776 (2007) 258



Comparison with quenched literature

 RBC 05
 CP-PACS 01

 MILC 03
 BosMar 03
 Babich et al 06

 ALPHA 06

 Lee et al 04
 JLQCD 97

Difference with other Wilson fermion 
computations mainly due to method 
employed to extract BK.

B̂K = 0.735(71)

B̄
MS
K (2 GeV) = 0.534(52)



Comparison with quenched literature
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C. Pena, PoS(Lat2006)019



Comparison with quenched literature

 RBC 05
 CP-PACS 01

 MILC 03
 BosMar 03
 Babich et al 06

 ALPHA 06

 Lee et al 04
 JLQCD 97

A very precise result, based on DW 
fermions, has come out recently

B̂K = 0.735(71)

B̄
MS
K (2 GeV) = 0.534(52)

B̂K = 0.782(5)(7)

B̄MS
K (2GeV) = 0.565(4)(5)

ALPHA P.Dimopoulos, J.Heitger, F.Palombi,C.Pena,S.Sint, A.V. 
Nucl. Phys. B776(2007)258

CP-PACS Y.Nakamura S.Aoki, Y.Taniguchi,T. Yoshiè 
arXiv:0803.2569v2 [hep-lat]



• Wilson fermions renormalization may be complicated due to loss of chiral symmetry

• this may be simplified in tmQCD through judicious choices of the twist angle

• example IV: ΔI = 1/2 rule (related to K →π π transitions)

• with Wilson fermions, relevant dim=6 operators are subject to power 
subtractions

• using tmQCD these “soften” from quadratic to linear (for K→π transitions)

• in they quenched approximation they even become finite 

• using a variant of tmQCD (Osterwalder/Seiler) they disappear altogether 
(and improvement is saved) at the cost of having different regularizations in 
the valence and sea sector

tmQCD and renormalization

R.Ferezzotti & G.C. Rossi JHEP10(2004)070

C.Pena, S.Sint & A.V. JHEP09(2004)069



3rd advantage: 
automatic improvement

R. Frezzotti, G.C. Rossi, JHEP08 (2004) 007 



Automatic improvement

• NB: the fully twisted case ω = π/2 is of particular interest. Classically we have:

L = ψ̄
[

/D + M exp[i
π

2
τ3γ5]

]
ψ = ψ̄

[
/D + i µ τ3 γ5

]
ψ

• the lattice version requires introduction of the Wilson term but also of the critical 
standard mass mcr in order to ensure full twist

L = ψ̄
[1
2
γµ(∇µ +∇∗

µ) +
1
2
ar∇∗

µ∇µ + mcr + iµqτ
3γ5

]
ψ

• NB: the concept of twist angle at the quantum level requires renormalized masses:

tan(ω) =
µR

mR
=

Zµ µq

Zm [m0 −mcr]

ω =
π

2
↔ m0 = mcr



• recall twisted vector symmetry (isospin) is SUv(2)ω broken to UV3(1) by Wilson term

• at ω = π/2 different subgroups of SUv(2)π/2 remain unbroken by either the (twisted) 
mass term or the Wilson term

• UV1(1) and UV2(1): unbroken by μ-mass term; hard-broken by Wilson and mcr-terms

ψ → exp
[
i
α1

2
γ5τ

2
]

ψ

ψ̄ → ψ̄ exp
[
i
α1

2
γ5τ

2
]

• this is UV1(1) ; similarly for UV2(1)

• i.e. vector symmetry in fully tmQCD 
has an axial form

• it is a vector (flavour) symmetry as it  
is preserved by the mass term

L = ψ̄
[1
2
γµ(∇µ +∇∗

µ) +
1
2
ar∇∗

µ∇µ + mcr + iµqτ
3γ5

]
ψ

Automatic improvement



• recall twisted vector symmetry (isospin) is SUv(2)ω broken to UV3(1) by Wilson term

• this is UA1(1) ; similarly for UA2(1)

• i.e. axial symmetry in fully tmQCD 
has an vector form

• it is a axial symmetry as it is restored 
at vanishing mass (in the continuum)

L = ψ̄
[1
2
γµ(∇µ +∇∗

µ) +
1
2
ar∇∗

µ∇µ + mcr + iµqτ
3γ5

]
ψ

ψ → exp
[
i
α1

2
τ2

]
ψ

ψ̄ → ψ̄ exp
[
− i

α1

2
τ2

]

• at ω = π/2 different subgroups of SUA(2)π/2 remain unbroken by either the (twisted) 
mass term or the Wilson term

