The Monte Carlo method in/and statistical physics Lattice simulations of quantum fields, Orsay–Bielefeld

Werner Krauth

Laboratoire de Physique Statistique Ecole Normale Supérieure, Paris, France

26 March 2008

Table of contents

Monte Carlo methods (classical physics)

- Newton vs. Boltzmann.
- Equiprobability principle, Boltzmann distribution.
- Correlation times and time correlations.

Monte Carlo methods (quantum physics)

- Density matrix, path integrals.
- The role of rejections.
- Optimized move-sets (Lévy construction).

Conclusion

• Statistical Mechanics \equiv Algorithms & Computations.

Molecular dynamics ('Newton')

• A molecular dynamics algorithm for hard spheres (billiard):

- ... starting point of Molecular dynamics, in 1957 ...
- ... treats positions and velocities ...
- ... useful for $N \gg 4 \dots$
- ... converges towards thermal equilibrium.

Markov-chain Monte Carlo ('Boltzmann')

 A local Markov-chain Monte Carlo algorithm for hard spheres (billiard):

- ... starting point of Markov chain Monte Carlo, in 1953...
- ... treats only positions ...
- ... useful for $N \gg 4 \dots$
- ... converges towards thermal equilibrium.

'Equilibrium' means for hard spheres ... I

() For $t \to \infty$, the equiprobability principle holds:

$$\pi(\mathbf{x}_1, \dots, \mathbf{x}_N) = \begin{cases} 1 & \text{if configuration legal} \\ 0 & \text{otherwise} \end{cases}$$

- Applies to molecular dynamics and to Monte Carlo.
- Sor t → ∞, configurations x_t independent of initial condition.

'Equilibrium' means for hard spheres ... II

- The equiprobability principle is the # 1 axiom of statistical physics.
- 2 Trivially OK for Monte Carlo (detailed balance, ergodicity).
- It rigorously holds for molecular dynamics of hard disks, but proof is non-trivial and very recent:
 - Sinai (1970) (52 pages, two disks),
 - Simanyi (2003) (55 pages, *N* disks),

(Boltzmann–Sinai ergodicity).

OK for 4 disks, but not for small planets + sun (KAM):

- Hard-sphere direct sampling (Alg.direct-disks)
- Hard-sphere Markov-chain sampling (Alg.markov-disks)
- miscellaneous questions on ergodicity, detailed balance, sampling ...

We must better understand convergence issues and the approach towards equilibrium...

Single discrete hard sphere (' 3×3 pebble game')

• Monte Carlo algorithm for one hard disk on a lattice:

- Move 'up', 'down', 'left', 'right', each with probability 1/4.
- Reject moves if necessary (i = 2, i = 5).

Approach of equilibrium in the 3×3 pebble game

(numbering scheme on a lattice)

- A Monte Carlo simulation that starts in the upper right corner (site 9) at iteration *i* = 0 approaches thermal equilibrium for *t* → ∞ (all sites equally probable).
- The transfer matrix allows us to understand this much better.

Transfer matrix of 3×3 pebble game

• Transfer matrix of algorithmic probabilities $p(a \rightarrow b)$:

$$\{p(a \rightarrow b)\} = \begin{bmatrix} \frac{1}{2} & \frac{1}{4} & \cdot & \frac{1}{4} & \cdot & \cdot & \cdot & \cdot & \cdot \\ \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \cdot & \frac{1}{4} & \cdot & \cdot & \cdot & \cdot \\ \cdot & \frac{1}{4} & \frac{1}{2} & \cdot & \cdot & \frac{1}{4} & \cdot & \cdot & \cdot \\ \cdot & \frac{1}{4} & \cdot & \frac{1}{4} & \frac{1}{4} & \cdot & \frac{1}{4} & \cdot & \cdot \\ \cdot & \frac{1}{4} & \cdot & \frac{1}{4} & 0 & \frac{1}{4} & \cdot & \frac{1}{4} & \cdot \\ \cdot & \cdot & \frac{1}{4} & \cdot & \frac{1}{4} & 0 & \frac{1}{4} & \cdot & \frac{1}{4} & \cdot \\ \cdot & \cdot & \frac{1}{4} & \cdot & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \cdot & \frac{1}{4} \\ \cdot & \cdot & \cdot & \frac{1}{4} & \cdot & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\ \cdot & \cdot & \cdot & \cdot & \frac{1}{4} & \cdot & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\ \cdot & \cdot & \cdot & \cdot & \frac{1}{4} & \cdot & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \end{bmatrix}$$

• $\{\pi(1), ..., \pi(9)\} = \{\frac{1}{9}, ..., \frac{1}{9}\}$ is eigenvector.

Werner Krauth

Transfer matrix of 3×3 pebble game (cont...)

