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Species doubling

In the continuum
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On the lattice (nearest neighbors)
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= chirality flips: eight species have Q, = +1, eight have Q, = -1
(Karsten & Smit, Nielsen & Ninomiya)



* Reduce species doubling by starting with one-component lattice field:
(), X ()
— only symmetries are (euclidean) space-time symmetries

e Species doubling & hypercubic symmetry:
16 poles in continuum = 4 (Dirac) X4 (flavor) ?

e Lattice symmetries:

translations S, —  continuum translations
hypercubic rotations R, —  SO(4) in continuum
?7? —  SU(4) flavor?

» Make “normal” translations follow from S 2, with

Su: xlz) — (ulxe)x(x + p)

£,(x) can only be a phase factor, with £ (x) £ (x+u) = 1

* Get (discrete subgroup of) SU(4) from S —1try S 5 =-S5 S,



= X)) Slx+u) = - LX) E(x+V)

— choose Culz) = (1) = e (essentially unique)

e irreps of translation group — momentum space:
\(p) Z e "Pry(x) — Z e PTHITC, A Y (2 + 1)
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( \l_/) | )K\.', /

— the 16 fields ¢,(q9) = x(q+n,), =, € {(0,0,0,0),(7,0,0,0),...}
with -71/2 < q , < 7/2 form a 16-dim representation of the group

generated by SM, Ie.,

- PRI i, (= PR
Dy Dalq) — e " (=, )ABOB\q)



The &, generate a 32-element group I',C SU(4)
SU(4) is the smallest continuous group containing I',:

I',to enlarge to SU(4) in the continuum limit just like

hypercubic rotations enlarge to SO(4)

Now we need an action invariant under the lattice group:

l : :
S Z 5 x(z)n. ()| x(z+pn) — x(lz—pn) +m Z Y(2)y(x)
€Il {

Invariant under shifts S

Colz)n (x)Cp(x + 1) Nulxr 4+ v)

() (—1)"*"7



Define 7, : () — n.(x)x(z+ p) (not a symmetry!)
iIn momentum space: 7/, : Oalq) — e (U )apop(q)
then 1,71, 1,1, , p+#v - {l.. T} =26,

furthermore 1,.S, = S,T, - I Z0] =0

i

— [ <L with v, a set 4 x 4 of Dirac matrices

e free action in momentum space:

" l .
S E / A)r ]| (/l y ‘( L4, et ) ) q ) 4+ m (,‘»Ij(/:lr.'»I:(/:l

(note: free action invariant under full SU(4)!)
e Couple to gauge fields: give y, x color index

I
S Z SMpe(x)X(2) [( wlz)x(z +p) = U\ (z — p)x(x ;fﬂ ~ H/Z (2 )x(x)

l“‘[

has full space-time lattice symmetry group, incl. rotations, reflections



Connection with nalve fermions

l
Snaive E 5 (x)yu (e +p) —Ploe —p1))

€Ll B

Define w(x) =" ...7, ' x(x) then

1
Onaive Z3\'Iﬁ-riu.//,....'Ii-rji"i\'Iﬁ-r'/fi',. X(T — f)a)

T

— drop Dirac index on !

y transforms in reducible representation of lattice symmetry group:
1 naive fermion = 4 staggered fermions

Axial symmetry: invariance of S for m =0
Y(x) = 75 Y(x) then x(x) — y5 &(x) x(X)

Indeed, x(x) — et x(x), x(x) = x(x) e

is U(1), axial symmetry of S for m =10 (Kawamoto-Smit)



What is this in the continuum limit?

Note: 1), (x)¢, (=) = (1) - €(x) H nu(2)C, ()

hence H 1, 'S x(z) = e(x)x(x)

— in mom:'entum space H ', =, = 1'5=5: non-singlet axial symm.!

— one exact Goldstone boson for m = 0, interpolating field &(x)(x)x(x)
What about other Goldstone bosons?

Are they automatically massless in the continuum limit,

or is fine tuning a la Wilson required?

— mass renormalization -- additive or multiplicative? (MG & Smit)

Note that U(1), does not exclude

l , , ,
Y s X (@) (@) U (@)x(z + 1) + Ul (z = p)x(@ = )] — Y mudy,



Need all lattice symmetries to exclude fine tuning:
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(rotates )?(X)TIM(X)X(XJW) , X(X)C,(X)x(x+u) as vectors; “twisted” SO(4))
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Together with shift symmetry this excludes all I', except 1 and I';
and all =5 except 1.

