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Molecular dynamics (‘Newton’)

A molecular dynamics algorithm for hard spheres (billiard):

t = 0 t = 1.25

wall collision

t = 2.18 t = 3.12

pair collision

t = 3.25 t = 4.03

t = 4.04 t = 5.16 t = 5.84 t = 8.66 t = 9.33 t = 10.37

. . . starting point of Molecular dynamics, in 1957 . . .

. . . treats positions and velocities . . .

. . . useful for N ≫ 4 . . .

. . . converges towards thermal equilibrium.
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Markov-chain Monte Carlo (‘Boltzmann’)

A local Markov-chain Monte Carlo algorithm for hard
spheres (billiard):

i = 1 (rej.) i = 2 i = 3 i = 4 (rej.) i = 5 i = 6

i = 7 i = 8 (rej.) i = 9 (rej.) i = 10 i = 11 i = 12 (rej.)

. . . starting point of Markov chain Monte Carlo, in 1953 . . .

. . . treats only positions . . .

. . . useful for N ≫ 4 . . .

. . . converges towards thermal equilibrium.
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‘Equilibrium’ means for hard spheres . . . I

1 For t → ∞, the equiprobability principle holds:

π(x1, , . . . ,xN) =

{

1 if configuration legal

0 otherwise
.

a b

2 Applies to molecular dynamics and to Monte Carlo.
3 For t → ∞, configurations xt independent of initial

condition.
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‘Equilibrium’ means for hard spheres . . . II

1 The equiprobability principle is the # 1 axiom of statistical
physics.

2 Trivially OK for Monte Carlo (detailed balance, ergodicity).
3 It rigorously holds for molecular dynamics of hard disks,

but proof is non-trivial and very recent:
Sinai (1970) (52 pages, two disks),
Simanyi (2003) (55 pages, N disks),

(Boltzmann–Sinai ergodicity).
4 OK for 4 disks, but not for small planets + sun (KAM):
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Exercises I

Hard-sphere direct sampling (Alg.direct-disks)

Hard-sphere Markov-chain sampling (Alg.markov-disks)

miscellaneous questions on ergodicity, detailed balance,
sampling . . .
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Approach to ‘Equilibrium’

We must better understand convergence issues and the
approach towards equilibrium...
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Single discrete hard sphere (‘3 × 3 pebble game’)

Monte Carlo algorithm for one hard disk on a lattice:

i = 0

initial conf.

i = 1 i = 2 (rej.) i = 3 i = 4 i = 5 (rej.)

i = 6 i = 7 i = 8 i = 9 i = 10 i = 11

Move ‘up’, ‘down’, ‘left’, ‘right’, each with probability 1/4.

Reject moves if necessary (i = 2, i = 5).
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Approach of equilibrium in the 3 × 3 pebble game

1 2 3

4 5 6

7 8 9
(numbering scheme on
a lattice)

A Monte Carlo simulation that starts in the upper right
corner (site 9) at iteration i = 0 approaches thermal
equilibrium for t → ∞ (all sites equally probable).

The transfer matrix allows us to understand this much
better.
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Transfer matrix of 3 × 3 pebble game

Transfer matrix of algorithmic probabilities p(a → b):

{p(a → b)} =
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{π(1), . . . , π(9)} = {1
9 , . . . ,

1
9} is eigenvector.
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Transfer matrix of 3 × 3 pebble game (cont...)

Probability vector for initial state (iteration i = 0):

{π0(1), . . . , π0(9)} = {0, . . . ,0,1}.

Probability at iteration i + 1 from probability at iteration i :

πi+1(a) =
9∑

b=1

p(b → a)πi(b).

Eigenvectors and eigenvalues:

{πi(1), . . . , πi(9)} =

{1
9 , . . . ,

1
9}

︸ ︷︷ ︸

first eigenvector
eigenvalue λ1 = 1

+α2(0.75)i {−0.21, . . . ,0.21}
︸ ︷︷ ︸

second eigenvector
eigenvalue λ2 = 0.75

+ . . . .
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Exponential convergence in the 3 × 3 pebble game

πi(site 1) for game started in the right upper corner (site 9):
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Exponential convergence ≡ scale:

(0.75)i = exp [i · log 0.75] = exp
[
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3.476

]

.
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Correlation time in larger simulations

i = 0

disk k

... i = 25600000000

same disk

τ exists, but it is large (τ ≫ 25 600 000 000).
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Minimum running time of a Monte Carlo algorithm

MC algorithms approach thermal equilibrium (the
stationary probability distribution) as exp [−t/τ ].

