PROBLEM OF PARTICLE PHYSICS

Chirality

I) THE HELICITY

1. Dirac equation.- The solutions of the Dirac equation read as, $\psi = u e^{-\frac{i}{\hbar}p_{\alpha}x^{\alpha}}$, where the Lorentz ¹ product $p_{\alpha}x^{\alpha}$ involves the 4-momentum $p^{\alpha} = (E/c, \vec{p})$ and the coordinate ² 4-vector $x^{\alpha} = (c t, \vec{x})$. The u spinor satisfies the equation:

$$(\gamma^{\mu}p_{\mu} - m c) u = 0 \tag{1}$$

where γ^{μ} denotes the *Dirac* matrices and m the elementary fermion mass. How many components does the spinor u possess generically? In turn, the fundamental relation (1) represents the equation of motion for which kind of particle?

- 2. Equation (1) induces some conditions on the two spinors, u_1 , u_2 , entering $u \equiv (u_1, u_2)^t$. By expressing the *Dirac* matrices within the *Dirac-Pauli* representation, find those conditions in terms of the *Pauli* matrices σ^i [i = 1, 2, 3].
- 3. **Solutions.-** Show that the conditions obtained at the previous question lead to two spinor solutions of the following form,

$$u^{(n)} = N \left(\frac{\chi^{(n)}}{\frac{c \ \vec{p} \cdot \vec{\sigma}}{(E + mc^2)}} \chi^{(n)} \right), \text{ with } n = 1, 2.$$
 (2)

These two solutions are eigenstates of the Hamiltonian with the degenerate eigenvalue E>0. How many other solutions exist for the u spinor? What are their energy eigenvalues?

4. Provide the explicit expressions for the two solutions $u^{(1,2)}$, from relation (2), in the canonical case,

$$\chi^{(1)} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \ \chi^{(2)} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}.$$

Use the *Pauli* matrix expressions 3 and the natural unit system where the light velocity c is equal to unity 4 .

$$\sigma^1 \,=\, \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right) \,,\, \sigma^2 \,=\, \left(\begin{array}{cc} 0 & -i \\ i & 0 \end{array}\right) \,,\, \sigma^3 \,=\, \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right) \,.$$

¹ We consider the usual metric, $g^{\alpha\beta} = diagonal(+1, -1, -1, -1)$.

² α being a *Lorentz* index: $\alpha = 0, 1, 2, 3$.

³ Pauli matrices:

⁴ From now on, we will take c = 1.

5. **Spin.-** We introduce the helicity operator,

$$\hat{h} \stackrel{.}{=} \frac{\hbar}{2} \left(\begin{array}{cc} \frac{\vec{p}}{||\vec{p}||} \cdot \vec{\sigma} & 0\\ 0 & \frac{\vec{p}}{||\vec{p}||} \cdot \vec{\sigma} \end{array} \right) .$$

- (a) In the simplifying axis choice where the entire \vec{p} momentum is along the third (z) axis, show that $\chi^{(n)}$ are eigenstates of $\vec{p}.\vec{\sigma}/||\vec{p}||$ and give their eigenvalues.
- (b) Deduce, from question (5a), the respective eigenvalues of the two $u^{(1,2)}$ spinors with respect to the helicity observable. What does represent physically the helicity?
- 6. BONUS QUESTION: The chirality operator is defined as the 4×4 matrix, $\gamma^5 = i\gamma^0\gamma^1\gamma^2\gamma^3$. Express γ^5 as a function of the *Pauli* matrices, within the *Dirac-Pauli* representation. Then calculate the product $\sigma^1\sigma^2\sigma^3$. Finally, deduce that,

$$\gamma^5 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} . \tag{3}$$

- 7. Compute $(\vec{p}.\vec{\sigma})^2$ and express it in term of the identity operator.
- 8. **Relativistic limit.-** Let us consider in this question the relativistic limit $||\vec{p}|| \gg m$.
 - (a) Express the relativistic energy E as a function of $||\vec{p}||$ only (in the case E > 0).
 - (b) Using this energy result together with question (7) and equation (3), express $\gamma^5 u^{(n)}$ in term of $\hat{h} u^{(n)}$, where the spinors are given by relation (2).
 - (c) Deduce the eigenstates and eigenvalues of $\frac{\hbar}{2}\gamma^5$.
 - (d) Based on question (8c), compare the properties of the operators $\frac{\hbar}{2}\gamma^5$ and \hat{h} . Conclude physically. Are the chirality and helicity always *Lorentz* invariant?

II) THE PARITY

1. **Transformation.-** The *Lorentz* matrix for the Parity transformation on the spatial coordinates clearly reads as,

$$\Lambda^{\mu}_{\cdot \nu} = \begin{pmatrix} +1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix} . \tag{4}$$

Express ⁵ the transformed 4-vector x'^{α} in terms of this $\Lambda^{\mu}_{,\nu}$ matrix and the initial x^{α} . Deduce the new coordinates t', x', y', z' as functions of t, x, y, z.

2. Using the covariant relation, $\Lambda^{\mu}_{,\nu}\gamma^{\nu}=P^{-1}\gamma^{\mu}P$, where P is the Parity operator acting on the spinorial *Hilbert* space, express the quantities $P^{-1}\gamma^0P$ and $P^{-1}\gamma^kP$ [k=1,2,3] in terms of *Dirac* matrices.

⁵Choosing of course all the *Lorentz* indices in a consistent way.

- 3. Show that $P=\gamma^0$ indeed fulfils the two properties derived in the previous question.
- 4. Bilinear terms.- We denote by ψ a general solution of the Dirac equation and $\bar{\psi} \hat{=} \psi^{\dagger} \gamma^{0}$.
 - (a) Give the scalar term $\bar{\psi}'\psi'$, transformed under parity, in terms of ψ . Use question (3).
 - (b) Same question for the transformed pseudo-scalar term $\bar{\psi}'\gamma^5\psi'$. Simplify the result.
 - (c) Same question for the components $\bar{\psi}'\gamma^0\psi'$ and $\bar{\psi}'\gamma^k\psi'$ [k=1,2,3] of the vector term.
 - (d) Same question for the parts $\bar{\psi}'\gamma^5\gamma^0\psi'$ and $\bar{\psi}'\gamma^5\gamma^k\psi'$ of the axial vector term.
 - (e) Justify the terminology of those 4 bilinear terms.
 - (f) Comment about the chirality and parity.
