Introduction to staggered fermions

Maarten Golterman

Orsay, March 2008

Species doubling

In the continuum

$$S^{-1}(p) = i \not p$$

On the lattice (nearest neighbors)

$$S^{-1}(p) = \sum_{\mu} \frac{i}{a} \gamma_{\mu} \sin\left(ap_{\mu}\right)$$

For $a \rightarrow 0$, relativistic poles near

$$p = \pi_A \in \left\{ (0, 0, 0, 0), (\frac{\pi}{a}, 0, 0, 0), \dots, (\frac{\pi}{a}, \frac{\pi}{a}, \frac{\pi}{a}, \frac{\pi}{a}) \right\}$$

$$\uparrow$$

$$\gamma_1 \to -\gamma_1$$

 \Rightarrow chirality flips: eight species have $Q_A = +1$, eight have $Q_A = -1$ (Karsten & Smit, Nielsen & Ninomiya)

Reduce species doubling by starting with one-component lattice field:

$$\chi(x)$$
, $\overline{\chi}(x)$

- → only symmetries are (euclidean) space-time symmetries
- Species doubling & hypercubic symmetry:
 16 poles in continuum = 4 (Dirac) × 4 (flavor) ?
- Lattice symmetries:

translations S_{μ} \rightarrow continuum translations hypercubic rotations $R_{\kappa\lambda}$ \rightarrow SO(4) in continuum \Rightarrow SU(4) flavor?

• Make "normal" translations follow from S_{μ}^{2} , with

$$S_{\mu}: \quad \chi(x) \to \zeta_{\mu}(x)\chi(x+\mu)$$

 $\zeta_{\mu}(x)$ can only be a phase factor, with $\zeta_{\mu}(x)$ $\zeta_{\mu}(x+\mu)=1$

• Get (discrete subgroup of) SU(4) from $S_{\mu} \rightarrow \text{try } S_{\mu} S_{\nu} = -S_{\nu} S_{\mu}$

$$\Rightarrow \quad \zeta_{\mu}(x) \ \zeta_{\nu}(x+\mu) = - \ \zeta_{\nu}(x) \ \zeta_{\mu}(x+\nu)$$

$$\rightarrow$$
 choose $\zeta_{\mu}(x) = (-1)^{x_{\mu+1}+\cdots+x_4} \equiv e^{i\pi_{\zeta_{\mu}}x}$ (essentially unique)

irreps of translation group → momentum space:

$$\chi(p) = \sum_{x} e^{-ipx} \chi(x) \to \sum_{x} e^{-ipx + i\pi_{\zeta_{\mu}} x} \chi(x + \mu)$$
$$= e^{ip_{\mu}} \chi(p + \pi_{\zeta_{\mu}})$$

 \rightarrow the 16 fields $\varphi_A(q) = \chi(q + \pi_A)$, $\pi_A \in \{(0,0,0,0),(\pi,0,0,0),...\}$ with $-\pi/2 \le q_\mu \le \pi/2$ form a 16-dim representation of the group generated by S_μ , *i.e.*,

$$S_{\mu}: \phi_A(q) \to e^{iq_{\mu}}(\Xi_{\mu})_{AB}\phi_B(q)$$

with
$$\{\Xi_{\mu},\Xi_{\nu}\}=2\delta_{\mu\nu}$$

 \Rightarrow $\Xi_{\mu} = 1 \times \xi_{\mu}$ with ξ_{μ} a set 4 × 4 of Dirac matrices

$$\xi_A = ie^{-i\frac{\pi}{2}\xi_A} \in SU(4)$$
 : "hypercubic" flavor transformations

$$\xi_A \in \{1, \xi_{\mu}, \frac{i}{2}\xi_{[\mu}\xi_{\nu]}, i\xi_{\mu}\xi_5, \xi_5\}$$

The ξ_{μ} generate a 32-element group $\Gamma_4 \subset SU(4)$ SU(4) is the smallest continuous group containing Γ_4 :

 Γ_4 to enlarge to SU(4) in the continuum limit just like hypercubic rotations enlarge to SO(4)

Now we need an action invariant under the lattice group:

$$S = \sum_{x\mu} \frac{1}{2} \overline{\chi}(x) \eta_{\mu}(x) [\chi(x+\mu) - \chi(x-\mu)] + m \sum_{x} \overline{\chi}(x) \chi(x)$$

