PROBLEM OF PARTICLE PHYSICS

Energy projectors

- 1. The 4 solutions (n = 1, 2, 3, 4) of the *Dirac* equation, for a spin 1/2 particle, are the 4component spinors [with subscript j = 1, 2, 3, 4]: $\psi_j^{(n)} = u_j^{(n)} e^{-\frac{i}{\hbar}p^{\alpha}x_{\alpha}}$, where the *Lorentz* product $p^{\alpha}x_{\alpha}$ involves the particle 4-momentum p^{α} and 4-vector ¹ coordinates x^{α} .
 - (a) Calculate $\partial_k \psi_j^{(n)}$ where $\partial_k = \frac{\partial}{\partial x^k}$.
 - (b) Is the quantity $\bar{u}^{(n)}\gamma^{\mu}\gamma^{\nu}u^{(n)}$ Hermitian? (γ^{μ} denotes the 4 × 4 *Dirac* matrices)
- 2. Show that $pp = m^2 \mathbb{1}_{4 \times 4}$, where $p = \gamma_{\mu} p^{\mu}$ and m is the considered particle mass.
- 3. Let us introduce the operators, $\Lambda_{\pm} = \frac{1}{2m}(m \mathbb{1} \pm p)$. The goal here is to demonstrate that Λ_{\pm} satisfy the projector properties.
 - (a) Calculate the sum $\Lambda_+ + \Lambda_-$.
 - (b) Calculate the product $\Lambda_+ \times \Lambda_-$.
 - (c) Calculate $(\Lambda_+)^2$ and then $(\Lambda_-)^2$.
- 4. Within the *Dirac-Pauli* representation, $u_j^{(1,2)}$ are the Hamiltonian eigenstates with positive energy, whereas $u_j^{(3,4)}$ have negative eigenvalues. Justify that any 4-component spinor of the *Hilbert* space can be developed accordingly to $\sum_{n=1}^{4} c_n u_j^{(n)}$ where c_n are complex numbers.
- 5. The aim of this question is to determine the effect the Λ_+ projector. For this purpose, calculate its action on a generic spinor:

$$\sum_{j=1}^{4} \Lambda_{+ij} \left(\sum_{n=1}^{4} c_n \, u_j^{(n)} \right) \, .$$

Make use of the spinor ortho-normalisation condition, $\sum_{i=1}^{4} \bar{u}_{i}^{(n)} u_{i}^{(m)} = 2 m \delta_{nm}$ (with n, m = 1, 2, 3, 4), and the completeness relation, $m \mathbb{1}_{ij} + p_{ij} = \sum_{n=1}^{2} u_{i}^{(n)} \bar{u}_{j}^{(n)}$.

6. Based on Questions 3 and 5, find out the Λ_- projector effect.

¹ α being a *Lorentz* index: $\alpha = 0, 1, 2, 3$.