No need to go to t → ∞ to get one good sample.
The condition t ≫ τ (for example, 10 × τ ) is enough.

τ can only be estimated from simulations that run for much
longer than τ

#1 problem.

Do not confuse with the ‘ergodicity problem’.
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Monte Carlo 6= Molecular dynamics

Exponential convergence is a property of statistical physics
(Monte Carlo algorithms).

In hydrodynamics (molecular dynamics), convergence is
proven (Simanyi ’03, ’04), but it is power-law rather than
exponential.

This is the fascinating subject of long-time tails (other talk).
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The role of rejections

The local moves in the following example . . .

i = 1 (rej.) i = 2 i = 3 i = 4 (rej.) i = 5 i = 6

. . . work best at zero density η . . .

. . . [η = 0] ⇒ [η = finite] through rejections . . .

. . . this can only work in small boxes, or for small
correlation lengths.

one-half rule determines optimal step size.
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Exercises II

The following exercises probe the convergence of
direct-sampling methods. This is often difficult enough.

Sampling difficult integrals (Alg.direct-gamma)

Importance sampling (Alg.direct-gamma-zeta)

Checking for finite mth moment of a distribution
(Alg.markov-zeta)
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Quantum system: harmonic oscillator
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position x

V (x) = 1
2x2 (harmonic potential).

Wave functions ψn, with energies En.
NB: π(x) 6∝ exp [−βV (x)].
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Density matrix in Quantum statistical physics

A quantum system can be in different ‘energy levels’ ψn,
with energies En.

The weight of a configuration is given by the density
matrix, not the Boltzmann weight:

π(x) ∝ ρ(x,x, β)
︸ ︷︷ ︸

density matrix

=
∑

n

exp [−βEn]
︸ ︷︷ ︸

stat mech

ψn(x)ψ∗

n(x)
︸ ︷︷ ︸

quant mech

.

We can evaluate π(x) with path integrals, but also
sometimes with other methods.
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Convolution of the density matrix

The density matrix satisfies an exact convolution condition:

ρ(x , x ′, β) =

∫

. . .

∫

dx1 . . . dxN−1 ×

ρ(x0, x1,
β
N ) . . . ρ(xN−1, xN ,

β
N ).

β
N is small ⇒ high temperature . . . .

At high temperature, the density matrix is essentially
Gaussian.

ρ(x , x ′, τ = β
N ) ∼ e−

τ
2 V (x)e−

(x−x′)2

2τ e−
τ
2 V (x ′)
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Naive path sampling (schematic)

Naively sample π(x0) = ρ(x0, x0, β) through local algorithm:

0

β

x0

i = 1 i = 2 i = 3 i = 4 i = 5 i = 6

i = 7 i = 8 i = 9 i = 10 i = 11 i = 12

Rejections even for free particle.

correlation time τ is enormous.
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Lévy construction for free quantum particle

τ = β

τ = 0

x0

xN

position

Free path can be sampled
without rejections.

This is the Lévy construction
(1940) . . .

. . . aka Gaussian bridge . . .

. . . aka stochastic interpolation

. . .

. . . aka free path integral.

Works also in harmonic
external potential.
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Lévy construction and interacting quantum systems

The Lévy construction allows to solve exactly the
many-body quantum problem without interactions.
The corresponding MC algorithm has τ = 0.
τ = 0 also for free bosons.

0

β

i = 1

x0

i = 1 i = 2 i = 3 i = 4 i = 5 i = 6

i = 7 i = 8 i = 9 i = 10 i = 11 i = 12

Incorporate interactions through Metropolis algorithm.
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Exercises III

Harmonic density matrix (from
Alg.harmonic-wavefunctions and
Alg.harmonic-density)

Harmonic density matrix (from Alg.matrix-square)

Harmonic density matrix (from
Alg.naive-harmonic-path)

Harmonic density matrix (from Alg.levy-free-path)

. . .
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Conclusion

We discussed Monte Carlo methods in statistical mechanics:

Equiprobability—Boltzmann distribution.

Direct sampling – Markov-chain sampling.

Exponential convergence.

. . .

Quantum Monte Carlo.

Density matrix, matrix squaring

Path integral

Lévy construction

...
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