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Species doubling

In the continuum

On the lattice (nearest neighbors)

For  a →  0 , relativistic poles near

⇒ chirality flips:   eight species have QA = +1, eight have QA = -1
                     (Karsten & Smit, Nielsen & Ninomiya)



•  Reduce species doubling by starting with one-component lattice field:

→ only symmetries are (euclidean) space-time symmetries

•  Species doubling & hypercubic symmetry:
   16 poles in continuum = 4 (Dirac) 4 (flavor) ?

•  Lattice symmetries:
      translations Sµ                                →          continuum translations
        hypercubic rotations Rκλ        →      SO(4) in continuum
      ??                                        →      SU(4) flavor?

•  Make “normal” translations follow from Sµ
2 , with

   ζµ(x) can only be a phase factor, with ζµ(x) ζµ(x+µ) = 1

•   Get (discrete subgroup of) SU(4) from Sµ → try Sµ Sν = - Sν Sµ



→    ζµ(x) ζν(x+µ) = - ζν(x) ζµ(x+ν)

→    choose                                                          (essentially unique)

•   irreps of translation group →  momentum space:

→ the 16 fields  ϕA(q) = χ(q+πA),   πA ∈ {(0,0,0,0),(π,0,0,0),…}
    with -π/2 ≤ qµ ≤ π/2 form a 16-dim representation of the group
    generated by Sµ , i.e.,

with 

→                              with ξµ  a set 4 × 4 of Dirac matrices 

:   “hypercubic” flavor transformations



The ξµ  generate a 32-element group  Γ4 ⊂  SU(4)
SU(4) is the smallest continuous group containing Γ4:

Γ4 to enlarge to SU(4) in the continuum limit just like
hypercubic rotations enlarge to SO(4)

Now we need an action invariant under the lattice group:

Invariant under shifts Sµ : 



Define                                                          (not a symmetry!)

in momentum space:

then

furthermore      

→                              with γµ  a set 4 × 4 of Dirac matrices

•  free action in momentum space: 

   
   (note: free action invariant under full SU(4)!)
•  Couple to gauge fields:  give χ, χ  color index  

   has full space-time lattice symmetry group, incl. rotations, reflections



Connection with naïve fermions

Define                                        then 

→  drop Dirac index on χ !
      ψ transforms in reducible representation of lattice symmetry group:
      1 naïve fermion = 4 staggered fermions

Axial symmetry:  invariance of S for m = 0

ψ(x) → γ5 ψ(x)  then  χ(x) → γ5 ε(x) χ(x) 

Indeed, χ(x) → eiαε(x) χ(x) ,   χ(x) → χ(x) eiαε(x) 

is U(1)ε  axial symmetry of S for m = 0                          (Kawamoto-Smit)



What is this in the continuum limit?

Note:

hence

→ in momentum space                                  :  non-singlet axial symm.!

→ one exact Goldstone boson for m = 0, interpolating field ε(x) χ(x)χ(x)

What about other Goldstone bosons?
Are they automatically massless in the continuum limit,
or is fine tuning à la Wilson required?

→ mass renormalization -- additive or multiplicative?   (MG & Smit)

Note that U(1)ε  does not exclude



Need all lattice symmetries to exclude fine tuning:

Rotations:

(rotates χ(x)ηµ(x)χ(x+µ) , χ(x)ζµ(x)χ(x+µ)  as vectors; “twisted” SO(4))

Together with shift symmetry this excludes all ΓA  except 1 and Γ5   
and all ΞB except 1.

Then U(1)ε  excludes 1 and Γ5  mass terms.



Singlet γ5 , i.e., ψ → γ5ψ  ? on lattice:

meson operator: χ(x)T1T2T3T4χ(x) + h.c.  

has                                                   ≠ 0 in the continuum limit 
                                                                 (Sharantchandra, Thun & Weisz)

All other mesons ε(x) χ(x)SAχ(x)  with SA  ≠ 1  have

flavor/taste splittings:



Pions and taste breaking at a ≠ 0                            (MILC)

Pion masses as function of                 Taste splitting among pions
quark mass at a = 0.12 fm                   as function of a



What causes taste breaking on the lattice?

n = # components of πA equal to  π

→  effective 4-fermion taste-breaking operators of order a2 :

           (classify all operators in QCD and in ChPT: Lee & Sharpe,  Aubin & Bernard)

→  reduce taste breaking by improving quark-gluon vertex

reduce a2 term by improving

(if akν = π  for some ν ≠ µ  the 4-fermion vertex is generated)    



Taste basis                                    (Gliozzi, Kluberg-Stern et al.)