Invariant under shifts S_{μ} :

$$\zeta_{\nu}(x)\eta_{\mu}(x)\zeta_{\nu}(x+\mu) = \eta_{\mu}(x+\nu)$$

 $\to \eta_{\mu}(x) = (-1)^{x_1+\dots+x_{\mu-1}}$

Define
$$T_{\mu}: \chi(x) \to \eta_{\mu}(x)\chi(x+\mu)$$
 (not a symmetry!)

in momentum space:
$$T_{\mu}: \phi_A(q) \rightarrow e^{iq_{\mu}}(\Gamma_{\mu})_{AB}\phi_B(q)$$

then
$$T_{\mu}T_{\nu}=-T_{\nu}T_{\mu}\;,\quad \mu\neq\nu\quad \rightarrow\quad \{\Gamma_{\mu},\Gamma_{\nu}\}=2\delta_{\mu\nu}$$

furthermore
$$T_{\mu}S_{\nu}=S_{\nu}T_{\mu} \rightarrow [\Gamma_{\mu},\Xi_{\nu}]=0$$

$$\rightarrow$$
 $\Gamma_{\mu} = \gamma_{\mu} \times 1$ with γ_{μ} a set 4 × 4 of Dirac matrices

free action in momentum space:

$$S = \sum_{\mu} \int_{q} \frac{1}{2} \overline{\phi}(q) \Gamma_{\mu} \left(e^{iq_{\mu}} - e^{-iq_{\mu}} \right) \phi(q) + m \int_{q} \overline{\phi}(q) \phi(q)$$

(note: free action invariant under full SU(4)!)

• Couple to gauge fields: give χ , $\bar{\chi}$ color index

$$S = \sum_{x\mu} \frac{1}{2} \eta_{\mu}(x) \overline{\chi}(x) \left[U_{\mu}(x) \chi(x+\mu) - U_{\mu}^{\dagger}(x-\mu) \chi(x-\mu) \right] + m \sum_{x} \overline{\chi}(x) \chi(x)$$

has full space-time lattice symmetry group, incl. rotations, reflections

Connection with naïve fermions

$$S_{naive} = \sum_{x\mu} \frac{1}{2} \overline{\psi}(x) \gamma_{\mu} (\psi(x+\mu) - \psi(x-\mu))$$

Define $\psi(x) = \gamma_1^{x_1} \dots \gamma_4^{x_4} \chi(x)$ then

$$S_{naive} = \sum_{x\mu} \frac{1}{2} \overline{\chi}(x)_{\alpha} \eta_{\mu}(x) (\chi(x+\mu)_{\alpha} - \chi(x-\mu)_{\alpha})$$

 \rightarrow drop Dirac index on χ !

 ψ transforms in reducible representation of lattice symmetry group: 1 naïve fermion = 4 staggered fermions

Axial symmetry: invariance of S for m = 0

$$\psi(x) \rightarrow \gamma_5 \ \psi(x)$$
 then $\chi(x) \rightarrow \gamma_5 \ \varepsilon(x) \ \chi(x)$

Indeed,
$$\chi(x) \rightarrow e^{i\alpha\varepsilon(x)} \chi(x)$$
, $\overline{\chi}(x) \rightarrow \overline{\chi}(x) e^{i\alpha\varepsilon(x)}$

is $U(1)_{\varepsilon}$ axial symmetry of S for m = 0

(Kawamoto-Smit)

What is this in the continuum limit?

Note:
$$\eta_{\mu}(x)\zeta_{\mu}(x) = (-1)^{x_{\mu}} \rightarrow \epsilon(x) = \prod_{\mu} \eta_{\mu}(x)\zeta_{\mu}(x)$$

hence
$$\prod_{\mu} T_{\mu}^{-1} S_{\mu} \chi(x) = \epsilon(x) \chi(x)$$

- \rightarrow in momentum space $\prod_{\mu} \Gamma_{\mu} \Xi_{\mu} = \Gamma_{5} \Xi_{5}$: non-singlet axial symm.!
- \rightarrow one exact Goldstone boson for m=0, interpolating field $\varepsilon(x)\overline{\chi}(x)\chi(x)$

What about other Goldstone bosons? Are they automatically massless in the continuum limit, or is fine tuning à la Wilson required?

