PROBLEM OF PARTICLE PHYSICS

1. Lagrangian hermiticity.- In the relativistic quantum theory, the Lagrangian density for a free massive spin-1/2 field, with mass *m*, reads as,

$$\mathcal{L} = i \, \bar{\psi} \gamma^{\mu} \partial_{\mu} \psi - m \, \bar{\psi} \psi \, .$$

This Lagrangian is written under a covariant form where μ stands for the *Lorentz* index: $\mu = 0, 1, 2, 3$.

- (a) Calculate the Hermitian conjugate of the second term, $-m\bar{\psi}\psi$, for a real mass.
- (b) Calculate the Hermitian conjugate of the first term, $i\bar{\psi}\gamma^{\mu}\partial_{\mu}\psi$. Using standard *Dirac* matrix relations, express the result without explicit γ^0 matrices, and, in terms of γ^{μ} only (instead of $\gamma^{\mu\dagger}$).
- (c) Recast the resulting term of the previous question into a total derivative term plus another term ¹. What is the contribution of the total derivative term to the action, $\mathcal{A} = \int d^4x \mathcal{L}$?
- (d) Conclude about the hermiticity of the whole considered Lagrangian.
- (e) Calculate the Hermitian conjugate of a possible axial-vector bilinear quantity: $(\bar{\psi}\gamma^{\mu}\gamma^{5}\psi)^{\dagger}$, in term of, $\bar{\psi}\gamma^{\mu}\gamma^{5}\psi$.

2. Charge conjugation.

- (a) Calculate the bilinear quantity involving the charge conjugate spinors, $\overline{\psi_C}\psi_C$, in terms of ψ^t and $\overline{\psi}^t$.
- (b) The result of previous question being a number (scalar product of spinors), it is equal to its self-transposed. Use this property to express it in term of $\bar{\psi}\psi$.
- (c) Calculate now the bilinear quantity, $\overline{\psi}_C \gamma^\mu \psi_C$, still in terms of ψ^t and $\overline{\psi}^t$ (getting rid of explicit *C* operators in the final result).
- (d) Once more, transpose the result of previous question to express it in term of $\bar{\psi}\gamma^{\mu}\psi$.
- 3. p product. Using the relation about anti-commutation of *Dirac* matrices, demonstrate that $pp = p_{\mu}p^{\mu} \mathbb{1}_{4\times 4}$, where $p = \gamma_{\mu}p^{\mu}$ involves the 4-momentum p^{μ} .

¹ One could possibly describe this operation as an integration by part in the action.