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1. Exact chiral symmetry

Why necessary/interesting



Exact chiral symmetry
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… is costly, especially for the sea sector. 
Why necessary/interesting?



Theoretically clean
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Operator mixing
Thanks to the continuum-like Ward-Takahashi identities, no 
unwanted operator mixing appears (see Del Debbio’s lecture).
To subtract the unnecessary contribution, sometimes one must 
deal with power divergences, e.g.

Mixing with operators of wrong chirality is also a severe 
problem, as they may be relatively enhanced.
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Theoretically clean
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Operator mixing: more complicated example, K→ππ.
Even with exact chiral symmetry, there exists a mixing, which 
must be subtracted non-perturbatively.

Without the chiral symmetry, the problem is harder, i.e. mixing 
with
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Theoretically clean
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Existence of the chiral limit
Without the exact chiral symmetry, the uniqueness or even the 
existence of the “chiral limit” may be lost.

What is the chiral extrapolation? mq→0, mπ
2→0, …

There may be a wall before reaching there (1st order phase transition). 
Situation is better for improved gauge actions; may still show up near 
the chiral limit.

Farchioni et al., PLB624, 324 (2005).



Theoretically clean
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Chiral effective theory
Constructed assuming the spontaneously broken chiral
symmetry.  Is it valid when chiral symmetry is explicitly 
violated?

Continuum extrapolation before chiral extrapolation.
Or, Combined continuum/chiral extrapolation

Under some assumptions introduce additional terms (e.g. 
proportional to a2) to ChPT. More parameters to be determined.
Wilson ChPT, staggered ChPT, twisted mass ChPT, …



Neuberger operator
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Fortunately, the lattice fermion with exact chiral
symmetry is known = overlap fermion.

Why don’t you use it?
Computational cost (~ x100 more)
Yes. But, history proved the Moore’s law = exponential growth 
of computer power (x10 per every 5 years).
Wait for 10 years, or start now!



JLQCD collaboration
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Members:
KEK: S. Hashimoto, H. Ikeda, T. Kaneko, H. Matsufuru, J. Noaki, E. 
Shintani, N. Yamada
Kyoto: T. Onogi, H. Ohki
Tsukuba: S. Aoki, N. Ishizuka, K. Kanaya, Y. Kuramashi, Y. Taniguchi, 
A. Ukawa, T. Yoshie
Hiroshima: K. Ishikawa, M. Okawa
NBI: H. Fukaya

Also, with TWQCD (T.W. Chiu, T.H. Hsieh, K. Ogawa)

Machines at KEK (since 2006)
SR11000 (2.15 Tflops)
BlueGene/L (57.3 Tflops)



IBM BlueGene/L
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10 Racks
57 TF/s



Properties and implementation of the overlap fermion



Overlap fermion
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Neuberger’s overlap fermion (1998)

Exact chiral symmetry through the Ginsparg-Wilson relation.

Continuum-like Ward-Takahashi identities
Index theorem (relation to topology) is satisfied

Numerical cost depends on 
Spectrum of HW
Approximation of sgn(HW)
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(Simple) exercises
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If you have not done it before,
Show that

1. The lattice action is invariant under the modified chiral
transformation when the Ginsparg-Wilson relation is 
satisfied.

2. The overlap-Dirac operator D satisfies the Ginsparg-Wilson 
relation.

3. The overlap operator approaches the continuum Dirac 
operator as a→0. Do the all calculation keeping relative 
order a terms. You may use a relation 

2 21 ( )
2W c cD D aD O a= / − +



Sign function
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Approximation of the sign 
function is needed. May use 
tanh, for instance, but not 
very precise.
Instead, consider an approx 
for a given interval

Chebyshev:  minmax
polynomial approximation
Zolotarev:  minmax rational 
approximation

Problem arises if there are 
near-zero modes.

In fact, their density is non-
zero at any finite β (Edwards, 
Heller, Narayanan, 1998)

Comes from dislocations 
(local lumps of gauge field)
Need to subtract before 
approximate
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Things to do
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For a given gauge configuration…
1. Calculate the near-zero modes of HW, i.e. their eigenvalues

and eigenvectors using Lanczos algorithm for instance.