→ mass renormalization -- additive or multiplicative? (MG & Smit)

Note that $U(1)_{\varepsilon}$ does not exclude

$$\sum_{\mu} \frac{1}{2} m_{\mu} \overline{\chi}(x) \eta_{\mu}(x) [U_{\mu}(x) \chi(x+\mu) + U_{\mu}^{\dagger}(x-\mu) \chi(x-\mu)] \rightarrow \sum_{\mu} m_{\mu} \overline{\psi} \gamma_{\mu} \psi$$

Need all lattice symmetries to exclude fine tuning:

$$M = \sum_{A,B} m_{AB} \Gamma_A \Xi_B , \qquad A, B = 1, \dots, 16$$

Rotations:
$$R_{\kappa\lambda}: \quad \phi_A(q) \to \left(e^{\frac{1}{2}\pi(\frac{1}{2}\Gamma_{\kappa}\Gamma_{\lambda})}e^{\frac{1}{2}\pi(\frac{1}{2}\Xi_{\kappa}\Xi_{\lambda})}\right)_{AB}\phi_B(R^{-1}q)$$

(rotates $\bar{\chi}(x)\eta_{\mu}(x)\chi(x+\mu)$, $\bar{\chi}(x)\zeta_{\mu}(x)\chi(x+\mu)$ as vectors; "twisted" SO(4))

$$\to (R_{\kappa\lambda})^2 = \Gamma_{\kappa}\Gamma_{\lambda}\Xi_{\kappa}\Xi_{\lambda}$$

Together with shift symmetry this excludes all Γ_A except 1 and Γ_5 and all Ξ_B except 1.

Then $U(1)_{\varepsilon}$ excludes 1 and Γ_5 mass terms.

Singlet γ_5 , *i.e.*, $\psi \rightarrow \gamma_5 \psi$? on lattice:

$$\chi(x) \rightarrow T_1 T_2 T_3 T_4 \chi(x)$$

= $\eta_1(x) \eta_2(x+1) \eta_3(x+1+2) \eta_4(x+1+2+3) \chi(x+1+2+3+4)$

meson operator: $\overline{\chi}(x)T_1T_2T_3T_4\chi(x)$ + h.c.

has

≠ 0 in the continuum limit (Sharantchandra, Thun & Weisz)

All other mesons $\varepsilon(x)\overline{\chi}(x)S_A\chi(x)$ with $S_A \neq 1$ have

flavor/taste splittings: $m_A^2 = m\Lambda + c_A a^2 \Lambda^4$

Pions and taste breaking at $a \neq 0$

(MILC)

Pion masses as function of quark mass at a = 0.12 fm

Taste splitting among pions as function of *a*

What causes taste breaking on the lattice?

 \rightarrow effective 4-fermion taste-breaking operators of order a^2 :

$$a^2(\overline{\psi}_R\xi_\nu\xi_5\psi_L)(\overline{\psi}_R\xi_\nu\xi_5\psi_L) + \text{h.c.} \rightarrow a^2\text{tr}[\xi_\nu\xi_5\Sigma\xi_\nu\xi_5\Sigma] + \text{h.c.}$$

(classify all operators in QCD and in ChPT: Lee & Sharpe, Aubin & Bernard)

→ reduce taste breaking by improving quark-gluon vertex

$$=-ig\,T_b\,\delta(p-q+k+\frac{\pi_{\eta_\mu}}{a})\cos{(ap_\mu+\frac{1}{2}ak_\mu)}$$

$$ak_\mu=0\ :\ \cos{(ap_\mu)}\approx 1-\frac{1}{2}a^2p_\mu^2\quad \text{reduce a^2 term by improving}$$
 (if $ak_\nu=\pi$ for some $\nu\neq\mu$ the 4-fermion vertex is generated)

Define a 4-taste Dirac field from the 16 fields $\chi(x = 2y + A)$ living in the hypercube $A_{\mu} \in \{0, 1\}$:

$$\psi_{\alpha a}(y) = \frac{1}{\sqrt{8}} \sum_{A} (\gamma_A)_{\alpha a} \chi(2y + A)$$

(free theory; put in Wilson lines along paths to A)

$$\rightarrow S = \frac{1}{2} \sum_{y\mu} \left(\text{tr}[\overline{\psi}(y)\gamma_{\mu}(\psi(y+\mu) - \psi(y-\mu))] \right) \\
-\text{tr}[\overline{\psi}(y)\gamma_{5}((\psi(y+\mu) + \psi(y-\mu) - 2\psi(y))\gamma_{\mu}\gamma_{5}] \right) \\
= \frac{1}{2} \sum_{y\mu} \left(\overline{\psi}(y)\gamma_{\mu}(\psi(y+\mu) - \psi(y-\mu)) \right) \\
-\overline{\psi}(y)\gamma_{5}\xi_{5}\xi_{\mu}((\psi(y+\mu) + \psi(y-\mu) - 2\psi(y)) \right)$$

with $(\xi_{\mu})_{ba}\psi_{\alpha a} = \psi_{\alpha a}(\gamma_{\mu})_{ab} = (\gamma_{\mu}^*)_{ba}\psi_{\alpha a}$

