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Abstract

The present notes provide exclusively a synthesis of the formalism presented in the
lecture series “Particle Physics : Introducing the Standard Model” [part of the Minor
Course “Nuclear and Particle physics”| at the 1st year Master General Physics of the
Paris-Saclay University. The spinors and Dirac matrices are defined and described in
details. Their Lorentz transformations are discussed in order to build Lorentz invariant
Lagrangians. The Dirac equation is studied and solved explicitly. The operators of
Helicity and Charge Conjugation are presented. The Higgs mechanism generating masses
to fermions is explained together with the Goldstone theorem.
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1 The Dirac equation

1.1 The original form

Historically, in order to avoid the problem of negative energy, P.A.M.Dirac has searched
for a linear quantum relativistic equation, as an alternative to the Klein-Gordon equa-
tion,

2.2
2

Op+V.i=0< |[(9,0"+mr

)®(z¥) =0 (1)

where @ is the wave function and p the probability density. The wanted linear depen-
dence in 0; together with the covariance form (0* form) lead to a linearity in the space

derivatives as well (P = —ihV).

The general form is:

HU = ih 8,0 (Z,t)| (Schrédinger Equation), (2)

with

H=a.

o

+ fm

In particular, there are no constant terms to satisfy the conditions (linear equations in

Ot):

H>U = (P’ +m?chHv (3)
& E? = (P2 +m?t)  (relativistic energy).

Remark: There arises a global consistency of the theory as the Schrédinger equation
together with the relativistic energy expression give rise to the Klein-Gordon equation

(for a spinless particle s = 0) or the Dirac equation (s = 3).

Determination of «, : From Eq.(3), we have:

H? = (1P + aaPy+ agPs + Bm)(a1 PL + aaPy + agPs + fm)

3 3
= Z (aiP)* + Z [i P Py + o Py.oi P] + Z [P + BaiPil.m + (8m)?

3 3
= (OziPZ-)Z + Z (aiozj + Oszzi)Pif)j + Z [Ollﬁ + Bozl]le + 52m2
i=1 i#5,1,7€{1,2,3} =1

so that {aiaaj} = {a’iaﬁ} =0 and az? = 52 =1

Four properties are induced:



o Hf :PiTaZ—l—mBT :H:Piai+ﬂm.
o B|B) = b|B), so B2|B) = b(BIB)) & B*|B) =0 |B) & b= £1.
e Anti-commutativity conditions.

e Trioy] =Tr[B] = 0.

—

Example: One can consider V(Z,t) = N (Z|p(t)) ® |Mspin,)-
The lowest dimensionality matrices satisfying those properties are 4 x 4 matrices.

= structure describing spin % particle (and its anti-particle):

§ = %7 _% <8, < %
> 3 1 1
S?|s,s.) = s(s+1)R*|s,s.) = 57@2 |2,12>
. h 1 1
S.lsis) = s ss) =5yl

o; h
2

n
I

(Pauli matrices)

The Pauli matrices:

The choice of (&, 3) matrices is not unique.

Examples:

e The Dirac-Pauli representation:

0 o; o 1 0
O‘i:<az- 0>’5_<0 —]1)'

e The Weyl representation:

—o; 0 (0 1
ai:( 0 o*i)’ﬂ_(]l 0)'

Physics results are independent of this conventional frame.



1.2 The covariant form

The 8 general form:
B.(c;Pic+ Bmct)p = ihcd, B(x¥)
o (in ) e s 2] o =
(o= ) v = o (@)

where v = { 0, ﬂai}. The Dirac matrices v* will be shown to be 4-vectors indeed.

i{wjk m5jk:}¢k($”) =0

k=1

Dirac matrix properties:

|7y + 7 = 29" | (5)

Exercise: Demonstrate this property.
o p=v=0: (7°)?+(79)2 = 2.1 true as 8% = 1.
o u=1,v=0 v+t =0, B(a!B) + B(Bal) =0
o u=2,v=3: (8a?)(Ba?) + (Ba?)(Ba?) = 0, —a?a® — a3a? = 0.

o u=v=23 Bal.pa’+ Bad.pad =2(-1).

We have also that

Indeed, if u = 0, (70)T = ~0,040, |
If p=1i#0, (7)1 =70 = -(1")*y".

There are other useful properties:
o (YT =10 ("2 =1 as 4° = 8 Hermitian (see the 4 properties above);
o () =-7"as (7)1 = (Ba")! = a’B = —pa;

o (fyi)Q = —1 since 79 = Ba‘Ba’ = —%(a’)? = —1.



