Problem of Particle Physics

Dirac matrices

1. Lagrangian hermiticity.- In the relativistic quantum theory, the Lagrangian density for a free massive spin- $1 / 2$ field, with mass m, reads as,

$$
\mathcal{L}=i \bar{\psi} \gamma^{\mu} \partial_{\mu} \psi-m \bar{\psi} \psi .
$$

This Lagrangian is written under a covariant form where μ stands for the Lorentz index: $\mu=$ $0,1,2,3$.
(a) Calculate the Hermitian conjugate of the second term, $-m \bar{\psi} \psi$, for a real mass.
(b) Calculate the Hermitian conjugate of the first term, $i \bar{\psi} \gamma^{\mu} \partial_{\mu} \psi$. Using standard Dirac matrix relations, express the result without explicit γ^{0} matrices, and, in terms of γ^{μ} only (instead of $\gamma^{\mu \dagger}$).
(c) Recast the resulting term of the previous question into a total derivative term plus another term ${ }^{1}$. What is the contribution of the total derivative term to the action, $\mathcal{A}=\int d^{4} x \mathcal{L}$?
(d) Conclude about the hermiticity of the whole considered Lagrangian.
(e) Calculate the Hermitian conjugate of a possible axial-vector bilinear quantity: $\left(\bar{\psi} \gamma^{\mu} \gamma^{5} \psi\right)^{\dagger}$, in term of, $\bar{\psi} \gamma^{\mu} \gamma^{5} \psi$.

2. Charge conjugation.

(a) Calculate the bilinear quantity involving the charge conjugate spinors, $\overline{\psi_{C}} \psi_{C}$, in terms of ψ^{t} and $\bar{\psi}^{t}$.
(b) The result of previous question being a number (scalar product of spinors), it is equal to its self-transposed. Use this property to express it in term of $\bar{\psi} \psi$.
(c) Calculate now the bilinear quantity, $\overline{\psi_{C}} \gamma^{\mu} \psi_{C}$, still in terms of ψ^{t} and $\bar{\psi}^{t}$ (getting rid of explicit C operators in the final result).
(d) Once more, transpose the result of previous question to express it in term of $\bar{\psi} \gamma^{\mu} \psi$.
3. $\not p$ product.- Using the relation about anti-commutation of Dirac matrices, demonstrate that $\not p p=p_{\mu} p^{\mu} \mathbb{1}_{4 \times 4}$, where $\not p \hat{=} \gamma_{\mu} p^{\mu}$ involves the 4 -momentum p^{μ}.

[^0]
[^0]: ${ }^{1}$ One could possibly describe this operation as an integration by part in the action.

