Problem on Particles \& Symmetries

About fundamental equations

1. Lorentz invariance of Maxwell equations.- Once the field strength $F^{\mu \nu}$ is defined (Lorentz indices $\mu, \nu \equiv 0,1,2,3$), classical Maxwell equations can be written under a covariant form :

$$
\begin{equation*}
\partial_{\mu} F^{\mu \nu}=\mu_{0} j^{\nu} \tag{1}
\end{equation*}
$$

where ∂_{μ} is the 4 -vector derivative and j^{ν} is the 4 -current of charge. The goal of the exercise is to demonstrate the Lorentz invariance of this equation.
(a) As a preliminary, write the Lorentz transformation for a generic 4-vector V^{μ} (expression of V^{μ} in the frame \mathcal{F}^{\prime} in terms of the Lorentz matrix $\Lambda_{. \beta}^{\alpha}$ and V^{μ} in the frame $\left.\mathcal{F}\right){ }^{1}$
(b) Multiply the expression obtained in the previous question by the inverse Lorentz matrix in order to rather express V^{μ} in terms of $\left(\Lambda^{-1}\right)^{\alpha} \dot{\beta}$ and V^{μ}.
(c) Using the Question 1b, rewrite Equation $\sqrt{11}$ by expressing ∂_{μ} as a function of ∂_{μ}^{\prime} and the rank-two tensor $F^{\mu \nu}$ in terms of $F^{\prime \mu \nu}$. Then show that the obtained equation reads as,

$$
\begin{equation*}
\delta_{\alpha}^{\beta} \partial_{\beta}^{\prime}\left(\Lambda^{-1}\right)_{\cdot \gamma}^{\nu} F^{\prime \alpha \gamma}=\mu_{0} j^{\nu} \tag{2}
\end{equation*}
$$

where δ_{α}^{β} denotes the Kronecker symbol.
(d) Replace j^{ν} by its expression in terms of $j^{\prime \nu}$ in Equation (2) and multiply the obtained equality by a Λ matrix to get rid of all the Lorentz matrices. Conclude.
2. Interpretations of the Schrödinger equation.- Within the non-relativistic framework of quantum mechanics, we consider the following Lagrangian density, involving the wave function (complex scalar field) $\phi(t, \vec{x})$ for a particle of mass m,

$$
\begin{equation*}
\mathcal{L}=\frac{i \hbar}{2}\left(\phi^{*} \partial_{t} \phi-\phi \partial_{t} \phi^{*}\right)-\frac{\hbar^{2}}{2 m} \sum_{k=1}^{3} \partial_{k} \phi \partial_{k} \phi^{*}-V(t, \vec{r}) \phi \phi^{*} . \tag{3}
\end{equation*}
$$

$\partial_{t}=\partial / \partial t, \partial_{k}=\partial / \partial x_{k}$ [no covariant formalism] are respectively the time and space partial derivatives, the exponent * stands for the complex conjugate and V is some energy potential.
(a) To find out the equation of motion, apply the Euler-Lagrange equation,

$$
\begin{equation*}
\frac{\partial \mathcal{L}}{\partial \phi}=\partial_{t} \frac{\partial \mathcal{L}}{\partial\left(\partial_{t} \phi\right)}+\sum_{j=1}^{3} \partial_{j} \frac{\partial \mathcal{L}}{\partial\left(\partial_{j} \phi\right)} \tag{4}
\end{equation*}
$$

to the Lagrangian (3). Comment on the obtained equation.

[^0](b) Calculate the following quantity, by using Equation (3),
\[

$$
\begin{equation*}
\mathcal{Q}=\phi \frac{\partial \mathcal{L}}{\partial \phi}+\partial_{t} \phi \frac{\partial \mathcal{L}}{\partial\left(\partial_{t} \phi\right)}+\sum_{k=1}^{3} \partial_{k} \phi \frac{\partial \mathcal{L}}{\partial\left(\partial_{k} \phi\right)} \tag{5}
\end{equation*}
$$