2. Sign function is trivial for the near-zero modes; the rest must 
be approximated.

3. Use a rational approximation (Zolotarev)
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Multi-shift solver
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Rational approximation involves Npole inversions.

Can be calculated at the same time using the multi-shift CG 
solver. 

They share the Krylov subspace. Therefore, the generation of the 
orthogonal vectors in the Krylov subspace must be done only once; 
their coefficients must be calculated for each inversion.

Faster than the (Chebyshev) polynomial approximation to 
achieve a given accuracy: 10-(7-8)  in our case.

Accuracy improves exponentially for larger Npole; increase of the 
numerical cost is mild.
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Near-zero mode suppression
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Near-zero modes are 
unphysical (associated with a 
local lump = lattice artifact)
Make sense to design a lattice 
action to suppress them

Fat links are effective to 
suppress the dislocations, but 
not  completely.
Introduce unphysical (heavy 
negative mass) Wilson 
fermions (Vranas, JLQCD, 2006)

m0 must be chosen the same as that in the 
overlap kernel. Must be in between 0 and 2.

We chose a form

to minimize the effect in the UV 
region.
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Plaquette gauge, 
β=5.83, μ=0; β=5.70, μ=0.2

Completely wash-out the near-zero 
modes. Overlap is much faster.



Locality
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Lattice Dirac operator must be local in order that a local 
theory is obtained in the continuum limit.

Locality is not obvious for the overlap operator due to 1/√.

Locality in the sense that |D|<exp(-μx), with μ a number of 
order 1/a, may be satisfied.
“Proof” is known for smooth enough gauge canfigurations
(Hernandez, Jansen, Luscher (1999)).
No mathematical proof in more realistic situations where 
there is non-zero density of the near-zero modes.
⇒ Okay if near-zero modes are always localized.
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Locality
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Maybe analyzed by looking at individual eigenmodes of 
HW. 

Near-zero modes are more localized. Higher modes are 
extended. There is a critical value above which the modes are 
extended = “mobility edge” (Golterman, Shamir (2003)).

An important lessen: do not use the overlap fermion in the 
Aoki phase (where the near-zero modes are extended).



2. Topology issues



U(1) anomaly
Fermion measure is not invariant under the axial U(1) rotation.

Eigenvalues of the Dirac operator
Make a pair with their complex conjugate, except for the zero modes.

Lattice version of the index theorem (Atiyah-Singer)
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Overlap = projection
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Topological charge
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Usually defined using some cooling techniques; 
topological charge is an integer, only approximately.
The overlap-Dirac operator provides another way of 
defining topological charge on the lattice = counting the 
number of zero-modes.

Unambiguous definition.

Topology change occurs when an eigenvalue of HW crosses 
zero.
Near-zero modes of HW indicate dislocation, for which the 
topology cannot be defined.



Suppress the dislocations, e.g. 
by adding extra Wilson 
fermions

Zero probability to have an 
exact zero-mode

No chance to tunnel between 
different topological sectors.

Frozen topology
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If the MD-type algorithm is 
used, the global topology 
never changes.

Provided that the step size is 
small enough.

Property of the continuum QCD: common for all lattice 
formulations as the continuum limit is approached.

2
0 )(det mHW −



Cluster decomposition
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In QCD, the real vacuum has a certain distribution of the 
topological charge = the θ vacuum.

Required to satisfy the cluster decomposition property: 
topology distribution must satisfy

Can one reproduce the physics of the θ vacuum from the 
fixed topology simulations?

Sum-up the topology! Or, not?

Ω1 Ω2 1 2 1 2( ) ( ) ( )f Q Q f Q f Q+ =

( ) i Qf Q e θ=



Sum-up the topology!

Mar 28, 2008S Hashimoto (KEK)27

Partition function of the vacuum

Vacuum energy density E(θ)
Partition function for a fixed Q

Using a saddle point expansion around (θc=iQ/V), one can 
evaluate the θ integral to obtain

Then, the original partition function can be recovered, if one 
knows χt, c4, etc., as
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Or, not?
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Fixing topology = Finite volume effect

When the volume is large enough, the global topology is 
irrelevant.
Topological charge fluctuate locally, according to χt, 
topological susceptibility.
Physics of the θ-vacuum can be recovered by a similar 
saddle-point analysis, e.g.  Some Green’s function:

Aoki, Fukaya, SH, Onogi, PRD76, 054508 (2007)



Topological susceptibility
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Applying the same formula for the flavor-singlet PS density, 
χt can be extracted.
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Local topological fluctuation is 
indeed active as expected.