Then U(1), excludes 1 and I's mass terms.



Singlet ys , i.e., w —= vy 7  on lattice:

X(z) — Dilsd3Tax(x)

mxz)m(z+ 1)z +14+2)mp(z+14+24+3)x(z+1+ 24

~ o~
-

meson operator: x(x)T,T,T,T,x(x) + h.c.

D0000000,

has - //n = 0 in the continuum limit
\ (Sharantchandra, Thun & Weisz)
20000000,

All other mesons &(x)x(x)S x(x) with S, = 1 have

flavor/taste splittings: m% = mA + cqa*A*



Pions and taste breakingata = 0 (MILC)
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What causes taste breaking on the lattice?

ap
l - a“
ak = , >, 5sin® (fak,)  4n

ap +1, n = # components of 7, equal to =

— effective 4-fermion taste-breaking operators of order a2 :

_l‘ ] . b "‘ ] . ] ) . - o . \‘ . \‘ .
a (Y rp&EVL NV RELEGY L) h.c. - a " 1r |, {528, 52| h.c.

(classify all operators in QCD and in ChPT: Lee & Sharpe, Aubin & Bernard)

— reduce taste breaking by improving quark-gluon vertex
k, b,p

i Ty, . | |
1g1yo(p—q+ k — ) cos (ap,, 4 5 ak,, )
(1 y4
| I
ak, =0 coslap,) =~ 1~ —a’p, reduce a*term by improving

(if ak, = m for some v = u th_e 4-fermion vertex is generated)



Taste basis (Gliozzi, Kluberg-Stern et al.)

Define a 4-taste Dirac field from the 16 fields y(x = 2y + A) living
in the hypercube A & {0, 1}:

I
aa(y) = —= D _(VA)aaX(2y + A)
\r '\ .’l

(free theory; putin Wilson lines along paths to A)
l

- S 5 Z(Tl':!'[//)‘;,I:(‘l:'{/ o) — Py — ) l:

—

171
I

tr[v(y)vs ((U(y + p) + Uy — p) — 2¢(y) ')

l " _ ‘
5 Z(r'Iﬁ//il‘j.',,uj_('::,r/ - L) Wy — j))

(Y )YvsE:E (W (y + 1) + vy — 1) 21'(//)})

with (£, )baVaa = VaalYu)ab = (V) baVaa

l Cxa \ ) ao

S : naive kinetic term plus “flavored” (anti-hermitian) Wilson term



Shift symmetry in taste basis:

il 21 _ | L A/~ _ f | L - 71 = 1Y
Y ) o L\Sp y TS o) \ ) S y T So )Y\ H ]

* Need to add gauge fields and keep them on the “fine” lattice
in order not to break shift symmetry!

 “Wilson” term is order a , but with fixed coefficient
e Easy to construct operators in taste basis, but these are not in

irreps of the staggered symmetry group, which live in momentum
space



Parity (MG & Smit)

continuum:  y(x,t) — y, Y(-x,1)
lattice:  x(x) = e(x)n,(X)E,X)x(Ix) or @(q) = T,TsE,Es ¢(lg)
Combine /; = I;/5, then ¢(q,q,) — T',Z, ¢(-q,q,)

Make into unflavored (tasteless) parity:

x(z,1t) - Sal ol (x) = Gula t)(—=1) " 727 y(—x, t 4+ 1)

.-l;(:({. q4)  Lge™ o q.q4)

Not a symmetry of operators on a fixed time slice!

e time-slice operators couple to y,55; and v,7,7:555,55 continuum
states

 correlators contain relative (-1)t, e.g. A, ¢ """ 4 (1) A
(P = 0,0, with o, the eigenvalue of =, , which ¢ time-slice group)



How does shift symmetry work in the Symanzik EFT?

Shift symmetry is lattice translation plus phases, with generators
\ Y () Culx)x(x + pu)

Any representation thus takes the form

'\' ) "."!- - ( p— e )
A .“.‘, * ( — \ nJj & ™~ /),,l "o l

-
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with {

[1]
[1]

ff
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However, any continuum EFT is invariant under continuum translations;
which, for distance r, act on any continuum field as

Q(p) — ¢ T W\p)

Choose rsuch that pr=-—p,
= EFT is invariant under the group I', generated by the =,



Definition of “rooted” staggered fermions:

separate staggered fields for each physical flavor
single-site mass terms, masses m,, m,, my
each flavor comes in four tastes

continuum limit: 4 up, 4 down and 4 strange quarks
with U(4), X U(4), X U(4), symmetry (non-deg. masses)

Det(Dstag) - Det4(Dcont) = take Det1/4(DStag)

Det(D >0 (any m,
Det only depends on |m| because of U(1), symm.),
Det(D,,,) >0 (m,>0) = pick positive 4th root

mg o |ml|

stag)



Questions and answers:

1)

Are rooted staggered fermions a regulator like any other, or not?
No, they are non-local, non-unitary at a # 0.