S: naïve kinetic term plus "flavored" (anti-hermitian) Wilson term

Shift symmetry in taste basis:

$$S_{\mu}: \psi(y) \to \frac{1}{2} \left[(\xi_{\mu} + \gamma_5 \gamma_{\mu} \xi_5) \psi(y) + (\xi_{\mu} - \gamma_5 \gamma_{\mu} \xi_5) \psi(y + \mu) \right]$$

- Need to add gauge fields and keep them on the "fine" lattice in order not to break shift symmetry!
- "Wilson" term is order a, but with fixed coefficient
- Easy to construct operators in taste basis, but these are not in irreps of the staggered symmetry group, which live in momentum space

Parity (MG & Smit)

continuum: $\psi(x,t) \rightarrow \gamma_4 \psi(-x,t)$

lattice:
$$\chi(x) \to \varepsilon(x) \eta_{\mu}(x) \zeta_{\mu}(x) \chi(Ix)$$
 or $\varphi(q) \to \Gamma_{\mu} \Gamma_5 \Xi_{\mu} \Xi_5 \varphi(Iq)$

Combine
$$I_s = I_1I_2I_3$$
, then $\varphi(q,q_4) \rightarrow \Gamma_4\Xi_4 \varphi(-q,q_4)$

Make into unflavored (tasteless) parity:

$$\chi(x,t) \rightarrow S_4 I_1 I_2 I_3 \chi(x) = \zeta_4(x,t) (-1)^{x_1 + x_2 + x_3} \chi(-x,t+1)$$

 $\phi(q,q_4) \rightarrow \Gamma_4 e^{iq_4} \phi(-q,q_4)$

Not a symmetry of operators on a fixed time slice!

- time-slice operators couple to $\gamma_A \xi_B$ and $\gamma_A \gamma_4 \gamma_5 \xi_B \xi_4 \xi_5$ continuum states
- correlators contain relative $(-1)^t$, e.g. $A_+e^{-m_+t}+(-1)^tA_-e^{-m_-t}+\dots$ $(P=\sigma_t\sigma_s)$ with σ_t the eigenvalue of Ξ_4 , which \notin time-slice group)

How does shift symmetry work in the Symanzik EFT?

Shift symmetry is lattice translation plus phases, with generators

$$S_{\mu}\chi(x) = \zeta_{\mu}(x)\chi(x+\mu)$$

Any representation thus takes the form

$$S_{\mu} \to e^{ip_{\mu}} \Xi_{\mu} \qquad (-\pi/2 < p_{\mu} < \pi/2)$$

with

$$\{\Xi_{\mu}, \Xi_{\nu}\} = 2\delta_{\mu\nu}$$

However, any continuum EFT is invariant under continuum translations; which, for distance r, act on any continuum field as

$$\phi(p) \to e^{ip \cdot r} \phi(p)$$

Choose *r* such that $p \cdot r = -p_u$

 \Rightarrow EFT is invariant under the group Γ_4 generated by the Ξ_{μ}

Definition of "rooted" staggered fermions:

- separate staggered fields for each physical flavor single-site mass terms, masses m_u , m_d , m_s each flavor comes in four tastes
- continuum limit: 4 up, 4 down and 4 strange quarks with $U(4)_u \times U(4)_d \times U(4)_s$ symmetry (non-deg. masses)
- $Det(D_{stag}) \sim Det^4(D_{cont}) \Rightarrow take Det^{1/4}(D_{stag})$
- $\operatorname{Det}(D_{stag}) > 0$ (any m, Det only depends on |m| because of $U(1)_{\varepsilon}$ symm.), $\operatorname{Det}(D_{cont}) > 0$ ($m_q > 0$) \Rightarrow pick positive 4th root $m_q \propto |m|$

Questions and answers:

- 1) Are rooted staggered fermions a regulator like any other, or not? No, they are non-local, non-unitary at $a \neq 0$.
- 2) Can the continuum limit be taken, and is it in the correct universality class? Most likely: Yes!
- But: we work at a ≠ 0, where the diseases are present!
 ⇒ need EFT to parameterize the non-local effects.
 relevant EFT framework: SChPT + "replica trick"

arguments:

- SChPT ok for unrooted + decoupling (Bernard)
- direct derivation from RG framework (Bernard, MG & Shamir)

