

Full QCD with chirally invariant quarks

Shoji Hashimoto (KEK) @ Block course on "Lattice Simulation of Quantum Fields," Mar 28, 2008.

Plan

I. Exact chiral symmetry

- Why necessary/interesting?
- Properties of the Neuberger operator
- Implementation

2. Topology issues

- Index theorem
- QCD at fixed topological charge
- Topological susceptibility
- 3. Early physics results with dynamical overlap fermions
 - Simulation techniques
 - Pion and kaon properties, and more applications

1. Exact chiral symmetry

Why necessary/interesting

Exact chiral symmetry

- ... is costly, especially for the sea sector.
- Why necessary/interesting?

Theoretically Clean!

• Operator mixing

- Thanks to the continuum-like Ward-Takahashi identities, no unwanted operator mixing appears (see Del Debbio's lecture).
- To subtract the unnecessary contribution, sometimes one must deal with power divergences, e.g.

$$(\overline{\psi}\psi)^{cont} = Z_S (\overline{\psi}\psi)^{lat} + Z_{mix} \frac{1}{a^3} (1)^{lat}$$

Mixing with operators of wrong chirality is also a severe problem, as they may be relatively enhanced.

$$\left\langle \overline{K} \left| O_{LL} \left| K \right\rangle \propto B_{K} f_{K}^{2} m_{K}^{2}; \quad \left\langle \overline{K} \left| O_{PP} \left| K \right\rangle \propto \frac{\left\langle \overline{\psi} \psi \right\rangle^{2}}{f_{K}^{2}} \right.$$

- Operator mixing: more complicated example, $K \rightarrow \pi \pi$.
 - Even with exact chiral symmetry, there exists a mixing, which must be subtracted non-perturbatively.

$$Q_{6} = \left(\overline{s}_{\alpha}d_{\beta}\right)_{V-A} \sum_{q=u,d,s} \left(\overline{q}_{\beta}q_{\alpha}\right)_{V+A}$$
$$\leftrightarrow \frac{1}{a^{2}} \left[(m_{s} + m_{d})\overline{s}d - (m_{s} - m_{d})\overline{s}\gamma_{5}d \right]$$

Without the chiral symmetry, the problem is harder, i.e. mixing with

$$\leftrightarrow \frac{1}{a^3}\bar{s}d$$

Existence of the chiral limit

- Without the exact chiral symmetry, the uniqueness or even the existence of the "chiral limit" may be lost.
 - What is the chiral extrapolation? $m_q \rightarrow 0, m_{\pi}^2 \rightarrow 0, ...$
 - There may be a wall before reaching there (1st order phase transition). Situation is better for improved gauge actions; may still show up near the chiral limit.

- Chiral effective theory
 - Constructed assuming the spontaneously broken chiral symmetry. Is it valid when chiral symmetry is explicitly violated?
 - Continuum extrapolation before chiral extrapolation.
 - Or, Combined continuum/chiral extrapolation
 - Under some assumptions introduce additional terms (e.g. proportional to a²) to ChPT. More parameters to be determined.
 - Wilson ChPT, staggered ChPT, twisted mass ChPT, ...

Neuberger operator

- Fortunately, the lattice fermion with exact chiral symmetry is known = overlap fermion.
- Why don't you use it?
 - Computational cost (~ x100 more)
 - Yes. But, history proved the Moore's law = exponential growth of computer power (x10 per every 5 years).
 - Wait for 10 years, or start now!

JLQCD collaboration

• Members:

- KEK: S. Hashimoto, H. Ikeda, T. Kaneko, H. Matsufuru, J. Noaki, E. Shintani, N. Yamada
- Kyoto: T. Onogi, H. Ohki
- Tsukuba: S. Aoki, N. Ishizuka, K. Kanaya, Y. Kuramashi, Y. Taniguchi, A. Ukawa, T. Yoshie
- Hiroshima: K. Ishikawa, M. Okawa
- NBI: H. Fukaya
- Also, with TWQCD (T.W. Chiu, T.H. Hsieh, K. Ogawa)
- Machines at KEK (since 2006)
 - SRI1000 (2.15 Tflops)
 - BlueGene/L (57.3 Tflops)

