

Nuclear & Particle Physics

Nuclei (I.Matea)
Particles (G.Moreau)
Neutrinos (L.Simard)

contact: moreau@th.u-psud.fr

Nuclear physics

(I.Matea)

Description of the atomic nucleus

The nuclear landscape and basic facts for **nuclear models**The deuteron properties **Shell model** and residual interaction

Collective excitations in even-even nuclei

Vibrationel and rotational motion

Analyses of the atomic nucleus

Exciting the nucleus:

- Particle Accelerators
- Reactions: direct and indirect reactions
- Insight: production and separation of exotic nuclei, Observing the nucleus
- Radiation interaction with matter
- Particle detection: general properties of radiat. detectors; semiconductor detectors

Selected experimental techniques:

- Particle-gamma detection for nuclear structure studies
- Life-time measurement techniques: from fast timing to beta decay

Applications of nuclear physics (selected topics)

Nuclear radioactivity and radioactive dating

Particle physics

(G.Moreau)

Quantum formalism

- * Basic particles......described by wave functions Fermions (spin ½).....described by spinors
- * Extension of the quantum formalism to relativity
- => Equation of motion : the **Dirac Equation**

$$(i\gamma^{m})_{\mu}-m)\psi=0$$

Particle physics

(G.Moreau)

Quantum formalism

- * Basic particles......described by wave functions Fermions (spin ½).....described by spinors
- * Extension of the quantum formalism to relativity
- => Equation of motion : the **Dirac Equation**

$$(i\gamma^{m})_{\mu}-m)\psi=0$$

Involving...

- Dirac matrices
- Notion of **Anti**-particles
- Chirality vs. Helicity operators

Generating the particle masses

Higgs mechanism

Spontaneous breaking of symmetry

Tests at high-energy colliders

Discovery (2012) of the Higgs boson at LHC

Seminar by an experimentalist

Neutrino physics

(L.Simard)

Particle with very <u>low interaction</u> probability.

- The number of families : existence of sterile neutrinos?
- Its nature : identical to its anti-particle? (Double beta decay)
- Its mass: oscillation, direct measurement, cosmology...

Recommendations for this Minor: -> better to have followed the Major course « Particles, Nuclei and Universe » (1st semester)

-> complementary to the Major course

« Statistical and Quantum Mechanics » (2nd semester).