Problem of Particle Physics

Energy projectors

1. The 4 solutions ($n=1,2,3,4$) of the Dirac equation, for a spin $1 / 2$ particle, are the 4 component spinors [with subscript $j=1,2,3,4]: \psi_{j}^{(n)}=u_{j}^{(n)} e^{-\frac{i}{\hbar} p^{\alpha} x_{\alpha}}$, where the Lorentz product $p^{\alpha} x_{\alpha}$ involves the particle 4-momentum p^{α} and 4 -vector ${ }^{1}$ coordinates x^{α}.
(a) Calculate $\partial_{k} \psi_{j}^{(n)}$ where $\partial_{k}=\frac{\partial}{\partial x^{k}}$.
(b) Is the quantity $\bar{u}^{(n)} \gamma^{\mu} \gamma^{\nu} u^{(n)}$ Hermitian? (γ^{μ} denotes the 4×4 Dirac matrices)
2. Show that $\not p p p=m^{2} \mathbb{1}_{4 \times 4}$, where $\not p \hat{=} \gamma_{\mu} p^{\mu}$ and m is the considered particle mass.
3. Let us introduce the operators, $\Lambda_{ \pm}=\frac{1}{2 m}(m \mathbb{1} \pm \not p)$. The goal here is to demonstrate that $\Lambda_{ \pm}$ satisfy the projector properties.
(a) Calculate the sum $\Lambda_{+}+\Lambda_{-}$.
(b) Calculate the product $\Lambda_{+} \times \Lambda_{-}$.
(c) Calculate $\left(\Lambda_{+}\right)^{2}$ and then $\left(\Lambda_{-}\right)^{2}$.
4. Within the Dirac-Pauli representation, $u_{j}^{(1,2)}$ are the Hamiltonian eigenstates with positive energy, whereas $u_{j}^{(3,4)}$ have negative eigenvalues. Justify that any 4-component spinor of the Hilbert space can be developed accordingly to $\sum_{n=1}^{4} c_{n} u_{j}^{(n)}$ where c_{n} are complex numbers.
5. The aim of this question is to determine the effect the Λ_{+}projector. For this purpose, calculate its action on a generic spinor:

$$
\sum_{j=1}^{4} \Lambda_{+i j}\left(\sum_{n=1}^{4} c_{n} u_{j}^{(n)}\right)
$$

Make use of the spinor ortho-normalisation condition, $\sum_{i=1}^{4} \bar{u}_{i}^{(n)} u_{i}^{(m)}=2 m \delta_{n m}$ (with $n, m=$ $1,2,3,4)$, and the completeness relation, $m \mathbb{1}_{i j}+\not p_{i j}=\sum_{n=1}^{2} u_{i}^{(n)} \bar{u}_{j}^{(n)}$.
6. Based on Questions 3 and 5, find out the Λ_{-}projector effect.

[^0]
[^0]: ${ }^{1} \alpha$ being a Lorentz index: $\alpha=0,1,2,3$.