IBM BlueGene/L

Properties and implementation of the overlap fermion

Overlap fermion

Neuberger's overlap fermion (1998)

$$D = \frac{1}{a} \left[1 + \frac{X}{\sqrt{X^{\dagger} X}} \right], X = aD_W - 1$$
$$= \frac{1}{a} \left[1 + \gamma_5 \operatorname{sgn}(aH_W) \right], aH_W = \gamma_5 (aD_W - 1)$$

• Exact chiral symmetry through the Ginsparg-Wilson relation.

$$\delta \psi = \gamma_5 \left(1 - \frac{1}{2} aD \right) \psi, \ \delta \overline{\psi} = \overline{\psi} \left(1 - \frac{1}{2} aD \right) \gamma_5$$

$$D\gamma_5 + \gamma_5 D = a D\gamma_5 D$$

- Continuum-like Ward-Takahashi identities
- Index theorem (relation to topology) is satisfied

Numerical cost depends on

- Spectrum of H_W
- Approximation of $sgn(H_W)$

(Simple) exercises

If you have not done it before,

- Show that
 - The lattice action is invariant under the modified chiral transformation when the Ginsparg-Wilson relation is satisfied.
 - 2. The overlap-Dirac operator D satisfies the Ginsparg-Wilson relation.
 - 3. The overlap operator approaches the continuum Dirac operator as $a \rightarrow 0$. Do the all calculation keeping relative order *a* terms. You may use a relation

$$D_{W} = D_{c} - \frac{1}{2}aD_{c}^{2} + O(a^{2})$$

Sign function

- Approximation of the sign function is needed. May use tanh, for instance, but not very precise.
- Instead, consider an approx for a given interval

$$|\lambda_W| \in [\lambda_{W,th}, \lambda_{W,\max}]$$

- Chebyshev: minmax polynomial approximation
- Zolotarev: minmax rational approximation

$$\mathcal{E}[x] = x \left(p_0 + \sum_{l=1}^{N_{pole}} \frac{p_l}{x^2 + q_l} \right)$$

- Problem arises if there are near-zero modes.
 - In fact, their density is nonzero at any finite β (Edwards, Heller, Narayanan, 1998)

$$\rho(\lambda_{W}) = \frac{1}{V} \left\langle \sum_{i} \delta(\lambda_{i} - \lambda_{W}) \right\rangle$$

- Comes from dislocations (local lumps of gauge field)
- Need to subtract before approximate

Things to do

- For a given gauge configuration...
 - 1. Calculate the near-zero modes of H_{VV} , i.e. their eigenvalues and eigenvectors using Lanczos algorithm for instance.

$$H_W = \sum_{\lambda_W \le \lambda_{W,th}} \lambda_W v_{\lambda_W} \otimes v_{\lambda_W}^{\dagger} + (1 - P) H_W; \quad P = \sum_{\lambda_W \le \lambda_{W,th}} v_{\lambda_W} \otimes v_{\lambda_W}^{\dagger}$$

2. Sign function is trivial for the near-zero modes; the rest must be approximated.

$$\operatorname{sgn}(H_W) = \sum_{\lambda_W \le \lambda_{W,th}} \operatorname{sgn}(\lambda_W) v_{\lambda_W} \otimes v_{\lambda_W}^{\dagger} + \mathcal{E}\left[(1-P)H_W\right]$$

3. Use a rational approximation (Zolotarev) $\varepsilon[x] = x \left(p_0 + \sum_{l=1}^{N_{pole}} \frac{p_l}{x^2 + q_l} \right)$

Multi-shift solver

Rational approximation involves N_{pole} inversions.

$$\mathcal{E}[H_W] = x \left(p_0 + \sum_{l=1}^{N_{pole}} \frac{p_l}{H_W^2 + q_l} \right)$$

- Can be calculated at the same time using the multi-shift CG solver.
 - They share the Krylov subspace. Therefore, the generation of the orthogonal vectors in the Krylov subspace must be done only once; their coefficients must be calculated for each inversion.
- Faster than the (Chebyshev) polynomial approximation to achieve a given accuracy: 10⁻⁽⁷⁻⁸⁾ in our case.
 - Accuracy improves exponentially for larger N_{pole}; increase of the numerical cost is mild.

