## PROBLEM ON PARTICLES & SYMMETRIES

## Vector boson fusion

We consider the three-body reaction  $S_a^-S_b^+\to S_a^-S_b^+S_c^+$ , where the initial and final state particles constitute three species [a,b,c] of massive scalar (spinless) fields with charges  $\pm 1$  (clearly indicated as exponents) under a certain gauge  $\mathrm{U}(1)$  symmetry. Within the relativistic quantum framework, this process is induced by the exchange of two neutral V vector (spin-one) bosons, as depicted in the following Feynman diagram.

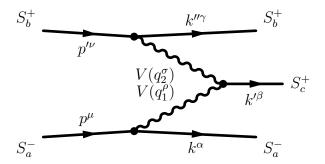


Figure 1: Feynman diagram for the studied two to three-body reaction. The 4-momentum  $(p^{\mu}, p'^{\nu}, q_1^{\rho}, q_2^{\sigma}, k^{\alpha}, k''^{\gamma})$  associated to each particle is indicated [the greek indices are Lorentz indices such that for instance  $\mu = 0, 1, 2, 3$ ]. The arrows show the propagation flow directions.

- 1. Make a comment about the charge flow associated to the particles  $S_a^-$  and  $S_b^+$  on Figure 1.
- 2. Based on the anti-particle prescription, draw the *Feynman* diagram for the process of Figure 1, but considering instead the  $S_a^+$  scalar propagation. Indicate the corresponding 4-momenta along the external scalar legs and specify the two axes orienting the plane of your *Feynman* diagram.
- 3. Write  $^1$  the probability amplitude,  $-i\mathcal{M}$ , for the reaction  $S_a^-S_b^+ \to S_a^-S_b^+S_c^+$  in terms of the 4-momenta  $p^\mu, p'^\nu, q_1^\rho, q_2^\sigma, k^\alpha, k''^\gamma$  and the real coupling constant g of the theory. The Feynman rules dictate that a Lorentz product must be taken between one Lorentz index from the  $V(q_1^\rho)$  propagator and one Lorentz index from the  $V(q_2^\sigma)$  propagator. For simplicity we neglect the  $M_V$  boson mass terms in the propagator numerator (only).
- 4. Make a complete comment  $^2$  about the possibility for the propagator denominator, entering  $-i\mathcal{M}$ , to vanish.

<sup>&</sup>lt;sup>1</sup> Apply directly the provided table of *Feynman* rules in the case where the V interaction to  $S_i^{\pm}S_j^{\pm}$  does not change the species: i=j. Recall that the whole amplitude must be *Lorentz* invariant.

<sup>&</sup>lt;sup>2</sup> Mathematically and physically.

- 5. Express the 4-momentum  $q_2^{\mu}$ , first in terms of  $p'^{\alpha}$  and  $k''^{\beta}$  and secondly in terms of  $q_1^{\alpha}$  and  $k'^{\beta}$ . Then express  $p^{\nu}$  as a function of  $k^{\alpha}$ ,  $k'^{\beta}$ ,  $k''^{\gamma}$  and  $p'^{\delta}$ . Justify.
- 6. Based on previous question, give  $-i\mathcal{M}$  exclusively in terms of  $p'^{\nu}$ ,  $q_1^{\rho}$ ,  $q_2^{\sigma}$ ,  $k^{\alpha}$ ,  $k'^{\beta}$ ,  $k''^{\gamma}$  and g.
- 7. Show that in the high-energy regime for initial and final particles, the relativistic energy, entering a 4-momentum  $k^{\alpha}=(\frac{E_k}{c},\vec{k})$ , reads at zeroth order as  $E_k\simeq kc$ , where  $k=||\vec{k}||$ . At this order, deduce <sup>3</sup> the 4-momentum *Lorentz* products  $k_{\mu}k^{\mu}$  and  $k'_{\mu}k^{\mu}$  [in terms of k, k' and the angle denoted  $(\vec{k}, \vec{k}')$  between  $\vec{k}$  and  $\vec{k}'$ ].
- 8. At the same relativistic order as in previous question, calculate the 4-momentum product  $(2k^{\mu}+$  $k'^{\mu}+k''^{\mu}-p'^{\mu})(p'_{\mu}+k'_{\mu})$  in terms of p',k,k',k'' and angles among 3-momenta.
- 9. Still at the same relativistic order, calculate the 4-momentum products  $q_1^\mu q_{1\mu}$  and  $q_2^\mu q_{2\mu}$  as functions of p, p', k, k'' and angles among 3-momenta.
- 10. The relevant part of the effective Lagrangian density involving the complex scalar field  $\phi(x^{\mu})$ for the particle  $S_c^+$  reads as,

$$\mathcal{L}_{\phi} = \frac{1}{2} D_{\mu} \phi (D^{\mu} \phi)^* + g M_V A_{\mu} A^{\mu} \phi + g M_V A_{\mu} A^{\mu} \phi^* ,$$

where the exponent star indicates the complex conjugate,  $D_{\mu} = \partial_{\mu} + igA_{\mu}$ ,  $\partial_{\mu} = \frac{\partial}{\partial x^{\mu}}$  and  $A^{\mu}(x^{\nu})$  represents the real vector field for the V boson.

- (a) Interpret physically, in a few words/drawings, each term of  $\mathcal{L}_{\phi}$  (with the help of Figure 1).
- (b) Derive <sup>4</sup> the equation of motion for the  $\phi^*$  field from  $\mathcal{L}_{\phi}$ . Comment.

\*\*\*

<sup>&</sup>lt;sup>3</sup> Let us consider the usual metric  $g^{\alpha\beta}=diagonal(+1,-1,-1,-1)$ .

<sup>4</sup> Using the *Euler-Lagrange* equation form  $\frac{\partial \mathcal{L}}{\partial \phi}=\partial_{\mu}(\frac{\partial \mathcal{L}}{\partial [\partial_{\mu}\phi]})$ .