JLQCD and
TWQCD
(2007)

2

t

Q
V

χ =



3. Early physics results

Simulation techniques; then mπ and fπ



Dynamical overlap
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Recent attempts:

Fodor-Katz-Szabo (2003)
Reflection/refraction trick

Cundy et al. (2004)
Many algorithmic improvements

DeGrand-Schaefer (2005)
Fat-link
Some physics results

Our work:
Aoki et al.,  arXiv:0803.3197 [hep-lat] 

Fixed topology: no 
reflection/refraction 
required.
Large scale simulation with L 
≈ 2 fm, mq~ms/6.
Mass preconditioning 
(Hasenbusch) + multi-time 
step

Broad physics program:
Pion/kaon physics
ε-regime



Parameters
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Nf=2 runs (finished)
many physics analysis on-
going

β=2.30 (Iwasaki), a=0.12 fm, 
163x32
6 sea quark masses mq = 
0.015 … 0.100, covering 
ms/6~ms
10,000 HMC traj.

~4,000 with 4D solver
~6,000 with 5D solver

Q=0 sector only, except 
Q=−2, −4 runs at mq=0.050 

Nf=2+1 runs (still running)
some physics analysis on-
going

β=2.30 (Iwasaki), a=0.11 fm, 
163x48
5 ud quark masses, covering 
ms/6~ms

x 2 s quark masses
2,500 HMC traj.

Using 5D solver

Q=0 sector only



Measurement techniques
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Measurements at every 20 traj ⇒
500 conf / msea

Improved measurements
50 pairs of low modes calculated 
and stored.
Used for low mode preconditioning 
(deflation) 
⇒ (multi-mass) solver is then x8 
faster
Low mode averaging
(and all-to-all)
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Test of ChPT
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Need a critical test of ChPT, before 
using it in the analysis of other 
quentities.
With exact chiral symmetry, we don’t 
have to worry about the explicit 
breaking terms.

Not ambiguous even at finite lattice 
spacing.

Use mπ and fπ:
Simplest quantities, numerically easy to 
calculate to a good precision.
Other quantities will follow.
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π π π

ππ μ
= − +

+

JLQCD (2002)
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Finite size effect
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At a price of … finite volume lattice

At L~1.9 fm (smallest mπL~3), 
finite size effect is not negligible; 
corrected using
χPT at NNLO

Colangelo-Durr-Haefeli, NPB721, 136 
(2005))

Fixed topology
Aoki et al., arXiv:0707.0396 with NLO 
χPT and measured χt



NNLO analysis
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NNLO χPT predicts the mass dependence as



NNLO analysis
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Also, NNLO’

Data slightly favor NNLO; not clear from these plots alone.

Noaki at Lattice 2007



LECs
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Noaki at Lattice 2007

Inconsistency at NLO; okay after including NNLO.



Other physics measurements



Pion form factor
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The simplest form factor

Momentum transfer qμ by a virtual photon. Space-like (q2<0) in 
the πe→πe process.
Vector form factor FV(q2) normalized as FV(0)=1, because of 
the vector current conservation.

Vector (or EM) charge radius 〈r2〉Vπ is defined through the 
slope at q2=0.
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6V V

F q r q O q
π
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All-to-all
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To improve the signal
Usually, the quark propagator is calculated with a fixed initial 
point (one-to-all)
Average over initial point (or momentum config) will improve 
statistics; possible with all-to-all
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k k d d
highk

k d
D x y u x u y D x yη η

λ
− −

= =

⎡ ⎤= + ⎣ ⎦∑ ∑

Low mode contribution
Random noise

High mode propagation
From the random noice



An example: two-point func
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Dramatic improvement of the 
signal, thanks to the averaging 
over source points

Similar to the low mode averaging; 
but all-to-all can be used for any n-
point func.
PP correlator is dominated by the 
low-modes 