Continuum limit — more detail:

$$Z_{cont}(J) = \int \mathcal{D}\mathcal{U} \exp(-S_g) \prod_{i=1}^{N_f} \text{Det}^{1/4} \bigg((D + m_i) \times \mathbf{1}_{taste} + J \bigg)$$

- project onto physical Hilbert space by taking $J = \tilde{J} \times \mathbf{1}_{taste}$ \Rightarrow correct correlation functions for QCD with all quark masses positive and any number of flavors!
- no "paradoxes" based on symmetries can arise!
- many unphysical states with non-trivial taste charges but can use $SU(4)_{taste}$ to relate (non-anomalous) charges, e.g. $\overline{u}\gamma_5 d \underset{SU(4)_{taste}}{\longrightarrow} \overline{u}(\gamma_5 \times \xi) d$
- mixing with gluonic states: must use taste-singlet operators.

(Bernard, MG, Shamir & Sharpe)

Unitarity and the replica trick

Apparent paradox: there are 15 pions per staggered flavor, but the $N_f = 1$ theory made by 4th-rooting should have none

Consider N_f staggered fields, each replicated n_r times:

- perturbation theory: number of quarks on a closed loop is $4N_f n_r \Big|_{n_r = 1/4} = N_f$
- pions in N_f = 1 theory (Bernard et al. in staggered ChPT): intermediate two-pion states in taste-singlet scalar two-point function:

$$(16n_r^2 - 1) \times \text{cut}(2m_\pi) = \begin{cases} 15 \times \text{cut}(2m_\pi), & n_r = 1\\ 0, & n_r = 1/4 \end{cases}$$

zero follows from taste symmetry ⇒ positive and negative weights!

1) Non-locality of 4th-rooted staggered fermions:

Assume a **local** D exists such that (at $a \neq 0$)

$$Det^{1/4} (D_{stag}) = Det (D) exp(-\delta S_{eff}/4),$$

with δS_{eff} local (no long-distance effects). Take fourth power:

$$Det(D_{stag}) = Det(D_{4t}) exp(-\delta S_{eff}), D_{4t} = D \times 1$$
;

 D_{4t} describes a theory with exact SU(4) taste symmetry.

Compare spectra at $a \neq 0$:

 D_{4t} : 15 degenerate pions in adjoint of SU(4)

 D_{stag} : 15 pions are non-degenerate (only one "exact" pion)

 $\Rightarrow \delta S_{eff}$ knows about long-distance effects! (Bernard, MG & Shamir)

RG taste basis:
$$D_{taste}^{-1}=\frac{1}{\alpha}+QD_{stag}^{-1}Q^{\dagger}$$
 (Shamir) with (for the free case)

$$QD_{stag}Q^{\dagger} = \sum_{\mu} \left[i(\gamma_{\mu} \otimes 1) \sin(p_{\mu}) + 2(\gamma_{5} \otimes \xi_{5}\xi_{\mu}) \sin^{2}(p_{\mu}/2) \right] + m$$

Q is a unitary matrix connecting one-component and taste bases: rearranges fields on each 2^4 hypercube into $4(\text{spin}) \times 4(\text{taste})$ field; α is of order 1/a: just adds a contact term. We have

$$\operatorname{Det}(D_{stag}) = \operatorname{Det}((\alpha G)^{-1}) \operatorname{Det}(D_{taste})$$

$$(\alpha G)^{-1} = \frac{1}{\alpha} D_{stag} + Q Q^{\dagger} = \frac{1}{\alpha} D_{stag} + \mathbf{1}$$

 D_{stag} + α is fermion with mass ~1/a : short distance contribution

 D_{stag} and D_{taste} are completely equivalent.

Note: looks like starting point for RG blocking -- see later

Free theory:

$$D_{taste} = \frac{\sum_{\mu} i(\gamma_{\mu} \otimes \mathbf{1})\bar{p}_{\mu} + (\mathbf{1} \otimes \mathbf{1}) \left(m + \frac{1}{\alpha}(\hat{p}^2 + m^2)\right) + \frac{1}{2} \sum_{\mu} (\gamma_5 \otimes \boldsymbol{\xi}_{\mu} \boldsymbol{\xi}_5) \hat{\boldsymbol{p}}_{\mu}^2}{1 + \frac{2m}{\alpha} + \frac{1}{\alpha^2}(\hat{p}^2 + m^2)}$$

$$\bar{p}_{\mu} \equiv \sin p_{\mu}$$
, $\hat{p}_{\mu} \equiv 2 \sin (p_{\mu}/2)$, $\hat{p}^2 \equiv \sum_{\mu} \hat{p}_{\mu}^2$

Note Wilson-like term: taste-invariant part has no doublers! (Use taste-inv. part as "comparison" theory in RG treatment.)

