PROBLEM ON PARTICLES & SYMMETRIES ## Vector boson fusion We consider the three-body reaction $S_a^-S_b^+\to S_a^-S_b^+S_c^+$, where the initial and final state particles constitute three species [a,b,c] of massive scalar (spinless) fields with charges ± 1 (clearly indicated as exponents) under a certain gauge $\mathrm{U}(1)$ symmetry. Within the relativistic quantum framework, this process is induced by the exchange of two neutral V vector (spin-one) bosons, as depicted in the following Feynman diagram. Figure 1: Feynman diagram for the studied two to three-body reaction. The 4-momentum $(p^{\mu}, p'^{\nu}, q_1^{\rho}, q_2^{\sigma}, k^{\alpha}, k''^{\gamma})$ associated to each particle is indicated [the greek indices are Lorentz indices such that for instance $\mu = 0, 1, 2, 3$]. The arrows show the propagation flow directions. - 1. Make a comment about the charge flow associated to the particles S_a^- and S_b^+ on Figure 1. - 2. Based on the anti-particle prescription, draw the *Feynman* diagram for the process of Figure 1, but considering instead the S_a^+ scalar propagation. Indicate the corresponding 4-momenta along the external scalar legs and specify the two axes orienting the plane of your *Feynman* diagram. - 3. Write 1 the probability amplitude, $-i\mathcal{M}$, for the reaction $S_a^-S_b^+ \to S_a^-S_b^+S_c^+$ in terms of the 4-momenta $p^\mu, p'^\nu, q_1^\rho, q_2^\sigma, k^\alpha, k''^\gamma$ and the real coupling constant g of the theory. The Feynman rules dictate that a Lorentz product must be taken between one Lorentz index from the $V(q_1^\rho)$ propagator and one Lorentz index from the $V(q_2^\sigma)$ propagator. For simplicity we neglect the M_V boson mass terms in the propagator numerator (only). - 4. Make a complete comment 2 about the possibility for the propagator denominator, entering $-i\mathcal{M}$, to vanish. ¹ Apply directly the provided table of *Feynman* rules in the case where the V interaction to $S_i^{\pm}S_j^{\pm}$ does not change the species: i=j. Recall that the whole amplitude must be *Lorentz* invariant. ² Mathematically and physically. - 5. Express the 4-momentum q_2^{μ} , first in terms of p'^{α} and k''^{β} and secondly in terms of q_1^{α} and k'^{β} . Then express p^{ν} as a function of k^{α} , k'^{β} , k''^{γ} and p'^{δ} . Justify. - 6. Based on previous question, give $-i\mathcal{M}$ exclusively in terms of p'^{ν} , q_1^{ρ} , q_2^{σ} , k^{α} , k'^{β} , k''^{γ} and g. - 7. Show that in the high-energy regime for initial and final particles, the relativistic energy, entering a 4-momentum $k^{\alpha}=(\frac{E_k}{c},\vec{k})$, reads at zeroth order as $E_k\simeq kc$, where $k=||\vec{k}||$. At this order, deduce ³ the 4-momentum *Lorentz* products $k_{\mu}k^{\mu}$ and $k'_{\mu}k^{\mu}$ [in terms of k, k' and the angle denoted (\vec{k}, \vec{k}') between \vec{k} and \vec{k}']. - 8. At the same relativistic order as in previous question, calculate the 4-momentum product $(2k^{\mu}+$ $k'^{\mu}+k''^{\mu}-p'^{\mu})(p'_{\mu}+k'_{\mu})$ in terms of p',k,k',k'' and angles among 3-momenta. - 9. Still at the same relativistic order, calculate the 4-momentum products $q_1^\mu q_{1\mu}$ and $q_2^\mu q_{2\mu}$ as functions of p, p', k, k'' and angles among 3-momenta. - 10. The relevant part of the effective Lagrangian density involving the complex scalar field $\phi(x^{\mu})$ for the particle S_c^+ reads as, $$\mathcal{L}_{\phi} = \frac{1}{2} D_{\mu} \phi (D^{\mu} \phi)^* + g M_V A_{\mu} A^{\mu} \phi + g M_V A_{\mu} A^{\mu} \phi^* ,$$ where the exponent star indicates the complex conjugate, $D_{\mu} = \partial_{\mu} + igA_{\mu}$, $\partial_{\mu} = \frac{\partial}{\partial x^{\mu}}$ and $A^{\mu}(x^{\nu})$ represents the real vector field for the V boson. - (a) Interpret physically, in a few words/drawings, each term of \mathcal{L}_{ϕ} (with the help of Figure 1). - (b) Derive ⁴ the equation of motion for the ϕ^* field from \mathcal{L}_{ϕ} . Comment. *** ³ Let us consider the usual metric $g^{\alpha\beta}=diagonal(+1,-1,-1,-1)$. ⁴ Using the *Euler-Lagrange* equation form $\frac{\partial \mathcal{L}}{\partial \phi}=\partial_{\mu}(\frac{\partial \mathcal{L}}{\partial [\partial_{\mu}\phi]})$.