Near-zero mode suppression

- Near-zero modes are unphysical (associated with a local lump = lattice artifact)
- Make sense to design a lattice action to suppress them
 - Fat links are effective to suppress the dislocations, but not completely.
 - Introduce unphysical (heavy negative mass) Wilson fermions (Vranas, JLQCD, 2006)

$$\det H_W(-m_0)^2$$

 m_0 must be chosen the same as that in the overlap kernel. Must be in between 0 and 2.

• We chose a form

$$\det\left[\frac{H_{W}(-m_{0})^{2}}{H_{W}(-m_{0})^{2}+\mu^{2}}\right]$$

to minimize the effect in the UV region.

Completely wash-out the near-zero modes. Overlap is much faster.

Locality

- Lattice Dirac operator must be local in order that a local theory is obtained in the continuum limit.
 - Locality is not obvious for the overlap operator due to $1/\sqrt{.}$

$$D = \frac{1}{a} \left[1 + \frac{X}{\sqrt{X^{\dagger} X}} \right], X = a D_{W} - 1$$

- Locality in the sense that |D|<exp(-μx), with μ a number of order 1/a, may be satisfied.
- "Proof" is known for smooth enough gauge canfigurations (Hernandez, Jansen, Luscher (1999)).
- No mathematical proof in more realistic situations where there is non-zero density of the near-zero modes.

 \Rightarrow Okay if near-zero modes are always localized.

Locality

- Maybe analyzed by looking at individual eigenmodes of H_w.
 - Near-zero modes are more localized. Higher modes are extended. There is a critical value above which the modes are extended = "mobility edge" (Golterman, Shamir (2003)).

An important lessen: do not use the overlap fermion in the Aoki phase (where the near-zero modes are extended).

2. Topology issues

U(1) anomaly

Fermion measure is not invariant under the axial U(I) rotation.

$$\prod_{n} d\psi_{n} d\overline{\psi}_{n} \to J^{-2} \prod_{n} d\psi_{n} d\overline{\psi}_{n}; \ln J = i\alpha \int d^{4}x \sum_{k} \overline{u}_{k}(x) \gamma_{5} \left(1 - \frac{a}{2}D\right) u_{k}(x)$$

- Eigenvalues of the Dirac operator
 - Make a pair with their complex conjugate, except for the zero modes.

$$Du_k(x) = \lambda_k u_k(x); D\gamma_5 u_k(x) = \lambda_k^* \gamma_5 u_k(x)$$

Lattice version of the index theorem (Atiyah-Singer)

$$\int d^4x \sum_k \overline{u}_k(x) \gamma_5 \left(1 - \frac{a}{2} D \right) u_k(x) = n_R - n_L = q \quad \left(= \frac{1}{16\pi^2} \int d^4x \operatorname{Tr} F_{\mu\nu} \tilde{F}_{\mu\nu} \right)$$

Correctly represents the chiral zero-modes

Overlap = projection

$$D = \frac{1}{a} \left[1 + \frac{X}{\sqrt{X^{\dagger} X}} \right], X = a D_{W} - 1$$

- Eigenvalues are paired: $\lambda \leftrightarrow \lambda^*$
- Real eigenvalues are exceptions.

Topological charge

- Usually defined using some cooling techniques; topological charge is an integer, only approximately.
- The overlap-Dirac operator provides another way of defining topological charge on the lattice = counting the number of zero-modes.
 - Unambiguous definition.
 - Topology change occurs when an eigenvalue of H_W crosses zero.
 - \blacktriangleright Near-zero modes of H_W indicate dislocation, for which the topology cannot be defined.

Frozen topology

 Suppress the dislocations, e.g. by adding extra Wilson fermions

 $\det H_W(-m_0)^2$

Zero probability to have an exact zero-mode

 No chance to tunnel between different topological sectors.

- If the MD-type algorithm is used, the global topology never changes.
 - Provided that the step size is small enough.

Property of the continuum QCD: common for all lattice formulations as the continuum limit is approached.

