Problem of Particle Physics

Rotated spinors

1. Momentum operator.- The generic expression for the Dirac spinor [with index $j=1,2,3,4$] of a fermionic particle (with mass m) reads as,

$$
\psi_{j}\left(x^{\alpha}\right)=u_{j} e^{-\frac{i}{\hbar} p_{\alpha} x^{\alpha}}
$$

where the Lorentz ${ }^{1}$ product $p_{\alpha} x^{\alpha}$ involves the 4-momentum components $p^{\alpha}=(E, \vec{p})$ and the 4 -vector coordinates $x^{\alpha}=(t, \vec{x}), \alpha$ being a Lorentz index: $\alpha=0,1,2,3$. Calculate the eigenvalues of this spinor with respect to the momentum operator, $\hat{P}^{k}=-i \hbar \partial_{k}(k=1,2,3)$.
2. Helicity operator.
(a) Let us consider the momentum, $\vec{p}=(p \sin \theta, 0, p \cos \theta)$, with norm $p \equiv\|\vec{p}\|$. Interpret geometrically this angle θ. Then show that

$$
\frac{1}{p} \vec{p} \cdot \vec{\sigma}=\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
\sin \theta & -\cos \theta
\end{array}\right)
$$

where σ^{k} denote the three 2×2 Pauli matrices.
(b) Show that the eigenvalues of $\vec{p} . \vec{\sigma} / p$ are ± 1. We denote, in an obvious correspondence, $V_{ \pm}$ as the two associated eigenvectors.
(c) Give the conditions that must satisfy the two V_{-}components.
(d) Find out V_{-}by rewriting ${ }^{2}$ the conditions of previous question in terms of $\theta / 2$ rather than θ. Assume V_{-}to be normalised to unity and real, for simplicity.
(e) Similarly, obtain the two V_{+}components.
(f) The 4×4 Helicity operator is defined by,

$$
\hat{h}=\frac{\hbar}{2 p}\left(\begin{array}{cc}
\vec{p} \cdot \vec{\sigma} & 0 \\
0 & \vec{p} \cdot \vec{\sigma}
\end{array}\right)
$$

Verify that the following spinors (up to normalisation factors) are eigenvectors of \hat{h},
$u_{j}^{(1)}=\left(\begin{array}{c}V_{+} \\ \frac{\vec{p} \cdot \vec{\sigma}}{E+m} \\ \hline+\end{array}\right), u_{j}^{(2)}=\binom{V_{-}}{\frac{\vec{p} \cdot \vec{\sigma}}{E+m} V_{-}}, u_{j}^{(3)}=\binom{\frac{\vec{p} \cdot \vec{\sigma}}{E-m} V_{+}}{V_{+}}, u_{j}^{(4)}=\binom{\frac{\vec{p} \cdot \vec{\sigma}}{E-m} V_{-}}{V_{-}}$,
and provide their respective eigenvalues.

[^0]
3. Hamiltonian operator.

(a) Write the Dirac equation satisfied by the $u_{j}^{(n)}$ spinors (where $n=1,2,3,4$).
(b) Express the 4×4 Hamiltonian (\hat{H}) eigenvectors ${ }^{3}$ in terms of $u_{j}^{(n)}$ and give their energy eigenvalues as a function of E, specifying its sign in each case.

4. The rotation.

(a) Give a set of four Dirac spinors being common eigenvectors of \hat{h}, \hat{P}^{k} and \hat{H} (that can be embedded into a 4 -momentum operator \hat{P}^{α}). Can they constitute an orthonormal-basis of the whole Hilbert space? Show that this common basis is unique, by considering the eigenvalues/eigenvectors correspondences; how is called such a set of operators $\left\{\hat{h}, \hat{P}^{\alpha}\right\}$?
(b) Based on Question n'2e, compare the obtained eigenvalues and eigenvectors $\left(u_{j}^{(n)} e^{-\frac{i}{\hbar} p_{\alpha} x^{\alpha}}\right)$ of the observables $\hat{h}, \hat{P}^{\alpha}$ with the case ${ }^{4}$ of a momentum along the third spatial axis, $\vec{p}=(0,0, p)$. Then make a physical comment.
(c) In the case $\vec{p}=(0,0, p)$, the first spinor is given by,

$$
\left.u_{j}^{(1)}\right|_{p_{z}}=\left(\begin{array}{c}
1 \\
0 \\
\frac{p}{E+m}\left[\begin{array}{l}
1 \\
0
\end{array}\right]
\end{array}\right) .
$$

Calculate the effect on this spinor of the matrix,

$$
U(\theta)=\left(\begin{array}{cc}
U_{2 \times 2}(\theta) & 0 \\
0 & U_{2 \times 2}(\theta)
\end{array}\right) \text { with } U_{2 \times 2}(\theta)=\left(\begin{array}{cc}
\cos (\theta / 2) & -\sin (\theta / 2) \\
\sin (\theta / 2) & \cos (\theta / 2)
\end{array}\right) .
$$

Compare the result with the $u_{j}^{(1)}$ spinor found in Questions n'2b, 2e and 2f. Deduce the precise physical interpretation of the matrix $U(\theta)$. Show that

$$
U_{2 \times 2}(\theta)=\cos (\theta / 2)-i \sigma^{2} \sin (\theta / 2)
$$

One can then demonstrate that $U_{2 \times 2}(\theta)=e^{-i \theta \frac{\sigma^{2}}{2}}$. What is the name in group theory of the operator $\frac{\sigma^{2}}{2}$?

[^1]
[^0]: ${ }^{1}$ We consider the metric, $g^{\alpha \beta}=\operatorname{diagonal}(+1,-1,-1,-1)$.
 ${ }^{2}$ Recall the trigonometrical formula, $\cos \theta=1-2 \sin ^{2}(\theta / 2)=2 \cos ^{2}(\theta / 2)-1$, and, $\sin \theta=2 \sin (\theta / 2) \cos (\theta / 2)$.

[^1]: ${ }^{3}$ In the Dirac-Pauli representation.
 ${ }^{4}$ Studied during the N.P. lectures.