Non-locality and taste symmetry breaking:

Split
$$D_{taste} = D \otimes \mathbf{1} + \sum_{A} D_{A} \otimes \Xi_{A}$$

then

$$\log \operatorname{Det}(D_{taste}) = 4 \log \operatorname{Det}(D) + \log \operatorname{Det}\left(1 + \sum_{A} D^{-1}D_{A} \otimes \Xi_{A}\right)$$

D and D_A are local, but $\Sigma_A D^{-1} D_A \otimes \Xi_A$ is not!

i.e., taste breaking is local for action, but not for physics.

However, the taste-breaking D_A are irrelevant operators

⇒ conjecture: taste symmetry is restored in continuum limit
 ⇒ non-localities disappear in continuum limit.
 (validity of 4th root is tied to validity of unrooted staggered fermions)

Comments:

- Non-locality comes from breaking of taste symmetry, which implies (*e.g.*) non-degeneracy of (too many) pions:

$$(m_{\pi}^{A})^{2} = (m_{\pi}^{GB})^{2} + c^{A} a^{2} \Lambda^{4}_{QCD}$$

Two IR effects: quark mass m and splitting $(a\Lambda^2_{QCD})^2$, (related to splitting $a\Lambda^2_{QCD}$ of IR eigenvalues)

- ⇒ remove unphysical IR scale first:
- take $a \rightarrow 0$ before taking $m \rightarrow 0$!
- Other masses split also, but pions lead to the most dramatic effect.
- Non-locality at $a \neq 0$ leads to unitarity violations:
- take a → 0 before continuing to Minkowski space!

2) Continuum limit: an RG framework

(Shamir)

Natural framework:

- IR eigenvalues should form taste multiplets, but not UV evs:
 - ⇒ get rid of UV evs by RG blocking.
- fix coarse spacing $a_c << 1/\Lambda_{QCD}$, take fine spacing $a_f \rightarrow 0$: gives "perfect action" \Rightarrow same symmetries as continuum
- works for unrooted staggered theory; tells us how taste symmetry is restored (scaling with a_f/a_c)
- "bridge" to rooted theory (no direct RG!):
 "reweighted theories":

lattice theories with exact taste symmetry, with same $a_f \rightarrow 0$ limit as staggered theory

RG blocking (unrooted!):

Thin out fermion fields, using gaussian kernel ($\psi^{(k)}$ on lattice $a_k = 2^k a_f$)

$$\alpha_k(\overline{\psi}^{(k)} - \overline{\psi}^{(k-1)}Q^{(k)\dagger})(\psi^{(k)} - Q^{(k)}\psi^{(k-1)})$$

Result:

$$Z = \int DUDV^{(1)} \dots DV^{(n)} \exp\left(-S_g - \sum_{k=1}^n K_g^{(k)} - \sum_{k=1}^n S_{eff}^{(k)}\right) \operatorname{Det}(D_n)$$

$$D_k^{-1} = \alpha_k^{-1} + Q^{(k)}D_{k-1}^{-1}Q^{(k)\dagger} \quad \text{or} \quad D_k = \alpha_k - \alpha_k^2 Q^{(k)}G_k Q^{(k)\dagger}$$

$$G_k^{-1} = D_{k-1} + \alpha_k Q^{(k)\dagger}Q^{(k)}$$

- $S^{(k)}_{eff} = \log \operatorname{Det}(G_k)$ from integrating out UV part of fermions, local: G_k , and thus D_k , are local, because $H_k = (\gamma_5 \otimes \xi_5) G_k^{-1} = H_k^{\dagger}$ has gap ("mobility edge") $\propto \alpha_k \propto 1/a_k$
- "postpone" gauge-field blocking (kernels K_g) (multiple gauge fields $U, \ldots, V^{(n)}$)

Reweighting

Split into taste-singlet and taste-breaking part: $D_n = \tilde{D}_n \otimes 1 + \Delta_n$ and interpolate between staggered and taste-invariant theories:

$$Z(t) = \int \prod_{k} DV^{(k)} \exp\left(-S_g - \sum_{k=1}^n K_g^{(k)} - \sum_{k=1}^n S_{eff}^{(k)}\right) \operatorname{Det}(\tilde{D}_n \otimes 1 + t\Delta_n)$$