Define a 4-taste Dirac field from the 16 fields χ(x = 2y + A) living
in the hypercube Aµ ∈ {0, 1} :

(free theory;  put in Wilson lines along paths to A)

with 
S : naïve kinetic term plus “flavored” (anti-hermitian) Wilson term 



Shift symmetry in taste basis:

•  Need to add gauge fields and keep them on the “fine” lattice
   in order not to break shift symmetry!  

•  “Wilson” term is order a , but with fixed coefficient

•  Easy to construct operators in taste basis, but these are not in
   irreps of the staggered symmetry group, which live in momentum
   space



Parity                                                                 (MG & Smit)

continuum:    ψ(x,t) → γ4 ψ(-x,t)

lattice:       χ(x) → ε(x)ηµ(x)ζµ(x)χ(Ix)   or   ϕ(q) →  ΓµΓ5ΞµΞ5 ϕ(Iq)

Combine Is = I1I2I3 ,  then ϕ(q,q4) →  Γ4Ξ4 ϕ(-q,q4)

Make into unflavored (tasteless) parity:

Not a symmetry of operators on a fixed time slice!

•   time-slice operators couple to γAξB and γAγ4γ5ξBξ4ξ5  continuum
    states

•   correlators contain relative (-1)t , e.g.
    (P = σtσs  with σt  the eigenvalue of Ξ4 , which ∉ time-slice group)



How does shift symmetry work in the Symanzik EFT?

Shift symmetry is lattice translation plus phases, with generators

Any representation thus takes the form

with    

However, any continuum EFT is invariant under continuum translations;
which, for distance r , act on any continuum field as

Choose r such that p⋅r = –pµ   
⇒  EFT is invariant under the group Γ4  generated by the Ξµ    



Definition of “rooted” staggered fermions:

•  separate staggered fields for each physical flavor
   single-site mass terms, masses  mu ,  md ,  ms

    each flavor comes in four tastes

•  continuum limit:  4 up,  4 down and 4 strange quarks
   with  U(4)u   U(4)d   U(4)s  symmetry  (non-deg. masses)

•   Det(Dstag)  ~  Det4(Dcont)   ⇒  take  Det1/4(Dstag)

•  Det(Dstag) > 0   (any m,
                             Det only depends on |m| because of U(1)ε symm.),
   Det(Dcont) > 0    (mq > 0)   ⇒  pick positive 4th root
                                                   mq ∝ |m|   



Questions and answers:

1) Are rooted staggered fermions a regulator like any other, or not?
      No, they are non-local, non-unitary at a ≠ 0.

2) Can the continuum limit be taken, and is it in the correct
universality class?

      Most likely:   Yes!

3) But:  we work at a ≠ 0,  where the diseases are present!
      ⇒  need EFT to parameterize the non-local effects.
      relevant EFT framework:  SChPT + “replica trick”

      arguments:
      - SChPT ok for unrooted + decoupling      (Bernard)
      - direct derivation from RG framework       (Bernard, MG & Shamir)



Continuum limit  more detail:

•  project onto physical Hilbert space by taking
   ⇒   correct correlation functions for QCD
         with all quark masses positive and any number of flavors!

•  no “paradoxes” based on symmetries can arise!

•  many unphysical states with non-trivial taste charges
   but  can use  SU(4)taste  to relate (non-anomalous) charges,
   e.g.

•  mixing with gluonic states:  must use taste-singlet operators.

                                                          (Bernard, MG, Shamir & Sharpe)



Unitarity and the replica trick

Apparent paradox:  there are 15 pions per staggered flavor, but the 
                  Nf = 1 theory made by 4th-rooting should have none

Consider Nf staggered fields, each replicated nr times:

•  perturbation theory:
   number of quarks on a closed loop is  4Nf nr nr = 1/4 = Nf

•   pions in Nf = 1 theory (Bernard et al. in staggered ChPT):

    intermediate two-pion states in taste-singlet scalar two-point function:

    zero follows from taste symmetry ⇒ positive and negative weights!



1) Non-locality of 4th-rooted staggered fermions:

Assume a local D exists such that  (at  a ≠ 0)

                   Det1/4 (Dstag) = Det (D)  exp(- δSeff /4) ,

with δSeff  local (no long-distance effects).  Take fourth power:

                   Det(Dstag) = Det (D4t)  exp(- δSeff),    D4t = D 1 ;

D4t  describes a theory with exact SU(4) taste symmetry.