Cluster decomposition

- In QCD, the real vacuum has a certain distribution of the topological charge = the θ vacuum.
 - Required to satisfy the cluster decomposition property: topology distribution must satisfy

Ω _I	Ω2

$$f(Q_1 + Q_2) = f(Q_1)f(Q_2)$$
$$f(Q_2) = f(Q_1) - e^{i\theta Q_2}$$

- Can one reproduce the physics of the θ vacuum from the fixed topology simulations?
 - Sum-up the topology! Or, not?

Sum-up the topology!

- Partition function of the vacuum $Z(\theta) = \exp[-VE(\theta)]$
 - Vacuum energy density $E(\theta) = \frac{\chi_t}{2}\theta^2 + \frac{c_4}{12}\theta^4 + \dots$
 - Partition function for a fixed Q

$$Z_{Q} = \frac{1}{2\pi} \int_{-\pi}^{+\pi} d\theta Z(\theta) e^{i\theta Q} = \frac{1}{2\pi} \int_{-\pi}^{+\pi} d\theta \exp\left[-VF(\theta)\right]; F(\theta) = E(\theta) - i\theta Q/V$$

• Using a saddle point expansion around $(\theta_c = iQ/V)$, one can evaluate the θ integral to obtain

$$Z_{Q} = \frac{1}{\sqrt{2\pi\chi_{t}V}} \exp\left[-\frac{Q^{2}}{2\chi_{t}V}\right] \left[1 - \frac{c_{4}}{8V\chi_{t}} + O\left(\frac{1}{\left(\chi_{t}V\right)^{2}}, \frac{Q^{2}}{\left(\chi_{t}V\right)^{2}}\right)\right]$$

• Then, the original partition function can be recovered, if one knows χ_t , c_4 , etc., as $Z(\theta) = \sum_{Q} Z_Q e^{-i\theta Q}$

Or, not?

Fixing topology = Finite volume effect

Aoki, Fukaya, SH, Onogi, PRD76, 054508 (2007)

- When the volume is large enough, the global topology is irrelevant.
- Topological charge fluctuate locally, according to χ_t , topological susceptibility.
- Physics of the θ-vacuum can be recovered by a similar saddle-point analysis, e.g. Some Green's function:

$$\begin{split} G_Q^{\text{even}} &= G(0) + G^{(2)}(0) \frac{1}{2\chi_t V} \bigg[1 - \frac{Q^2}{\chi_t V} - \frac{c_4}{2\chi_t^2 V} \bigg] \\ &+ G^{(4)}(0) \frac{1}{8\chi_t^2 V^2} + O(V^{-3}), \end{split}$$

Topological susceptibility $\chi_t = \frac{\langle Q^2 \rangle}{V}$

• Applying the same formula for the flavor-singlet PS density, χ_t can be extracted.

$$\lim_{x\to\infty} \left\langle mP(x)mP(0) \right\rangle_{Q} = -\frac{1}{V} \left(\chi_{t} - \frac{Q^{2}}{V} + O(1/V) \right) + O(e^{-m_{\eta} \cdot x})$$

3. Early physics results

Simulation techniques; then m_{π} and f_{π}

Dynamical overlap

Recent attempts:

- Fodor-Katz-Szabo (2003)
 - Reflection/refraction trick
- Cundy et al. (2004)
 - Many algorithmic improvements
- DeGrand-Schaefer (2005)
 - Fat-link
 - Some physics results

Our work:

Aoki et al., arXiv:0803.3197 [hep-lat]

- Fixed topology: no reflection/refraction required.
- Large scale simulation with $L \approx 2 \text{ fm}, m_q \sim m_s/6.$
- Mass preconditioning (Hasenbusch) + multi-time step

Broad physics program:

- Pion/kaon physics
- ε-regime

Parameters

- Nf=2 runs (finished) many physics analysis ongoing
- β=2.30 (Iwasaki), a=0.12 fm, 16³x32
- 6 sea quark masses $m_q = 0.015 \dots 0.100$, covering $m_s/6 \sim m_s$
- I0,000 HMC traj.
 - ▶ ~4,000 with 4D solver
 - ▶ ~6,000 with 5D solver
- Q=0 sector only, except Q=-2, -4 runs at $m_q=0.050$