For t = 0, this theory has exact SU(4) taste symmetry,

⇒ can take the 4th root and obtain local one-taste theory:

$$Z^{reweigh} = \int \prod_{k} DV^{(k)} \exp\left(-S_g - \sum_{k=1}^n K_g^{(k)} - \frac{1}{4} \sum_{k=1}^n S_{eff}^{(k)}\right) \operatorname{Det}(\tilde{D}_n)$$

Claim: for $n \to \infty$, this theory coincides with the non-local theory

$$Z^{root} = \int \prod_{k} DV^{(k)} \exp \left(-S_g - \sum_{k=1}^n K_g^{(k)} - \frac{1}{4} \sum_{k=1}^n S_{eff}^{(k)} \right) \operatorname{Det}^{1/4}(D_n)$$

Connect the rooted and reweighted theories: Assume the scaling relations (up to logs)

$$||D_n^{-1}|| \lesssim \frac{1}{a_c m_r(a_c)}, \qquad ||\Delta_n|| \lesssim \frac{a_f}{a_c} = \frac{1}{2^n}$$

then for *n* large enough we may expand:

$$\left\langle \mathcal{O}^{(n)} \right\rangle_n^{root} = \left\langle \mathcal{O}^{(n)} \exp \left[\frac{1}{4} \operatorname{tr} \log \left(1 + \Delta_n (\tilde{D}_n \otimes 1)^{-1} \right) \right] \right\rangle^{reweigh}$$

$$= \left\langle \mathcal{O}^{(n)} \right\rangle_n^{reweigh} \left(1 + O(\epsilon_n^2) \right)$$

$$\epsilon_n = \|\Delta_n\| \|D_n^{-1}\| \lesssim \frac{1}{2^n} \frac{1}{a_c m_r(a_c)}$$

For large enough *n*, the expansion of the log is convergent.

Scaling of Δ_n :

- So far, assumed that Δ_n scales like a_f/a_c on an ensemble
- To argue this, use asymptotic freedom, and $\Lambda_{_{QCD}} << 1/a_c << 1/a_f$
 - ⇒ scaling as predicted by perturbation theory
 - $\Rightarrow \Delta_n$ is a local operator (D_n is), and indeed scales as expected in all theories!
- Summary of argument:
 - Δ_n scales like a_f in unrooted theory (local);
 - thus: Δ_n scales like a_f in 4-taste reweighted theory (local);
 - thus: Δ_n scales like a_f in 1-taste reweighted theory (local);
 - reconstruct rooted theory from 1-taste reweighted

3) SChPT from RG approach (Bernard, MG & Shamir)

For small-enough lattice spacing, a, EFTs like the Symanzik effective theory (SET) and chiral perturbation theory (ChPT) account for lattice artifacts through a systematic expansion in $a\Lambda_{QCD}$

Key assumption: the underlying lattice theory is local

However:

QCD with rooted staggered fermions ($Det^{1/4}(D_{stag})$) is non-local

⇒ can the construction of a SET and staggered ChPT be extended to rooted staggered QCD?

Intuitive idea: consider n_r replicas, then continue $n_r \rightarrow 1/4$, but dependence of EFT coefficients on n_r is not known

Even at a = 0.06 fm lattice artifacts (e.g., mass splittings) are significant!

Start from Shamir's RG analysis:

1) Go to taste basis (Q is unitary):

$$D_{taste}^{-1} = \frac{1}{\alpha} + Q D_{stag}^{-1} Q^{\dagger}$$

2) Carry out *n* RG blocking steps (postpone integration over gauge fields):

$$Z(n_r) = \int \mathcal{D}\mathcal{U} \prod_{k=1}^n \mathcal{D}\mathcal{V}^{(k)} \mathbf{B}_n \left(n_r; \mathcal{U}, \mathcal{V}^{(k)} \right) \operatorname{Det}^{n_r} \left(D_{taste, n} \right)$$

Here

 n_r is the number of "replicas" -- take integer for now!

 $D_{taste,n}$ is staggered Dirac operator after n RG steps;

 $\mathcal{V}^{(k)}$ are blocked gauge fields;

B_n is local (on coarse lattice) Boltzmann weight:

So far standard RG set-up again

Generalized theory:

Replace
$$(D_{taste,n} = \tilde{D}_{inv,n} \otimes \mathbf{1} + \Delta_n)$$

 $\operatorname{Det}^{n_r}(D_{taste,n}) \to \operatorname{Det}^{n_s}(\tilde{D}_{inv,n}) \frac{\operatorname{Det}^{n_r}(\tilde{D}_{inv,n} \otimes \mathbf{1} + t\Delta_n)}{\operatorname{Det}^{n_r}(\tilde{D}_{inv,n} \otimes \mathbf{1})}$

