PROBLEM ON PARTICLES & SYMMETRIES

Non-relativistic limit of the Klein-Gordon equation

1. The *Klein-Gordon* (KG) equation reads as 1 ,

$$\left[\partial_{\mu} \partial^{\mu} + \frac{c^2}{\hbar^2} m^2 \right] \phi(x^{\nu}) = 0 ,$$
 (1)

where $\partial_{\mu} = \frac{\partial}{\partial x^{\mu}}$ is the 4-vector derivative with respect to space-time, μ is a *Lorentz* index, m denotes a mass, c is the light velocity and \hbar the Planck constant.

- (a) What does $\phi(x^{\nu})$ represent? What does the KG equation describe physically?
- (b) Express the KG equation in terms 2 of the 4-momentum p^μ , by using the form of the free solution $\phi(x^\nu)=Ne^{-\frac{i}{\hbar}x^\mu p_\mu}$. For this purpose, first calculate the *Lorentz* product $x^\mu p_\mu$ as well as the *d'Alembertian* differential operator.
- (c) Based on the previous result, compare the dimensions of the two operators entering the *KG* equation.
- 2. From now on, let us consider the non-relativistic limit, $\epsilon = \frac{\vec{p}^2 c^2}{m^2 c^4} \ll 1$.
 - (a) Calculate the square root of the relativistic expression of E^2 to determine the total energy E at first order in the expansion parameter ϵ . Then demonstrate that the non-relativistic condition can take the form, $E-mc^2 \ll mc^2$.
 - (b) Deduce the factorisation, $\phi(x^{\nu})=Ne^{-\frac{i}{\hbar}x^{\mu}p_{\mu}}=\psi(x^{\nu})e^{-\frac{i}{\hbar}mc^2t}$, and provide $\psi(t,\vec{x})$.
 - (c) Justify the following approximate condition, relying on a general quantum principle:

$$\left| i\hbar \frac{\partial \psi(x^{\nu})}{\partial t} \right| \approx \left| (E - mc^2)\psi(x^{\nu}) \right| \ll \left| mc^2 \psi(x^{\nu}) \right| . \tag{2}$$

- (d) Calculate the time derivative $\frac{\partial \phi(x^{\nu})}{\partial t}$ in terms of $\psi(x^{\nu})$ (without replacing $\psi(x^{\nu})$ by its expression).
- (e) Now calculate $\frac{\partial^2 \phi}{\partial t^2}$ by neglecting the second order derivative, $\frac{\partial^2 \psi}{\partial t^2}$, with respect to the first one, $\frac{\partial \psi}{\partial t}$, as inspired from the time derivative of Equation (2).
- (f) Insert the result of previous question into Equation (1) and comment about the obtained equation.

Throughout all the Particle Physics part of the exam, we consider the usual metric $g^{\alpha\beta} = diagonal(+1, -1, -1, -1)$.

² Recall that $p^{\mu} = (\frac{E}{c}, \vec{p})$.

Towards the reaction $e^+e^- \to \mu^+\mu^-$

Let us consider the reaction $S_a^-S_a^+ \to S_b^-S_b^+$ between massive spinless particles (scalar fields) with charges ± 1 in the relativistic quantum framework of a generic theory where these elementary particles interact with a massless neutral spin-one boson V. Such a process, generated by the V exchange, is depicted on the following *Feynman* diagram.

Figure 1: Feynman diagram for the two to two-body reaction. The 4-momentum $(q^{\alpha}, p^{\mu}, p'^{\nu}, k^{\rho} \text{ or } k'^{\sigma})$ associated to each particle is indicated [the greek indices are *Lorentz* indices such that for example $\mu = 0, 1, 2, 3$]. The arrows show the propagation flow directions. Extending this reaction to fermions coupled to a photon could lead to the QED process $e^+e^- \to \mu^+\mu^-$ involving electrons and muons.

- 1. Make a comment about the charge flow in the studied reaction of Figure 1.
- 2. Using the anti-particle prescription, draw the *Feynman* diagram for the process of Figure 1, but considering instead the S_a^- and S_b^+ propagations exclusively $(S_a^-S_a^- \to S_b^+S_b^+)$. Indicate the corresponding 4-momentum along the four external legs and specify the two axes of the plane of your *Feynman* diagram.
- 3. Write 3 the probability amplitude, $-i\mathcal{M}$, for the reaction $S_a^-S_a^- \to S_b^+S_b^+$ in terms of the 4-momenta q^α , p^μ , p'^ν , k^ρ , k'^σ and the coupling constant g of the theory.
- 4. Make a complete comment ⁴ about the possibility for the propagator denominator, entering $-i\mathcal{M}$, to vanish.
- 5. Express the 4-momentum q^{μ} in terms of k^{α} and k'^{β} . Then express the 4-momentum p'^{ν} as a function of the other 4-momenta, thanks to the 4-momentum conservation relation.
- 6. Based on previous question, give the *Lorentz* product $(p^{\mu} p'^{\mu})(k'_{\mu} k_{\mu})$ only in terms of p^{μ} , k^{ρ} and k'^{σ} . Simplify the result by using the fact that the 4-momentum P_i^{μ} of an initial or final state particle satisfies $P_i^{\mu}P_{i\mu} = m_i^2$.

Apply directly the table of *Feynman* rules provided during the lectures in the case where the V interaction to $S_i^{\pm} S_j^{\pm}$ does not change the species: i = j.

⁴ Mathematically and physically (using the correct terminology).

- 7. Calculate the *Lorentz* product $q^{\alpha}q_{\alpha}$ within the center-of-mass frame (defined by $\vec{p}+\vec{p'}=\vec{0}$) and present the result as a function only of the total energies E_k , $E_{k'}$ of the two final particles.
- 8. Give a simplified form of the reaction amplitude $\mathcal M$ thanks to the above answers.