• UA1(1) and UA2(1): softly-broken by μ-mass term; unbroken by Wilson and mcr-terms

• NB: in the fully tmQCD the μ-mass term and the Wilson/mcr-terms transform 
“orthogonally”

Automatic improvement



• the study of discretization effects of lattice observables is based on the Symanzik 
expansion 

• the lattice  action close to the continuum is described in terms of an effective theory 

• for the fully twisted lattice action

L = ψ̄
[1
2
γµ(∇µ +∇∗

µ) +
1
2
ar∇∗

µ∇µ + mcr + iµqτ
3γ5

]
ψ

• the Symanzik expansion counter-terms are:

L0 = ψ̄
[

/D + i µR τ3 γ5

]
ψ

L1 = i csw (ψ̄ σ · F ψ) + cµ µ2
R (ψ̄ψ)

SLatt = S0 + aS1 + · · · =
∫

d4y L0 +
∫

d4y L1 + · · ·

• the Symanzik expansion for a lattice field operator is:

ΦLatt = Φ0 + aΦ1 + · · ·

Automatic improvement



• the study of discretization effects of lattice observables is based on the Symanzik 
expansion 

• the lattice  action close to the continuum is described in terms of an effective theory 

• for the fully twisted lattice action

L = ψ̄
[1
2
γµ(∇µ +∇∗

µ) +
1
2
ar∇∗

µ∇µ + mcr + iµqτ
3γ5

]
ψ

• the Symanzik expansion counter-terms are:

L0 = ψ̄
[

/D + i µR τ3 γ5

]
ψ

L1 = i csw (ψ̄ σ · F ψ) + cµ µ2
R (ψ̄ψ)

SLatt = S0 + aS1 + · · · =
∫

d4y L0 +
∫

d4y L1 + · · ·

• the Symanzik expansion for a lattice field operator is:

ΦLatt = Φ0 + aΦ1 + · · ·
dimension d

Automatic improvement



• the study of discretization effects of lattice observables is based on the Symanzik 
expansion 

• the lattice  action close to the continuum is described in terms of an effective theory 

• for the fully twisted lattice action

L = ψ̄
[1
2
γµ(∇µ +∇∗

µ) +
1
2
ar∇∗

µ∇µ + mcr + iµqτ
3γ5

]
ψ

• the Symanzik expansion counter-terms are:

L0 = ψ̄
[

/D + i µR τ3 γ5

]
ψ

L1 = i csw (ψ̄ σ · F ψ) + cµ µ2
R (ψ̄ψ)

SLatt = S0 + aS1 + · · · =
∫

d4y L0 +
∫

d4y L1 + · · ·

• the Symanzik expansion for a lattice field operator is:

ΦLatt = Φ0 + aΦ1 + · · ·
dimension d dimension d+1

Automatic improvement



• automatic improvement is based on the following field transformations

• discrete “chiral” transformations R51 :

• lattice action terms tranform as R51  eigenstates

L = ψ̄
[1
2
γµ(∇µ +∇∗

µ) +
1
2
ar∇∗

µ∇µ + mcr + iµqτ
3γ5

]
ψ

ψ̄
[1
2
γµ(∇µ +∇∗

µ)
]
ψ

ψ̄
[1
2
ar∇∗

µ∇µ

]
ψ

ψ → i γ5 τ1 ψ

ψ̄ → ψ̄ i γ5 τ1

ψ̄ mcrψ

ψ̄
[
iµqτ

3γ5

]
ψ

L− terms

+

+

−

−
−

R1
5

Automatic improvement



• automatic improvement is based on the following field transformations

• operator dimensionality transformations D :

• lattice action terms tranform as D  eigenstates

L = ψ̄
[1
2
γµ(∇µ +∇∗

µ) +
1
2
ar∇∗

µ∇µ + mcr + iµqτ
3γ5

]
ψ

ψ̄
[1
2
γµ(∇µ +∇∗

µ)
]
ψ

ψ̄
[1
2
ar∇∗

µ∇µ

]
ψ

ψ̄ mcrψ

ψ̄
[
iµqτ

3γ5

]
ψ

L− terms

+

+

−

−−
−

R1
5

Uµ(x) → U†
µ(−x− aµ̂)

ψ(x) → exp[3iπ/2]ψ(−x)
ψ̄(x) → ψ̄(−x) exp[3iπ/2]

−
−

+
D

Automatic improvement



• automatic improvement is based on the following field transformations

• operator dimensionality transformations D :