Compare spectra at a ≠ 0:

D4t:   15 degenerate pions in adjoint of SU(4)

Dstag:  15 pions are non-degenerate (only one “exact” pion)

⇒   δSeff  knows about long-distance effects!        (Bernard, MG & Shamir)



RG taste basis:

Q is a unitary matrix connecting one-component and taste bases:
rearranges fields on each 24 hypercube into 4(spin) 4(taste) field;
α is of order 1/a :  just adds a contact term.   We have

Dstag + α  is fermion with mass ~1/a : short distance contribution

Dstag  and  Dtaste  are completely equivalent.

Note: looks like starting point for RG blocking -- see later

            (Shamir)

with (for the free case)



Free theory:

       Note Wilson-like term:  taste-invariant part has no doublers!
       (Use taste-inv. part as “comparison” theory in RG treatment.)



Non-locality and taste symmetry breaking:

Split

then

D  and  DA  are local,  but   ΣA  D-1 DA ⊗ ΞA  is not!

i.e.,  taste breaking is local for action, but not for physics.

However, the taste-breaking DA  are irrelevant operators

⇒ conjecture:   taste symmetry is restored in continuum limit
                        ⇒ non-localities disappear in continuum limit.
 (validity of 4th root is tied to validity of unrooted staggered fermions)



Comments:

- Non-locality comes from breaking of taste symmetry,
  which implies (e.g.) non-degeneracy of (too many) pions:

                             (mπ
A)2 = (mπ

GB)2 + cA a2Λ4
QCD

Two IR effects:  quark mass m and splitting (aΛ2
QCD)2

 ,
                          (related to splitting aΛ2

QCD of IR eigenvalues)

⇒  remove unphysical IR scale first:
•   take  a → 0 before taking m → 0 !

- Other masses split also, but pions lead to the most dramatic effect.

- Non-locality at a ≠ 0 leads to unitarity violations:

•   take  a → 0 before continuing to Minkowski space!



2) Continuum limit: an RG framework                   (Shamir)

Natural framework:

•  IR eigenvalues should form taste multiplets, but not UV evs:
   ⇒  get rid of UV evs by RG blocking.

•  fix coarse spacing ac << 1/ΛQCD, take fine spacing af → 0:
   gives “perfect action” ⇒ same symmetries as continuum

•  works for unrooted staggered theory; 
   tells us how taste symmetry is restored (scaling with af /ac)

•  “bridge” to rooted theory (no direct RG!):
   “reweighted theories”: 
           lattice theories with exact taste symmetry,
           with same af → 0 limit as staggered theory  



RG blocking  (unrooted!):

Thin out fermion fields, using gaussian kernel (ψ(k) on lattice ak = 2kaf )
                                                                          

Result:

•  S(k)
eff

 = log Det(Gk) from integrating out UV part of fermions, local:
   Gk , and thus Dk , are local, because
   Hk = (γ5 ⊗ ξ5) Gk

-1 = Hk
†  has gap (“mobility edge”) ∝ αk ∝ 1/ak

•  “postpone” gauge-field blocking (kernels Kg)
   (multiple gauge fields U, … , V(n))



Reweighting

Split into taste-singlet and taste-breaking part:
and interpolate between staggered and taste-invariant theories:

For t = 0, this theory has exact SU(4) taste symmetry,
⇒ can take the 4th root and obtain local one-taste theory:

Claim: for n → ∞ , this theory coincides with the non-local theory  



Connect the rooted and reweighted theories:
Assume the scaling relations (up to logs)

then for n large enough we may expand: 

For large enough n, the expansion of the log is convergent.



Scaling of Δn:

• So far, assumed that Δ
n
 scales like af /ac  on an ensemble

• To argue this, use asymptotic freedom, and Λ
QCD

 << 1/ac << 1/af
  ⇒ scaling as predicted by perturbation theory
  ⇒ Δn is a local operator (Dn is), and indeed scales as expected in
      all theories!

• Summary of argument:
  -  Δn scales like af in unrooted theory (local);
  -  thus: Δn scales like af in 4-taste reweighted theory (local);
  -  thus: Δn scales like af in 1-taste reweighted theory (local);
  -  reconstruct rooted theory from 1-taste reweighted



3) SChPT from RG approach    (Bernard, MG & Shamir)

For small-enough lattice spacing, a, EFTs like the Symanzik effective 
theory (SET) and chiral perturbation theory (ChPT) account for lattice 
artifacts through a systematic expansion in aΛQCD

Key assumption:  the underlying lattice theory is local

However:
QCD with rooted staggered fermions (Det1/4(Dstag)) is non-local

⇒ can the construction of a SET and staggered ChPT be extended to 
                                 rooted staggered QCD?