- β=2.30 (Iwasaki), a=0.11 fm, 16³x48
- 5 ud quark masses, covering m_s/6~m_s
- ▶ x 2 s quark masses
- ▶ 2,500 HMC traj.
 - Using 5D solver
- Q=0 sector only

Measurement techniques

Measurements at every 20 traj \Rightarrow 500 conf / m_{sea}

- Improved measurements
 - 50 pairs of low modes calculated and stored.
 - Used for low mode preconditioning (deflation)
 - \Rightarrow (multi-mass) solver is then x8 faster
 - Low mode averaging (and all-to-all)

$$D_m^{-1}(x, y) = \sum_{k=1}^N \frac{u_k(x)u_k^{\dagger}(y)}{\lambda_k + m} + D_m^{(h)-1}(x, y)$$

$$C(x, y) = C^{ll}(x, y) + C^{hh}(x, y) + C^{hh}(x, y) + C^{hl}(x, y) + C^{lh}(x, y)$$

Test of ChPT

- Need a critical test of ChPT, before using it in the analysis of other quentities.
- With exact chiral symmetry, we don't have to worry about the explicit breaking terms.
 - Not ambiguous even at finite lattice spacing.
- Use m_{π} and f_{π} :
 - Simplest quantities, numerically easy to calculate to a good precision.
 - > Other quantities will follow.

JLQCD (2002) With clover

Finite size effect

At a price of ... finite volume lattice

- At L~1.9 fm (smallest m_πL~3), finite size effect is not negligible; corrected using
 - - Colangelo-Durr-Haefeli, NPB721, 136 (2005))
 - Fixed topology
 - Aoki et al., arXiv:0707.0396 with NLO χ PT and measured χ_t

NNLO analysis

NNLO χ PT predicts the mass dependence as

$$\frac{m_{\pi}^{2}}{m_{q}} = 2B_{\theta} \left[1 + \xi \ln\xi + \frac{7}{2} (\xi \ln\xi)^{2} + \left(\frac{2L_{4}}{f} - \frac{4}{3}(\tilde{L}+16)\right) \xi^{2} \ln\xi \right]$$
$$+ L_{3} (\xi - 9\xi^{2} \ln\xi) + K_{1} \xi^{2}$$
$$f_{\pi} = f \left[1 - 2\xi \ln\xi + 5 (\xi \ln\xi)^{2} - \frac{3}{2} \left(\tilde{L} + \frac{53}{2}\right) \xi^{2} \ln\xi \right]$$
$$+ L_{4} (\xi - 10\xi^{2} \ln\xi) + K_{2} \xi^{2}$$
simultaneous fit input: $\tilde{L} = 7 \ln \left(\frac{\Lambda_{1}}{4\pi f}\right)^{2} + 8 \ln \left(\frac{\Lambda_{2}}{4\pi f}\right)^{2}$ from phenomenology

$$\boldsymbol{\xi} = \left(\frac{m_{\pi}}{4\,\pi\,f_{\pi}}\right)^2$$

NNLO analysis

Also, NNLO'

$$\frac{m_{\pi}^{2}}{m_{q}} = 2B_{\theta} \left(1 + \xi \ln \xi + \frac{7}{2} (\xi \ln \xi)^{2} \right) + L_{3}\xi + K_{1}'\xi^{2}$$
$$f_{\pi} = f \left(1 - 2\xi \ln \xi + 5 (\xi \ln \xi)^{2} \right) + L_{4}\xi + K_{2}'\xi^{2}$$

$$\boldsymbol{\xi} = \left(\frac{m_{\pi}}{4 \, \pi \, f_{\pi}}\right)^2$$

Data slightly favor NNLO; not clear from these plots alone.

LECs

Noaki at Lattice 2007

Inconsistency at NLO; okay after including NNLO.