Can the continuum limit be taken, and is it in the correct
universality class?
Most likely: Yes!

But: we work at a # 0, where the diseases are present!
= need EFT to parameterize the non-local effects.
relevant EFT framework: SChPT + “replica trick”

arguments:
- SChPT ok for unrooted + decoupling (Bernard)
- direct derivation from RG framework (Bernard, MG & Shamir)



Continuum limit — more detail:

. ‘\'_f
Zcont(J) / DU exp(—S,) HD(\H?*(([) Fm;) X Ligste 4 .])
' =1 :

project onto physical Hilbert space by taking J = J x L,
=> correct correlation functions for QCD
with all quark masses positive and any number of flavors!

no “paradoxes” based on symmetries can arise!

many unphysical states with non-trivial taste charges
but canuse SU(4),... to relate (non-anomalous) charges,
e.g. U ;(/ — > ) ul Y5 X (}r/'

mixing with gluonic states: must use taste-singlet operators.

(Bernard, MG, Shamir & Sharpe)



Unitarity and the replica trick

Apparent paradox: there are 15 pions per staggered flavor, but the
N; =1 theory made by 4th-rooting should have none

Consider N, staggered fields, each replicated n, times:

e perturbation theory:
number of quarks on a closed loop is 4/N;n, n = 1i4 = N;

e pions in N; = 1 theory (Bernard et al. in staggered ChPT):

intermediate two-pion states in taste-singlet scalar two-point function:

-l . X { ) \
(16n° — 1) x cut(2m..) J o X cut(emyx) ,  n, | ,
' 1 U . n, | /4

zero follows from taste symmetry = positive and negative weights!



1) Non-locality of 4th-rooted staggered fermions:

Assume a local D exists such that (at a # 0)

Det"* (D) = Det (D) exp(- 8S,/4),

stag

with 6S_, local (no long-distance effects). Take fourth power:

Det(Dg,,) = Det (D,,) exp(- 0S4, D, =D X1;

stag)

D,, describes a theory with exact SU(4) taste symmetry.
Compare spectra at a # 0:
D,: 15 degenerate pions in adjoint of SU(4)

D.... 15 pions are non-degenerate (only one “exact” pion)

stag-

= 0S5, knows about long-distance effects! (Bernard, MG & Shamir)



. 1 |
RG taste basis: D;l,. = — + QD! Q' (Shamir)

¥
with (for the free case)

(QDstaqsQ E [/':j*;“., L)sin(p,) + 2(y5 ® £5&,.) sSIn” (:/)}‘.‘,:‘:2:1- Em

Q is a unitary r'r'1atrix connecting one-component and taste bases:
rearranges fields on each 24 hypercube into 4(spin) X 4(taste) field;
o is of order 1/a : just adds a contact term. We have

Det(Dstag) = Det((aG)™") Det(Dyaste)

- 1 a1
(@G)™' = =Dgtag + QQ" = =Dty + 1
¥ (8

D.. .+ o is fermion with mass ~1/a : short distance contribution

stag

D and D are completely equivalent.

stag taste

Note: looks like starting point for RG blocking -- see later



Free theory:

2 (v ®1)p, +(1®1) (m + L(p? +m?)) + % 2n(® Eufs)ﬁi
14 22 4 5 (p? + m?)

Dtastt, -
_ . . ot [ ; A2 A9
py=sinp, , p,=2sin(p,/2), p°= E P,

7

Note Wilson-like term: taste-invariant part has no doublers!
(Use taste-inv. part as “comparison” theory in RG treatment.)



Non-locality and taste symmetry breaking:
Split Dipse =D @14 ZD,l =P

A
then

log Det(Dyaste) = 4log Det(D) + log Det (l | Z[)_lp_-x X E.‘\)
A

D and D, arelocal, but =, D' D,® Z, is not!