Intuitive idea: consider nr replicas, then continue nr → 1/4, but
                      dependence of EFT coefficients on nr is not known

Even at a = 0.06 fm lattice artifacts (e.g., mass splittings) are significant! 



Start from Shamir’s RG analysis:

1) Go to taste basis (Q is unitary):

2) Carry out n RG blocking steps (postpone integration over gauge fields):

Here 
    nr is the number of “replicas” -- take integer for now!   
    Dtaste,n is staggered Dirac operator after n RG steps;
            are blocked gauge fields;
    Bn  is local (on coarse lattice) Boltzmann weight:

So far standard RG set-up again
     



Generalized theory:

Replace    (                                            )

For t = 1  and ns = 4nr this is staggered theory with nr replicas ; 
For t = 0  this is reweighted, local theory with ns taste-singlet fermions;

For nr  = any positive integer, and any t , this defines a local theory 

⇒            assume that SET (and thus ChPT) exist

Now take ns fixed, not equal to 4nr , then SET still exists --

think of SET as expansion in af , with coefficients that depend on ac 

(need to assume this works for partially quenched theories)



Important consequences:

Can expand determinant ratio in t : 

Δn ∼ af    ⇒  

power of nr less than power of t less than or equal to power of af 

Lattice: all correlation functions, expanded to a fixed order in af  
are polynomial in nr , hence we may continue in nr to ns /4 !! 

SET: nr dependence comes from Symanzik coefficients and loops   
⇒               “staggered SET with the replica rule”            (set t = 1)



Comments:

•   SET is complicated for t ≠ 1 , but don’t need explicit form  
    (lattice spacing is af , depends also on ac)

•   Only staggered external legs and t = 1:  
    1)  all staggered symmetries apply (shift, U(1)ε)
         ⇒  form of SET is that of Lee & Sharpe (after field redefinitions)
    2)  if also nr = ns /4: lattice spacing is af 
 
•   Expansion in

    hence the generalized theory has no 1/af divergences
    (same continuum limit for all t !)

•   Transition to ChPT works the same way
    ⇒                    “SChPT with the replica rule”     (Aubin & Bernard)



•  The ns taste-singlet fermions play the role of the physical flavors;
   continuum limit (n → ∞) is independent of nr (and a “perfect” action)

•  Turning on t “decorates” or “staggers” these fermions: nr appears;
   to any given order in af correlation functions are polynomial in nr
   thus we may continue nr  to ns /4

•   For nr  = ns /4 with ns  not a multiple of four the theory is non-local
    and this non-locality is reproduced by the EFT:
   non-local behavior is reproduced by continuing the nr  dependence
   appearing through loops to ns /4              (see Bernard et al. for example)

   ⇒                       “SET/SChPT with replica rule”



Global fit (masses and decay constants) to rooted SChPT                 (MILC)
930 data points, 28 unconstrained parameters+26 constrained parameters
(All fits with nr = 1/4 ; fitting nr from data gives value 0.31(4))          

dotted line: prediction from
other three lattice spacings

red line: predicted 
continuum curve



A few interesting results:

fπ = 128.3 (5) (+2.4−3.5)  MeV                            (exp: 130.7 ± 0.1 ± 0.4)
fK = 156.5 (4) (+1.0−2.7)  MeV                            (exp: 159.8 ± 1.4 ± 0.4)
fK / fπ  = 1.197 (3) (+6−13)

MS-bar masses (at 2 GeV):

ms             = 88 (0) (3) (4) (0)    MeV
(mu+md)/2 = 3.2 (0) (1) (2) (0)    MeV
mu / md     = 0.42 (0) (1) (0) (4)    (rules out mu = 0 !)

errors: statistical/systematic/perturbation theory/EM corrections



Final comments:

•  There is very good theoretical and numerical evidence that 
    taking the 4th root works, even if the theory at a ≠ 0 is sick.
    There is (at present) no argument against!

•  Locality and scaling of operators can be tested, numerically
   and (in principle) in “multi-gauge-field” perturbation theory.
   Doing this would go long way toward confirming validity of 
   the “rooting trick.”

•  Can derive EFT valid at a ≠ 0 . 

•  Spectacular success for mesons;  but baryons and (most)
   weak matrix elements quite difficult.  Reason:  lack of SU(4)
   symmetry at a ≠ 0 !

•  ⇒ use mixed actions:  staggered sea + domain-wall valence!