For t = 1 and $n_s = 4n_r$ this is staggered theory with n_r replicas; For t = 0 this is reweighted, local theory with n_s taste-singlet fermions; For n_r = any positive integer, and any t, this defines a local theory \Rightarrow assume that SET (and thus ChPT) exist

Now take n_s fixed, not equal to $4n_r$, then SET still exists -think of SET as expansion in a_f , with coefficients that depend on a_c (need to assume this works for partially quenched theories)

Important consequences:

Can expand determinant ratio in *t*:

$$\frac{\operatorname{Det}^{n_r}\left(\tilde{D}_{inv,n}\otimes\mathbf{1}+t\Delta_n\right)}{\operatorname{Det}^{n_r}\left(\tilde{D}_{inv,n}\otimes\mathbf{1}\right)}=\exp\left[n_r\operatorname{Tr}\log\left(1+t(\tilde{D}_{inv,n}^{-1}\otimes\mathbf{1})\Delta_n\right)\right]$$

$$\Delta_n \sim a_f \implies$$

power of n_r less than power of t less than or equal to power of a_t

Lattice: all correlation functions, expanded to a fixed order in a_f are polynomial in n_r , hence we may continue in n_r to $n_s/4$!!

SET: n_r dependence comes from Symanzik coefficients and loops \Rightarrow "staggered SET with the replica rule" (set t = 1)

Comments:

- SET is complicated for $t \neq 1$, but don't need explicit form (lattice spacing is a_f , depends also on a_c)
- Only staggered external legs and t = 1:
 - 1) all staggered symmetries apply (shift, $U(1)_{\epsilon}$) \Rightarrow form of SET is that of Lee & Sharpe (after field redefinitions)
 - 2) if also $n_r = n_s/4$: lattice spacing is a_f
- Expansion in $\tilde{D}_{inv,n}^{-1}\Delta_n \sim D_{cont}^{-1}(D_{latt}-D_{cont}) \sim a_f p < \frac{a_f}{a_c}$ hence the generalized theory has no $1/a_f$ divergences (same continuum limit for all t!)
- Transition to ChPT works the same way
 - ⇒ "SChPT with the replica rule" (Aubin & Bernard)

- The n_s taste-singlet fermions play the role of the physical flavors; continuum limit ($n \to \infty$) is independent of n_r (and a "perfect" action)
- Turning on t "decorates" or "staggers" these fermions: n_r appears; to any given order in a_f correlation functions are polynomial in n_r thus we may continue n_r to n_s /4
- For $n_r = n_s / 4$ with n_s not a multiple of four the theory is non-local and this non-locality is reproduced by the EFT: non-local behavior is reproduced by continuing the n_r dependence appearing through loops to $n_s / 4$ (see Bernard et al. for example)

⇒ "SET/SChPT with replica rule"

$$m_{\pi}^2/(m_x + m_y) = B + \log s$$

dotted line: prediction from other three lattice spacings

red line: predicted continuum curve

Global fit (masses and decay constants) to rooted SChPT (MILC) 930 data points, 28 unconstrained parameters+26 constrained parameters (All fits with $n_r = 1/4$; fitting n_r from data gives value 0.31(4))

A few interesting results:

```
f_{\pi} = 128.3 (5) (+2.4–3.5) MeV (exp: 130.7 ± 0.1 ± 0.4) 

f_{K} = 156.5 (4) (+1.0–2.7) MeV (exp: 159.8 ± 1.4 ± 0.4) 

f_{K}/f_{\pi} = 1.197 (3) (+6–13)
```

MS-bar masses (at 2 GeV):

$$m_s$$
 = 88 (0) (3) (4) (0) MeV
 $(m_u + m_d)/2 = 3.2$ (0) (1) (2) (0) MeV
 m_u / m_d = 0.42 (0) (1) (0) (4) (rules out $m_u = 0$!)

errors: statistical/systematic/perturbation theory/EM corrections

Final comments:

- There is very good theoretical and numerical evidence that taking the 4th root works, even if the theory at a ≠ 0 is sick.
 There is (at present) no argument against!
- Locality and scaling of operators can be tested, numerically and (in principle) in "multi-gauge-field" perturbation theory.
 Doing this would go long way toward confirming validity of the "rooting trick."
- Can derive EFT valid at $a \neq 0$.
- Spectacular success for mesons; but baryons and (most)
 weak matrix elements quite difficult. Reason: lack of SU(4)
 symmetry at a ≠ 0!
- → use mixed actions: staggered sea + domain-wall valence!