I.e., taste breaking is local for action, but not for physics.
However, the taste-breaking D, are irrelevant operators

=> conjecture: taste symmetry is restored in continuum limit

=> non-localities disappear in continuum limit.
(validity of 4th root is tied to validity of unrooted staggered fermions)



Comments:

- Non-locality comes from breaking of taste symmetry,
which implies (e.g.) non-degeneracy of (too many) pions:

J

Two IR effects: quark mass m and splitting (aA?,p)?,
(related to splitting aA?,-, of IR eigenvalues)

=> remove unphysical IR scale first:
+ take a — 0 before takingm — 0!

- Other masses split also, but pions lead to the most dramatic effect.
- Non-locality at a # 0O leads to unitarity violations:

« take a — 0 before continuing to Minkowski space!



2) Continuum limit: an RG framework (Shamir)

Natural framework:

* IR eigenvalues should form taste multiplets, but not UV evs:
= get rid of UV evs by RG blocking.

* fix coarse spacing a, << 1/A,p, take fine spacing a, — O:
gives “perfect action” = same symmetries as continuum

e works for unrooted staggered theory;
tells us how taste symmetry is restored (scaling with a;/a_)

e “bridge” to rooted theory (no direct RG!):
“reweighted theories™:
lattice theories with exact taste symmetry,
with same a; — 0 limit as staggered theory



RG blocking (unrooted!):

Thin out fermion fields, using gaussian kernel (y/* on lattice a, = 2%a,)

' |'|"'ll /1 | ] (1. {1 \
/ \" 4 . \ .I \ [/ \ |\ A iR |\
. (1 W Q) (P — QY Y 2

Result;

7 //)l'/)\'[---/”"““-\l)( Sy =y K ZH,*{",) Det(D,,)
N , k=1 k=1

/)r ] O : l | (L) k) /): 17 l (v)l k) Or /): Qp. ”:'_’(L) k) (.l’}" (v)l i)
G ' = D1 + apQWTQ™
o SW_,=log Det(G,) from integrating out UV part of fermions, local:

G, , and thus D, , are local, because
H,=(ys ® &) G, = H, has gap (“mobility edge”) « o, « 1/a,

* “postpone” gauge-field blocking (kernels K,)
(multiple gauge fields U, ..., V(")



Reweighting

Split into taste-singlet and taste-breaking part: 1, D,®1+A,
and interpolate between staggered and taste-invariant theories:

Z(t) / [[pv™ vx])( Sy =Y KM Zs) Det(D,, @ 1+ tA,)
A k=1 k=1

For t = 0, this theory has exact SU(4) taste symmetry,
=> can take the 4th root and obtain local one-taste theory:

reweigh /'H,)\-;m «w( S, Z/\ iZs’) Det(D,,)
Sk _ k=1 k=1

Claim: for n — « , this theory coincides with the non-local theory

Zro” / [[pv™ ('xp( Sg =D K =5 s) Det'/*(D,,)
) A k=1

k=1



Connect the rooted and reweighted theories:
Assume the scaling relations (up to logs)

1 (l 4 l
DY < A<= |

Y A.mylas) Y oa, 27

'

then for n large enough we may expand:
(OY) ( OV exp 111'10;{ ( | + AL (D, ®1)"° ) )

.::f' O (14 O(e2))
| l

~ ._)'.vi (,l‘ f,'/'.‘((l'.-:l

€n 1A 1Dy

For large enough n, the expansion of the log is convergent.



Scaling of A,

 So far, assumed that A_scales like as/a, on an ensemble

» To argue this, use asymptotic freedom, and A << 1/a_ << 1/a;
. . . QCD
=> scaling as predicted by perturbation theory
= A, is a local operator (D, is), and indeed scales as expected in
all theories!

e« Summary of argument:
- A, scales like a; in unrooted theory (local);
- thus: A, scales like a; in 4-taste reweighted theory (local);
- thus: A, scales like a; in 1-taste reweighted theory (local);
- reconstruct rooted theory from 1-taste reweighted



3) SChPT from RG approach  (Bemard, MG & Shamir)

For small-enough lattice spacing, a, EFTs like the Symanzik effective
theory (SET) and chiral perturbation theory (ChPT) account for lattice
artifacts through a systematic expansion in aA .,

Key assumption: the underlying lattice theory is local

However.
QCD with rooted staggered fermions (Det"*(D.,,)) is non-local

=> can the construction of a SET and staggered ChPT be extended to
rooted staggered QCD?