\]

and compare the resulting \mathcal{Q} with the Lagrangian \mathcal{L} itself. Same question for the Quantity (5) with the replacement $\phi \rightarrow \phi^{*}$ [but same $\left.\mathcal{L}\right]$.
(c) Let us now define the two new objects,

$$
\begin{equation*}
R=-\frac{i}{\hbar}\left\{\phi \frac{\partial \mathcal{L}}{\partial\left(\partial_{t} \phi\right)}-\phi^{*} \frac{\partial \mathcal{L}}{\partial\left(\partial_{t} \phi^{*}\right)}\right\}, C_{j}=-\frac{i}{\hbar}\left\{\phi \frac{\partial \mathcal{L}}{\partial\left(\partial_{j} \phi\right)}-\phi^{*} \frac{\partial \mathcal{L}}{\partial\left(\partial_{j} \phi^{*}\right)}\right\} . \tag{6}
\end{equation*}
$$

Calculate the combination $i \hbar\left(\partial_{t} R+\partial_{j} C_{j}\right)$ only by using Equations (4), (6) and the previous question (without calculating explicitly R and C_{j} through the \mathcal{L} definition) ${ }^{2}$. Interpret physically the result as well as R and C_{j}.
(d) Calculate both R and C_{j} by injecting the Lagrangian (3) into Equalities (6). Give C_{j} as an imaginary part.
(e) Deduce from previous question the expression of C_{j} as a function of R and v_{j}, for the solution $\phi=N e^{-\frac{i}{\hbar}(E t-\vec{p} \cdot \vec{x})}$ of the free Schrödinger equation ($V=0$) where N is a normalisation factor, E the energy of the particle and $p_{j}=m v_{j}[j=1,2,3]$ its spatial momentum.
(f) Justify mathematically this equality (for $j=1,2,3$),

$$
\partial_{j} \mathcal{L}=\left[\frac{\partial \mathcal{L}}{\partial \phi} \partial_{j} \phi+\frac{\partial \mathcal{L}}{\partial\left(\partial_{t} \phi\right)} \partial_{j} \partial_{t} \phi+\sum_{k=1}^{3} \frac{\partial \mathcal{L}}{\partial\left(\partial_{k} \phi\right)} \partial_{j} \partial_{k} \phi+\left\{\phi \rightarrow \phi^{*}\right\}\right]-\phi \phi^{*} \partial_{j} V .
$$

(g) In Equation (7), replace $\partial \mathcal{L} / \partial \phi$ by its expression (4). Then rewrite Equation (7) with global derivatives as follows (specify the quantities M_{j} and $\sigma_{j k}$ in terms of \mathcal{L}) ${ }^{3}$

$$
\begin{equation*}
\partial_{t} M_{j}=\sum_{k=1}^{3} \partial_{k} \sigma_{j k}-|\phi|^{2} \partial_{j} V . \tag{8}
\end{equation*}
$$

(h) Give the quantity $-\frac{\partial \mathcal{L}}{\partial\left(\partial_{t} \phi\right)} \partial_{j} \phi-\left\{\phi \rightarrow \phi^{*}\right\}$ in terms of m, ϕ and v_{j} only. Make use of Lagrangian (3) and Questions (2d), (2e).
(i) Apply an integration over a volume \mathcal{V} to Equation (8) (i.e. apply $\int_{\mathcal{V}} d^{3} x$), without integrating. Then rewrite the term involving $\sigma_{j k}$ as a function of $\sigma_{j k}$ and $d S_{k}[=$ infinitesimal surface area vector] by invoking the Gauss's theorem. This term represents a constraint on a surface area. Interpret physically the two remaining terms with respect to the fundamental (second) Newton's law of motion 4^{4},

[^1]
[^0]: ${ }^{1}$ The names and positions of the greek indices must be chosen properly in all the presented expressions.

[^1]: ${ }^{2}$ Noticing in Equation (6), that some terms arise by replacing ϕ with ϕ^{*}, might help to have more compact expressions.
 ${ }^{3}$ The $\partial_{j} \mathcal{L}$ term can be taken into account via a Kronecker symbol.
 ${ }^{4}$ One may remind the standard quantum interpretation of $|\phi(t, \vec{x})|^{2}$.