• lattice action terms tranform as D  eigenstates

L = ψ̄
[1
2
γµ(∇µ +∇∗

µ) +
1
2
ar∇∗

µ∇µ + mcr + iµqτ
3γ5

]
ψ

ψ̄
[1
2
γµ(∇µ +∇∗

µ)
]
ψ

ψ̄
[1
2
ar∇∗

µ∇µ

]
ψ

ψ̄ mcrψ

ψ̄
[
iµqτ

3γ5

]
ψ

L− terms

+

+

−

−−
−

R1
5

Uµ(x) → U†
µ(−x− aµ̂)

ψ(x) → exp[3iπ/2]ψ(−x)
ψ̄(x) → ψ̄(−x) exp[3iπ/2]

−
−

+
D

• NB: massless theory invariant under R51  ⊗ D

Automatic improvement



• automatic improvement is based on the following field transformations

• twisted mass sign flip μ → −μ

• lattice action terms tranform as sign flip  eigenstates

L = ψ̄
[1
2
γµ(∇µ +∇∗

µ) +
1
2
ar∇∗

µ∇µ + mcr + iµqτ
3γ5

]
ψ

ψ̄
[1
2
γµ(∇µ +∇∗

µ)
]
ψ

ψ̄
[1
2
ar∇∗

µ∇µ

]
ψ

ψ̄ mcrψ

ψ̄
[
iµqτ

3γ5

]
ψ

L− terms

+

+

−

−−
−

R1
5

−
−

+
D µ→ −µ

+
+
+
−

• NB: massive theory invariant under R51  ⊗ D ⊗ [μ → −μ]

Automatic improvement



• the lowst-order Symanzik expansion  for the vev of an operator Φ is:

• the LHS is a lattice vev, determined by the lattice fully twisted action

• for an operator Φ with positive R51 parity and even dimension d, the LHS is invariant 
under R51  ⊗ D ⊗ [μ → −μ]

• also the RHS must be invariant under R51  ⊗ D ⊗ [μ → −μ]

• the RHS operators and vev are continuum quantities determined by the continuum 
tmQCD action with positive R51 parity,

L0 = ψ̄
[

/D + i µR τ3 γ5

]
ψ

L1 = i csw (ψ̄ σ · F ψ) + cµ µ2
R (ψ̄ψ)

• the lattice operator Φ0 has positive R51 parity and even dimension d

• the lattice operator Φ1 has odd dimension d+1 and therefore negative R51 parity 

• thus < Φ1 >0 vanishes as it is R51 odd, weighted by an R51 even action 

Automatic improvement

L0

L0

< Φ > = < Φ0 >0 + a < Φ1 >0 −a

∫
d4y < Φ0 L1 >0



• the lowst-order Symanzik expansion  for the vev of an operator Φ is:

• the LHS is a lattice vev, determined by the lattice fully twisted action

• for an operator Φ with positive R51 parity and even dimension d, the LHS is invariant 
under R51  ⊗ D ⊗ [μ → −μ]

• also the RHS must be invariant under R51  ⊗ D ⊗ [μ → −μ]

• the RHS operators and vev are continuum quantities determined by the continuum 
tmQCD action with positive R51 parity,

L0 = ψ̄
[

/D + i µR τ3 γ5

]
ψ

L1 = i csw (ψ̄ σ · F ψ) + cµ µ2
R (ψ̄ψ)

• the continuum O(a) counterterm of the action is        , with negative R51 parity

• thus                         vanishes as it is R51 odd, weighted by an R51 even action 

• fully twisted QCD is not improved, but has automatically improved vev !!!!!

Automatic improvement

L0

L0

L1

< Φ > = < Φ0 >0 + a < Φ1 >0 −a

∫
d4y < Φ0 L1 >0

< Φ0L1 >0



• the lowst-order Symanzik expansion  for the vev of an operator Φ is:

• NB (subtlety): the proof rests on the vanishing of the continuum vev

Automatic improvement

L0

< Φ > = < Φ0 >0 + a < Φ1 >0 −a

∫
d4y < Φ0 L1 >0

< Φ0L1 >0 < Φ1 >0

• they vanish due to their breaking of the discrete “chiral” symmetry R51, which is a 
symmetry of the continuum tmQCD

• BUT: is this true, i.e. do these “chiral condensates” vanish in a theory with SSB?

