PROBLEM ON PARTICLES & SYMMETRIES

The three-body decay

Let us consider an interaction which induces the decay of a spinless particle (scalar field) with charge -1, denoted here S_a^- , into three other species of spinless particles with charge ± 1 , namely S_b^- , S_c^- and S_d^+ . This reaction is generated 1 by the exchange of a neutral spin-one boson V. Such a decay process is depicted on the following Feynman diagram.

Figure 1: Feynman diagram for the three-body decay. The 4-momentum q^{α} , p^{μ} , $k_{1,2,3}^{\sigma}$ associated to each particle is indicated [α , μ , σ are Lorentz indices such that for example $\mu = 0, 1, 2, 3$].

- 1. What are the two axes of the plane on which the Feynman diagram of Figure 1 is represented?
- 2. Make a comment about the charge conservation in the studied decay process.
- 3. Using the anti-particle prescription, draw the Feynman diagram for the same decay process, but using instead the S_c^+ propagation. Indicate the corresponding 4-momentum along the S_c^+ leg.
- 4. By applying directly the Feynman rules (presented during the lectures), write the probability amplitude \mathcal{M} for the reaction of Figure 1 in terms of the 4-momenta q^{α} , p^{μ} , $k_{1,2,3}^{\sigma}$ and the coupling constant g. Consider the most general case of a V boson with mass M_V and comment 2 about the possibility for the propagator denominator to vanish.

¹The considered interaction is the same as the one described by the spinless Quantum Electro-Dynamics theory but it couples different particle species.

²Mathematically and physically.

- 5. Express the 4-momentum q^{α} as a function of k_2^{ν} , k_3^{σ} , and, give also p^{α} in terms of k_1^{ρ} , k_2^{ν} , k_3^{σ} . Which physical principle has allowed you to obtain those results?
- 6. Express the amplitude \mathcal{M} , found in question 4, in terms of g, M_V and $k_{1,2,3}^{\sigma}$ exclusively ³.
- 7. From now on, we will assume that the three final particles are in the high-energy regime. Then show, for instance for the particle with 4-momentum $k_1^{\mu} \equiv (E_1, \vec{k}_1)$, that, $E_1 \simeq k_1$, where E_1 denotes its global energy and $k_1 = ||\vec{k}_1||$ its momentum norm ⁴.
- 8. Calculate $k_1^{\mu}k_{2\mu}$ and then $k_1^{\mu}k_{1\mu}$, in the high-energy limit where masses are neglected. Express $k_1^{\mu}k_{2\mu}$ only in terms of k_1 , k_2 and θ_{12} , the angle between \vec{k}_1 and \vec{k}_2 .
- 9. Based on the previous question, express the following quantities in terms of $k_{1,2,3}$, $c_{12} = \cos \theta_{12}$ as well as c_{23} , c_{13} .
 - (a) $(k_3^{\mu} + k_2^{\mu})(k_{3\mu} + k_{2\mu})$.
 - (b) $(k_3^{\mu} k_2^{\mu})(k_{3\mu} + k_{2\mu}).$
 - (c) $(k_3^{\mu} k_2^{\mu})(k_{3\mu} + k_{2\mu} + 2k_{1\mu}).$
- 10. Simplify the obtained amplitude thanks to the analytical results of questions 9a-9b-9c (the final particle masses are also neglected with respect to M_V). Provide \mathcal{M} as a function of g, M_V , $k_{1,2,3}$ and c_{12} , c_{23} , c_{13} , only.

³To get more compact notations, one may use the definition, $p_{\underline{.}}q = p^{\mu}q_{\mu}$, for covariant products and, $p^{\underline{2}} = p^{\mu}p_{\mu}$, for the Lorentz square.

⁴Throughout all the exercise, the light velocity c is taken equal to unity for simplicity reasons (natural units) and we consider the usual metric $g^{\alpha\beta} = diagonal(+1, -1, -1, -1)$.