Other physics measurements

Pion form factor

The simplest form factor

$$\langle \pi(p') | V_{\mu} | \pi(p) \rangle = i(p_{\mu} + p_{\mu}') F_{V}(q^{2}), \quad q_{\mu} \equiv p_{\mu}' - p_{\mu}$$

- Momentum transfer q_{μ} by a virtual photon. Space-like (q²<0) in the $\pi e \rightarrow \pi e$ process.
- Vector form factor $F_V(q^2)$ normalized as $F_V(0)=1$, because of the vector current conservation.

$$F_{V}(q^{2}) = 1 + \frac{1}{6} \left\langle r^{2} \right\rangle_{V}^{\pi} q^{2} + O(q^{4}),$$

• Vector (or EM) charge radius $\langle r^2\rangle_V{}^\pi$ is defined through the slope at q²=0.

$\Delta t, p \qquad V_4 \qquad \Delta t', p' \qquad Y_5, \varphi'$

All-to-all

To improve the signal

- Usually, the quark propagator is calculated with a fixed initial point (one-to-all)
- Average over initial point (or momentum config) will improve statistics; possible with all-to-all

$$D^{-1}(x, y) = \sum_{k=1}^{N_{ev}} \frac{1}{\lambda^{(k)}} u^{(k)}(x) u^{(k)\dagger}(y) + \sum_{d=1}^{N_d} \left[D_{high}^{-1} \eta^{(d)} \right] (x) \eta^{(d)}(y)$$

Random noise
Low mode contribution
High mode propagation
From the random noice

Y51

An example: two-point func

- Dramatic improvement of the signal, thanks to the averaging over source points
 - Similar to the low mode averaging; but all-to-all can be used for any npoint func.
 - PP correlator is dominated by the low-modes

Form factor results

All-to-all ⇒ many momentum combinations

• (1,0,0) \rightarrow (0,1,0), etc. in units of $2\pi/L$.

 q² dependence well approximated by a vector meson pole + corrections

$$F_{\pi}(q^2) = \frac{1}{1 - q^2 / m_V^2} + c_1 q^2 + \dots$$

with $m_{\rm V}$ obtained at the same quark mass.

Chiral extrapolation

Lattice data

- Mass dependence very similar to VMD, but the difference is visible.
- χlog may become significant
 beyond the region of lattice data.

 $\langle r^2 \rangle_V^{\pi} = 0.388(9)(12) \,\mathrm{fm}^2$

$$\left\langle r^{2} \right\rangle_{V}^{\pi} = -\frac{1}{\left(4\pi f_{\pi}\right)^{2}} \left[\ln \frac{m_{\pi}^{2}}{\mu^{2}} + 12(4\pi)^{2} L_{9} + O(m_{\pi}^{2}) \right]$$

Lower than the exp number, even after the chiral enhancement.

B_{K}

First (unquenched) lattice calculation with exact chiral symmetry:

JLQCD collab, arXiv:0801.4186 [hep-lat].

$$\left\langle \overline{K}^{0} \left| O_{LL}(\mu) \right| K^{0} \right\rangle = \frac{8}{3} B_{K}(\mu) f_{K}^{2} m_{K}^{2}$$

- No problem of operator mixing; otherwise, mixes with O_{LR}, for instance. Enhanced by its wrong chiral behavior.
- Another test of chiral log. Here the data follows the NLO ChPT.

$$B_{P} = B_{P}^{\chi} \left[1 - \frac{6m_{P}^{2}}{(4\pi f)^{2}} \ln \frac{m_{P}^{2}}{\mu^{2}} + bm_{P}^{2} + O(m_{P}^{4}) \right]$$

Two-point functions

 A new application: twopoint functions in the momentum space.

$$\langle J_{\mu}J_{\nu}\rangle = (g_{\mu\nu}q^{2} - q_{\mu}q_{\nu})\Pi_{J}^{(1)} - q_{\mu}q_{\nu}\Pi_{J}^{(0)}$$
$$= \int_{0}^{\infty} \frac{ds}{s - q^{2} + i\varepsilon} [(g_{\mu\nu}s^{2} - s_{\mu}s_{\nu})\operatorname{Im}\Pi_{J}^{(1)} - s_{\mu}s_{\nu}\operatorname{Im}\Pi_{J}^{(0)}]$$

• Weinberg sum rules: $f_{\pi}^{2} = -\lim_{Q^{2} \to 0} Q^{2} \Big[\Pi_{V}^{(1+0)}(Q^{2}) - \Pi_{A}^{(1+0)}(Q^{2}) \Big],$ $S = -\lim_{Q^{2} \to 0} \frac{\partial}{\partial Q^{2}} Q^{2} \Big[\Pi_{V}^{(1+0)}(Q^{2}) - \Pi_{A}^{(1+0)}(Q^{2}) \Big]$

Chiral symmetry is essential.