• Probability vector for initial state (iteration i = 0):

$$\{\pi^0(1),\ldots,\pi^0(9)\}=\{0,\ldots,0,1\}$$

• Probability at iteration i + 1 from probability at iteration *i*:

$$\pi^{i+1}(a) = \sum_{b=1}^9 p(b
ightarrow a) \pi^i(b).$$

• Eigenvectors and eigenvalues:

$$\{\pi^{i}(1), \dots, \pi^{i}(9)\} = \underbrace{\{\frac{1}{9}, \dots, \frac{1}{9}\}}_{\text{first eigenvector}} + \alpha_{2}(0.75)^{i}\underbrace{\{-0.21, \dots, 0.21\}}_{\text{second eigenvector}} + \dots$$

Exponential convergence in the 3×3 pebble game

• π^{i} (site 1) for game started in the right upper corner (site 9):

• Exponential convergence \equiv scale:

$$(0.75)^i = \exp[i \cdot \log \ 0.75] = \exp\left[-\frac{i}{3.476}\right].$$

Correlation time in larger simulations

• τ exists, but it is large ($\tau \gg 25\,600\,000\,000$).

Minimum running time of a Monte Carlo algorithm

- MC algorithms approach thermal equilibrium (the stationary probability distribution) as $\exp[-t/\tau]$.
- No need to go to t → ∞ to get one good sample. The condition t ≫ τ (for example, 10 × τ) is enough.
- τ can only be estimated from simulations that run for much longer than τ
- #1 problem.
- Do not confuse with the 'ergodicity problem'.

- Exponential convergence is a property of statistical physics (Monte Carlo algorithms).
- In hydrodynamics (molecular dynamics), convergence is proven (Simanyi '03, '04), but it is power-law rather than exponential.
- This is the fascinating subject of long-time tails (other talk).

The role of rejections

• The local moves in the following example

- ... work best at zero density η ...
- $\dots [\eta = 0] \Rightarrow [\eta = \text{finite}] \text{ through } rejections \dots$
- ... this can only work in small boxes, or for small correlation lengths.
- one-half rule determines optimal step size.

The following exercises probe the convergence of direct-sampling methods. This is often difficult enough.

- Sampling difficult integrals (Alg.direct-gamma)
- Importance sampling (Alg.direct-gamma-zeta)
- Checking for finite *m*th moment of a distribution (Alg.markov-zeta)

Quantum system: harmonic oscillator

- $V(x) = \frac{1}{2}x^2$ (harmonic potential).
- Wave functions ψ_n , with energies E_n .

• NB:
$$\pi(x) \not\propto \exp[-\beta V(x)]$$
.

Density matrix in Quantum statistical physics

- A quantum system can be in different 'energy levels' ψ_n, with energies E_n.
- The weight of a configuration is given by the density matrix, not the Boltzmann weight:

$$\pi(\mathbf{X}) \propto \underbrace{\rho(\mathbf{X}, \mathbf{X}, \beta)}_{\text{density matrix}} = \sum_{n} \underbrace{\exp\left[-\beta E_{n}\right]}_{\text{stat mech}} \underbrace{\psi_{n}(\mathbf{X})\psi_{n}^{*}(\mathbf{X})}_{\text{quant mech}}.$$

 We can evaluate π(x) with path integrals, but also sometimes with other methods.

Convolution of the density matrix

The density matrix satisfies an exact convolution condition:

$$\rho(\mathbf{x}, \mathbf{x}', \beta) = \int \dots \int d\mathbf{x}_1 \ \dots d\mathbf{x}_{N-1} \times \rho(\mathbf{x}_0, \mathbf{x}_1, \frac{\beta}{N}) \dots \rho(\mathbf{x}_{N-1}, \mathbf{x}_N, \frac{\beta}{N}).$$

- $\frac{\beta}{N}$ is small \Rightarrow high temperature
- At high temperature, the density matrix is essentially Gaussian.

$$\rho(\mathbf{x}, \mathbf{x}', \tau = \frac{\beta}{N}) \sim \mathbf{e}^{-\frac{\tau}{2}V(\mathbf{x})} \mathbf{e}^{-\frac{(\mathbf{x}-\mathbf{x}')^2}{2\tau}} \mathbf{e}^{-\frac{\tau}{2}V(\mathbf{x}')}$$

Naive path sampling (schematic)

• Naively sample $\pi(x_0) = \rho(x_0, x_0, \beta)$ through local algorithm:

- Rejections even for free particle.
- correlation time τ is enormous.

Lévy construction for free quantum particle

- Free path can be sampled without rejections.
- This is the Lévy construction (1940) ...
- ... aka Gaussian bridge ...
- ... aka stochastic interpolation
 - aka fraa n

. . .

- ...aka free path integral.
- Works also in harmonic external potential.

Lévy construction and interacting quantum systems

- The Lévy construction allows to solve exactly the many-body quantum problem without interactions.
- The corresponding MC algorithm has $\tau = 0$.
- $\tau = 0$ also for free bosons.

Incorporate interactions through Metropolis algorithm.

- Harmonic density matrix (from Alg.harmonic-wavefunctions and Alg.harmonic-density)
- Harmonic density matrix (from Alg.matrix-square)
- Harmonic density matrix (from Alg.naive-harmonic-path)
- Harmonic density matrix (from Alg.levy-free-path)

• ...

We discussed Monte Carlo methods in statistical mechanics:

- Equiprobability—Boltzmann distribution.
- Direct sampling Markov-chain sampling.
- Exponential convergence.
- ...
- Quantum Monte Carlo.
- Density matrix, matrix squaring
- Path integral
- Lévy construction
- ...

 W. Krauth "Statistical Mechanics: Algorithms and Computations" (Oxford University Press, 2006).
 Wikimedia site http://www.smac.lps.ens.fr