• YES! because the term generating SSB is the twisted mass term, while O(a) counter-
tems are generated by the “chirally orthogonal” Wilson term

• stated differently, the discrete “chiral symmetry” R51 is a specific vector rotation 
UV2(1), which does not generate SSB

L0 = ψ̄
[

/D + i µR τ3 γ5

]
ψ

L1 = i csw (ψ̄ σ · F ψ) + cµ µ2
R (ψ̄ψ)



• the lowst-order Symanzik expansion  for the vev of an operator Φ is:

• NB (subtlety): the proof rests on the vanishing of the continuum vev

Automatic improvement

L0

< Φ > = < Φ0 >0 + a < Φ1 >0 −a

∫
d4y < Φ0 L1 >0

< Φ0L1 >0 < Φ1 >0

• they vanish due to their breaking of the discrete “chiral” symmetry R51, which is a 
symmetry of the continuum tmQCD

• BUT: is this true, i.e. do these “chiral condensates” vanish in a theory with SSB?

• YES! because the term generating SSB is the twisted mass term, while O(a) counter-
tems are generated by the “chirally orthogonal” Wilson term

• stated differently, the discrete “chiral symmetry” R51 is a specific vector rotation 
UV2(1), which does not generate SSB

• NB: in simulations we must take extra care that the continuum limit is approached 
before the chiral limit; the chiral phase of the vacuum must be driven by the mass term 
and not by the Wilson term

µ > aΛ2
QCD



• numerical evidence supports automatic improvement 

• result shown is quenched

Automatic improvement

χLF Collab. K. Jansen, M. Papiutto, 
A. Shindler,C. Urbach, I. Wetzorke

JHEP09 (2005) 071     



• numerical evidence supports automatic improvement 

• result shown is unquenched Nf = 2

Automatic improvement

ETMC Collab.,C. Urbach, PoS(LAT2007) 022



Shortcoming: 
loss of flavour 

symmetry



• it generates mass splittings between, say, neutral and charged pions

• it is a discretization effect, which should vanish in the continuum

• very preliminary studies suggest that this is a big effect in the quenched approximation, 
but diminishes significantly in the  Nf = 2 case

• the quenched case offers an interesting play-field for explorative studies of flavour 
breaking, as it is possible (and cheap) to compare, on the same ensemble, mesons with 
the following valence quark content:

• 2 twisted flavours

• 2 untwisted flavours (the standard Wilson case, without flavour breaking)

• 1 twisted and 1 untwisted flavour

• further detailed unquenched studies are required 

• the main difficulty is an accurate and efficient computation of disconnected 
diagrams for neutral pions; cf. C. Michael et al in various recent conference 
proceedings

Flavour symmetry violation



• mass splittings between, say, neutral and charged Kaons

• 4 quenched flavours organized in two maximally twisted doublets

• K0 made of an “up” and a “down” twisted flavour

• K+ made of two “up” twisted flavours

• at the smallest lattice spacing, neutral-charged Kaon splitting is mK0 - mK+ ∼ ∼ 50 MeV 

A.M. Abdel-Rehim, R. Lewis, R.M. 
Woloshyn, J.M.S. Wu, 
Phys.Rev.D74(2006)014507

Flavour symmetry violation



D. Bećirević Ph. Boucaud, V.Lubicz, 
G.Martinelli, F.Mescia, S.Simula, 
C.Tarantino 
Phys.Rev.D74(2006)034501

Flavour symmetry violation

• mass splittings between, say, neutral and charged pions

• 4 quenched flavours organized in two maximally twisted doublets

• π0 made of an “up” and a “down” twisted flavour

• π+ made of two “up” twisted flavours

• comparison between Wilson/Clover discretizations, at a singe lattice spacing, for very 
small quark masses



Flavour symmetry violation

• mass splittings between, say, neutral and charged Kaons

• 4 quenched flavours organized in a maximally twisted and an untwisted doublet

• pseudoscalars made of twisted (u-d), untwisted (s-c) and mixed (s-d) valence quarks

• NB: the untwisted (s-c) case is the standard Wilson one, without flavour breaking

• comparison at a several lattice spacings, for very quark masses “above” strangeness

ALPHA P.Dimopoulos, J.Heitger, 
F.Palombi, C.Pena, S.Sint, A.V. 
NPB 776 (2007) 258



Flavour symmetry violation

• mass splittings between, say, neutral and charged Kaons

• 4 quenched flavours organized in a maximally twisted and an untwisted doublet

• pseudoscalars made of twisted (u-d), untwisted (s-c) and mixed (s-d) valence quarks

• NB: the untwisted (s-c) case is the standard Wilson one, without flavour breaking

• comparison at a several lattice spacings, for very quark masses “above” strangeness

ALPHA P.Dimopoulos, J.Heitger, 
F.Palombi, C.Pena, S.Sint, A.V. 
NPB 776 (2007) 258



Selected ETMC results



Selected ETMC results

Using tmQCD fermions with Nf = 2 the ETM-Collaboration reports:

• one lattice spacing  a ∼ 0.1 fm; one lattice volume L ∼ 2.4 fm

• light quark masses (sea) 300 MeV < mπ < 550 MeV

• no axial current (and no ZA) is needed, due to tmQCD Ward identity

• due to tmQCD @ twist angle α = π ∕ 2, we have automatic O(a) 
improvement

ETMC  Ph. Boucaud et al. Phys.Lett. B650 (2007) 304

fχ = 121.3 ± 0.7

fit to 4 points

fit to 5 points

(afPS)

(aµ)

0.0160.0120.0080.0040

0.09

0.08

0.07

0.06

0.05

Figure 3: We show afPS as a function of aµ together with fits to χPT formula Eq. (6).
We present two fits, one taking all data and one leaving out the point at the largest value
aµ = 0.015. We show finite size corrected (L → ∞) data points.

into account, shows that the uncharged pseudo scalar meson is about 20% lighter
than the charged one. We obtain

am±
PS = 0.1359(7) , am0

PS = 0.111(11) ,

or, expressed differently, r2
0((m

0
PS)

2 − (m±
PS)

2) = c(a/r0)2 with c = −4.5(1.8).
This coefficient is a factor of 2 smaller than the value found in quenched investi-
gations [28]. Note that the uncharged pion being lighter than the charged one is
compatible with predictions from lattice χPT if the first order phase transition
scenario is realised [45, 47, 44]. For an investigation of isospin breaking effects in
χPT see also Ref. [74].

The disconnected correlations needed for the π0 meson are evaluated using a
stochastic (Gaussian) volume source with 4 levels of hopping-parameter variance
reduction [75]. We use 24 stochastic sources per gauge configuration and evaluate
the relevant propagators every 10-th trajectory.

4 Summary

In this letter we have presented results of simulations of lattice QCD with Nf = 2
maximally twisted Wilson quarks at a fixed value of the lattice spacing a ! 0.1 fm.
We reached a pseudo scalar meson mass of about 300 MeV. The numerical
stability and smoothness of the simulations allowed us to obtain precise results
for the pseudo scalar mass and decay constant which in turn led to determine
the low energy constants of the effective chiral Lagrangian. In particular, we find
for the pseudo scalar decay constant in the chiral limit F = 121.3(7) MeV, and
l̄3 = 3.65(12) and l̄4 = 4.52(6) where only statistical errors are given.

11



Selected ETMC results

Using tmQCD fermions with Nf = 2 the ETM-Collaboration reports:

• one lattice spacing  a ∼ 0.1 fm; two lattice volumes L ∼ 2.4 fm

ETMC  B. Blossier et al., arXiv:0709.4574v1 [hep-lat]

mMS
ud (2GeV) = 3.85 ± 0.12 ± 0.40 MeV

mMS
s (2GeV) = 105 ± 3 ± 9 MeV

ms

mud
= 27.3 ± 0.3 ± 1.2

fK = 161.7 ± 1.2 ± 3.1 MeV
FK

fπ
= 1.227 ± 0.009 ± 0.024



Selected ETMC results

Using tmQCD fermions with Nf = 2 the ETM-Collaboration reports:

• one lattice spacing  a ∼ 0.1 fm; two lattice volumes L ∼ 2.4 - 3.0 fm

ETMC  B. Blossier et al., arXiv:0709.4574v1 [hep-lat]



Concluding remarks



Concuding remarks

• tmQCD has several advantages, making it an efficient alternative to GW-type 
computations with dynamical fermions; novel results have been obtained at Nf = 2

• the simplest quantities (pseudoscalar masses, decay constants, quark masses etc.) are 
currently being measured, close to the “physical regime” (lightish pions ∼ 300MeV)

• it is possible to overcome the limitation of two degenerate flavours in the formalism 
without losing tmQCD advantages; Nf = 2+1+1 simulations are under way

• the main drawback is the lack of flavour symmetry at finite UV cutoff

• early studies have given a quenched, partilly satisfactory answer

• detailed unquenched studies are being carried out; the overall qualitative 
behaviour points out to the vanishing of such effects in the continuum

• one must also be aware that tuning of the theory bare parameters to maximal twist is 
an issue requiring extra care (not covered here)

• the phase diagramme of tmQCD has also been under study in order to gain further 
insight to the issues related to symmetry breaking and their restoration in the 
continuum (not covered here)

• an important theoretical issue is the combination of tmQCD with Schrödinger 
Functional: S. Sint PoS (LAT2005) 235 (not covered here)