Pion mass difference

Das et al. (1967)

$$\Delta m_{\pi}^{2} = -\frac{3\alpha_{\rm EM}}{4\pi f_{\pi}^{2}} \times \int_{0}^{\infty} dQ^{2} Q^{2} \left[\Pi_{V}^{(1+0)}(Q^{2}) - \Pi_{A}^{(1+0)}(Q^{2}) \right]$$

ε-regime

Entering the ϵ -regime:

- Pion is nearly massless.
- Compton wavelength is longer than the lattice extent $m_{\pi}L \leq I$
- Finite momentum mode is suppressed.

 $L_{\chi PT} = \Sigma \mathrm{Tr} \Big[M (U + U^{\dagger}) \Big]$

 Dependence on topological charge Info on the Dirac operator eigenvalue spectrum through

 $Z_{QCD} = Z_{\chi PT}$ (Leutwyler-Smilga, 1992)

 More detailed analytical info through Chiral Random Matrix Theory (χRMT)

Simulation in the ϵ -regime

Harder, but not prohibitive

- Cost grows rather mildly.
- Condition number is governed by the first eigenvalue, not m
- First eigenvalue is lifted by the fermion determinant $\prod_{k=1}^{n} (|\lambda_k|^2 + m^2)$
- Auto-correlation is longer.

Eigenvalue spectrum

Simulation parameters:

- ► β =2.35, a = 0.11 fm, 16³x32, 6 m_q + 1
- $m_q = 3 \text{ MeV reached.} m_{\pi}L \approx 1$
- 4,600 HMC traj.
- 50 pairs of eigenvalues

s-Casher relation

$$-\langle \overline{\psi}\psi\rangle = \pi\rho(0)$$

hiral symmetry restored in the assless limit (fixed V)

Comparison with χRMT

Fukaya et al., PRL98, 172001 (2007)

χ RMT

- Equivalent to χPT at the LO in the ε-expansion.
- Predicts eigenvalues of D in unit of $\lambda \Sigma V$.

$$\land \langle \lambda_1 \rangle \Sigma V = 4.30$$

$$\land \langle \lambda_2 \rangle \Sigma V = 7.62$$

• • • • •

for $N_f=2$, Q=0.

 Σ may be extracted from average eigenvalues.

 $\Sigma^{\overline{MS}}(2\,\text{GeV}) = \left[251(7)(11)\,\text{MeV}\right]^3$

Other observables in the ε -regime

- Meson correlators (Damgaard et al., 2002)
 - in the ϵ -regime
 - can extract f_{π}
 - NLO calculation possible/available.

Fukaya et al., arXiv:0711.4965v3 [hep-lat]

- 3-pt functions (Hernandez-Laine, 2006)
 - Several B parameters
- Eigenvalue correlations (Damgaard et al., 2006)
 - with imaginary chemical potential
 - can extract f_{π}

Wide variety of applications, all without chiral extrapolations.

And, more to come

- More applications, for which the exact chiral symmetry is essential or at least useful. Partial list includes
 - Pion scalar form factor
 - Nucleon sigma term, strange quark content
 - Strong coupling constant, gluon condensate

Details will appear at Lattice 2008.

Summary

- Motivation for using chirally invariant fermions should be obvious.
 - Operator mixing, power divergence, chiral perturbation theory, topology, ε-regime, ...
 - Only question is its practical feasibility.
- Dynamical overlap fermion simulation is feasible with O(10 Tflops) machine.
 - In addition to several clever algorithms, fixing the topological charge is the key. Will become necessary for other fermion formulations too.
 - Many physics applications to emerge.