1.3 The Hermitian form

As one could take the complex conjugate of the Klein-Gordon equation, we take here
the Hermitian conjugate of Eq.(4),

00 + in' O —mip =
~i 80T (1°)F + —i 3t (v))f — myt
—i 900177 + 10Ty — myT

i(auﬂ) Y +my =

I
o o o o

Hence,

((0u) V" +mip = 0. (7)

As for the Klein-Gordon equation, 1) x [Eq.(4)] + [Eq.(7)] x1 gives:
iyt o — myy + i(aﬂ) Yy +7mw = 0+0
Wy'y) = 0

Defining j* = 1)y*4), we have 9,,j* = 0 (continuity equation). 7 is the flux density while
4% = p is the probability density (of spatial presence).

4
- ¥ . dP
p =17 =M = e = (nslns) | (F () P = - (8) > 0
k=1
One can define the electron charge current: | j* = —epy ) |.

Eq.(7) is to be compared to the Klein-Gordon equation for complex conjugate field ¢*.

1.4 The Lagrangian description

For a free particle, with spin % and mass m, within a quantum relativistic framework,
the Lagrangian reads as,

L= iy Outp — mi) .

e Euler-Lagrange equation for the field :
o [ ]
oy " Lo0u)]

Exercise: Write this equation.
—mp = 0 [i¢7“] <~ FEq.(7).




e Euler-Lagrange equation for the field :

Exercise: Write this equation.
IO —mip =0 <= FEq.(4).

Exercise: Show that £ is Hermitian.

()" = ul (14°)" = wl (0) T = P> £.
(@i’y“@,ﬂ/})T = 0, )py"1p(—i), which gives, by integration by part, ipy*9,1 > L.

1.5 Solutions

1.5.1 Wave function part

Exercise: Show that each of the four components of the spinor ¢; satisfies the Klein-
Gordon equation.

Let us apply v*9,, on the Dirac equation Eq.(4):

Y40V O — M0y = 0
5 171060, +7"9%0u00) = 51" + 9791 8ay
(ig° 00, +im*)p = 0
(gaﬂaaau + m2) 7,[11 =0
Therefore,
Wy = uj e i, (8)

so one can identify u; = |nspin) and (Z]Y(t)) = e wPr" = e 0
Exercise: Of which operator(s) 14 is eigenstate?

A . _ i . _ ip 7
We have P; ¢ = —ih0; (ue i Bt enP x) = —ihue 7P 9, enPT = pith, so

PP = p; (Pab) = p20, then P2 = 520 and finally, by Ea.(3), H* = E%.
Remark: P = pip = Piu (# |9 (t)) = piu (F| (1)) < Bi|$(t) >= pi| b (t)).
1 should satisfy as well the linear form of Schrédinger equation:

Hep = ihdyp < Hip = ihod, (u e*%W“) = ihu (—f) e WPhT = F) (9)



1.5.2 Determination of the u-spinor

From Eq.(8) and Eq.(4), we have:

w9 ewrvrt My
17y 3 Lue hic 0
T B W L LI
el “( n pn neC " 0
(Yo — me) u
(p—mc)u = 0 (10)

Then, Eq.(3) and Eq.(9) give:

(a-ﬁ+/3m)w — By

3 S e T 7 I T 7 I Ve 7
a; (—iho;) ue ’PT 4 pmue WY = FEue wP*
ST iV _ipygy g
a; | —ih ﬁp we YT 4+ Bmoue = Fue v
(@-p+ pm)u = Eu

There are four independent solutions for the spinor ‘u’, two with £ > 0, two with £ < 0.

In the Dirac-Pauli representation...

@ Let us assume that 7= 0 (in Dirac equation).

m 0 0 0
From Eq.(11), we have Hu = pmu = Fu < 0 m 0 0 u= Fu.
’ 0 0 —-m O

0 0 0 -m

The eigenvalues of H are m and —m (degeneracy of degree 2). The eigenvectors are

)

0
0
1
0

o O O
O O = O
o o O

® Now, let us assume that 7+ 0.

From Eq.(11) and the Dirac-Pauli equation, we have
0 o1 0 o9 0 o3 m 0
H = E =
’ ! {p1<01 0)—1—}?2(02 0)+p3<03 0>+<0 —m)}u
_ m p-a Ug
- p-d —m w,

Then, we have:

j - oup = Ug (E—m)
{ g"&uz = up (E+m) (11)
o { (-3 up = P Gua(E —m) = up(E+m)(E—m) = u (B2 — m?)
(F-3)ug = p-dup(E+m) = ug(E—m)(E+m) = ug (E? —m?)



Remark: The combination of the two lines of Eq.(11) gives no new information,
so only one of those two equations fixes the solution ‘u’.