Form factor results

Mar 28, 2008S Hashimoto (KEK)43

All-to-all ⇒ many momentum 
combinations

(1,0,0) → (0,1,0), etc. in units of 2π/L.

q2 dependence well approximated 
by a vector meson pole + 
corrections

with mV obtained at the same quark 
mass.

mq~ms/2

2 2
12 2

1( ) ...
1 / V

F q c q
q mπ = + +

−

mq~ms/6



Chiral extrapolation
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Lattice data
Mass dependence very similar to 
VMD, but the difference is visible.
χlog may become significant 
beyond the region of lattice data.
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BK
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First (unquenched) lattice calculation 
with exact chiral symmetry:
JLQCD collab, arXiv:0801.4186 [hep-lat].

No problem of operator mixing; 
otherwise, mixes with OLR, for 
instance. Enhanced by its wrong 
chiral behavior.
Another test of chiral log. Here the 
data follows the NLO ChPT.
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Two-point functions
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A new application: two-
point functions in the 
momentum space.

Weinberg sum rules:

Pion mass difference
Das et al. (1967)
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ε-regime
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Entering the ε-regime:
Pion is nearly massless.
Compton wavelength is 
longer than the lattice 
extent mπL ≤ 1
Finite momentum mode is 
suppressed.

Dependence on topological 
charge

Info on the Dirac operator 
eigenvalue spectrum through

ZQCD = ZχPT
(Leutwyler-Smilga, 1992)

More detailed analytical info 
through Chiral Random 
Matrix Theory (χRMT)[ ])(Tr †UUML PT +Σ=χ

(Damgaard,  Nishigaki, 2001)



Simulation in the ε-regime
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Harder, but not prohibitive
Cost grows rather mildly.
Condition number is governed by the first 
eigenvalue, not m
First eigenvalue is lifted by the fermion
determinant
Auto-correlation is longer.
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Eigenvalue spectrum
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Simulation parameters:
β=2.35, a = 0.11 fm, 163x32, 6 
mq + 1
mq = 3 MeV reached. mπL ≈ 1
4,600 HMC traj.
50 pairs of eigenvalues
calculated, every 10 traj.

Banks-Casher relation

Chiral symmetry restored in the 
massless limit (fixed V)
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Comparison with χRMT
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χRMT
Equivalent to χPT at the LO 
in the ε-expansion.
Predicts eigenvalues of D in 
unit of λΣV.

〈λ1〉ΣV = 4.30
〈λ2〉ΣV = 7.62
…

for Nf=2, Q=0.
Σ may be extracted from 
average eigenvalues.

eigenvalue ratios

cumulative density

Fukaya et al., PRL98, 172001 (2007)

[ ]3(2GeV) 251(7)(11) MeVMSΣ =



Other observables in the ε-regime
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Meson correlators (Damgaard
et al., 2002)

in the ε-regime
can extract fπ
NLO calculation 
possible/available.

3-pt functions (Hernandez-
Laine, 2006)

Several B parameters 

Eigenvalue correlations 
(Damgaard et al., 2006)

with imaginary chemical 
potential
can extract fπ

Wide variety of applications, all 
without chiral extrapolations.3

87.3(5.6) MeV
(2 GeV) [239.8(4.0) MeV]

F =

Σ =

Fukaya et al., arXiv:0711.4965v3 [hep-lat]

http://arxiv.org/abs/0711.4965v3


And, more to come

Mar 28, 2008S Hashimoto (KEK)52

More applications, for which the exact chiral symmetry is 
essential or at least useful. Partial list includes

Pion scalar form factor
Nucleon sigma term, strange quark content
Strong coupling constant, gluon condensate

Details will appear at Lattice 2008.



Summary
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Motivation for using chirally invariant fermions should be 
obvious. 

Operator mixing, power divergence, chiral perturbation theory, 
topology, ε-regime,  …

Only question is its practical feasibility.
Dynamical overlap fermion simulation is feasible with 
O(10 Tflops) machine.

In addition to several clever algorithms, fixing the topological 
charge is the key. Will become necessary for other fermion
formulations too.
Many physics applications to emerge.
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