Intuitive idea: consider n, replicas, then continue n,— 1/4, but
dependence of EFT coefficients on n.is not known

Even at a = 0.06 fm lattice artifacts (e.g., mass splittings) are significant!



Start from Shamir's RG analysis:

1) Go to taste basis (Q is unitary):

| ‘
D, - QD Q

(X

2) Carry out n RG blocking steps (postpone integration over gauge fields):

i

\

Z(n,) / pu [T VB, (n,:U, V™)) Det™ (Diasie.n)
. i 1 ‘

Here
n.is the number of “replicas” -- take integer for now!

D..s. 1S staggered Dirac operator after n RG steps;
V" are blocked gauge fields;
B, is local (on coarse lattice) Boltzmann weight:

So far standard RG set-up again



Generalized theory:

Replace (Diueien = Dion @1+ A)

o Det™ (Dyppn ® 14 1A, )
Det"" (D, <+, ) — Det o4 ( Do ) " "

Det™ (Dipun @ 1)
Fort=1 and n = 4n,this is staggered theory with n, replicés ,

For t =0 this is reweighted, local theory with n_ taste-singlet fermions;
For n. = any positive integer, and any ¢, this defines a local theory

= assume that SET (and thus ChPT) exist

Now take n, fixed, not equal to 4n, , then SET still exists --
think of SET as expansion in a;, with coefficients that depend on a_

(need to assume this works for partially quenched theories)



Important consequences:

Can expand determinant ratio in 1 :

Det™ (1) 21 f—\) ox —u,'l‘rlng(l (DL :1}&}”
Det"" (/) f 1-) . ' .

An~af ==

power of n, less than power of { less than or equal to power of a;

Lattice: all correlation functions, expanded to a fixed order in a;
are polynomial in n,, hence we may continue in n,to n /4 !

SET: n.dependence comes from Symanzik coefficients and loops
= “staggered SET with the replica rule” (sett=1)



Comments:

 SET is complicated for t # 1, but don’t need explicit form
(lattice spacing is a;, depends also on a_)

e Only staggered external legs and t = 1:

1) all staggered symmetries apply (shift, U(1),)
= form of SET is that of Lee & Sharpe (after field redefinitions)

2) ifalso n,= n /4: lattice spacing is a;

« Expansionin D' A, ~D ' Dy~ Do) ~arp <
a,

hence the generalized theory has no 1/a; divergences
(same continuum limit for all £ !)

e Transition to ChPT works the same way
— “‘SChPT with the replica rule”  (Aubin & Bernard)



* The n, taste-singlet fermions play the role of the physical flavors;
continuum limit (n — «) is independent of n, (and a “perfect” action)

e Turning on f “decorates” or “staggers” these fermions: n, appears;
to any given order in a; correlation functions are polynomial in n,
thus we may continue n, to n_ /4

e For n. = n /4 with n, not a multiple of four the theory is non-local
and this non-locality is reproduced by the EFT:
non-local behavior is reproduced by continuing the n. dependence
appearing through loops to n. /4 (see Bernard et al. for example)

= “‘SET/SChPT with replica rule”
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930 data points, 28 unconstrained parameters+26 constrained parameters
(All fits with n. = 1/4 ; fitting n, from data gives value 0.31(4))



A few interesting results:
f =128.3(5) (+2.4-3.5) MeV (exp: 130.7 = 0.1 = 0.4)

f.=156.5 (4) (+1.0-2.7) MeV (exp: 159.8 = 1.4 = 0.4)
fl f.=1.197 (3) (+6-13)

MS-bar masses (at 2 GeV):

my =88(0)(3)(4) (0) MeV
(m,+m_ )2 =3.2(0)(1)(2) (0) MeV
m,/m; =0.42(0)(1)(0)(4) (rulesoutm, =01!)

errors: statistical/systematic/perturbation theory/EM corrections



Final comments:

e There is very good theoretical and numerical evidence that
taking the 4th root works, even if the theory at a = O is sick.

There is (at present) no argument against!

e Locality and scaling of operators can be tested, numerically
and (in principle) in “multi-gauge-field” perturbation theory.
Doing this would go long way toward confirming validity of
the “rooting trick.”

e Canderive EFT validata = 0.

e Spectacular success for mesons; but baryons and (most)
weak matrix elements quite difficult. Reason: lack of SU(4)
symmetry ata = 0!

=> use mixed actions: staggered sea + domain-wall valence!