‘We have:
< p3 Pl—ipz>< p3 p1—ip2> _ <P§+(P?+P§) 0 >
p1 + ip2 —P3 p1 +ip2 —p3 0 (p? +p3) + P}

Choosing ué") =V with vV = < (1) >, V@ = < ? > then Eq.(11) gives

uM = g v,

(n)
Eigenstates of H (see Eq.(3) and Eq.(9)): v = N < ﬁ.g Vi
E+m

) ) associated to

eigenvalue £ > 0.

Now if ul()n) is chosen to be V(™| then Eq.(11) gives ufln) = ﬁﬁ- gV,
i

— V)
Eigenstates of H: u("t2) = N ( ‘E|+m) > associated to E < 0.

v

Having H = H', there exist an orthonormal basis made of eigenstates. We have:
(M) = NYNy (ps [p1 — ipa] + [p1 — ipa] [=ps]) = 0

and

(WYH,3) — NN [ —P3 P3 _
(™) 1 3<\E\+m+yEy+m

Similarly, one can easily prove that Vn, m € {1,2,3,4} and n # m, (u()tu(™) = 0.

The explicit spinor solutions are:

1
u(l) =N 0 — —I—ﬁ
1 p3 2
[El+m \ p1 +ips
0
u® = Ny ! . — _n
1 pP1—tp2 2

1 2
0
-1 ( p1 — i p2 >
Elm | — h
4) — D3 _=
U N4 0 — 5
1



Remark: The orthonormal basis is not unique, there are other possible choices for the
eigenvectors i.e. H is not a complete set of commuting observables.

1.5.3 Solutions as spin states

Let us introduce the Helicity observable,

_a. P 20\ 7 iy o0\ h
h:G~:<2 3)-71:(2 64)
7=\ ) T 0 2.5)TF
with )
5 % jaR g h —
Sp = ||S]|cosd = ”SHCOSGM -2 _ e P
el el 2 i

{h,H, ]3} forms a complete set of commuting operators.
2L )0y L (e o
gl Il \ p-6 —m 0 7\ (@-5)* —mé-p

. P 1 (&5 0 m G- p 1 (( md-p (¢ p)°
G- H = — Lo S5 o = = S a2 A I
2l g\ 0 o-p g-p —m g \ (¢-p)" —ma-p
SO [H, G. } = 0. Furthermore, [H,P} = 0 and [13, C_j.ﬁ} = 0.

QA
STRRST]
ISTIRST]

H

[~

|
Completeness: the set of eigenvalues fixes the associated eigenstate uniquely.

=

p

Example:
p along the (Oz) axis: p= (0,0,p).
i 7 (n)_h<1 0)5 ) _ 21 m)
RES VAR — V' = +£—_pV\",
121 2 gl 2

2 0 =1/ |p

Let n € {1,2}. Then,

7] 3 (n) S ()
*P<n>_<5p0> v B S,V
G- u = 5 N1 G0 n = N1 &5 & n

121 0 Sy £y ™) 28 G,V

Similarly, if n € {3,4}, we have: hu(® = i%u(”).
The generic eigenvalues of h or S, are those of ﬁ&.pﬂ, SO :I:%. Indeed,
0 = det[p-& — 1] = (p3 = A)(=p3 — A) = [pf — (ip2)’] = (=A)* = p3 —pi — 13,

ie. p?2 = A2so X\ = £|p]|.

10



Anti-particle solutions

The first two solutions correspond to E > 0, electron (particle): u(1:2) =P -

The last two solutions correspond to E < 0, positron (anti-particle): u3:4) omip T

As for scalar field current: one has to re-interpret the negative energy, to avoid physical
drawbacks,

gBY — u%@ e T o B (L) e PT = (2D () oi-E)t i(-P)

_ 1}(1’2)(ﬁ) eip-x _ \11(1,2) ]

C

Which equation satisfies the spinor v(p)?
Bq.(10): (6= mpuBI@E) = 0 (= p—mubI(—) & (p+mpe@ =0 (12)

Exercise: Show that the global angular momentum J = L + S (orbital+spinorial) is
conserved, which confirms the spin structure introduced by Dirac equation.

Comment: Conservation involves a classical quantity, % <E +5 >|\D( )y = 0 in fact. It
¢

is true if [H,J_} = 0 as,

i (7) = a7+ ()

& [H,1-i6;J"] =0 < [H,exp—if;J'| ~ 0 < H invariant by 7. Indeed, H = H' =
THT 1.

(H,L]] = {& P+ Bm, R x ﬁh] —a. {13, RoPs — R3Py
= [Py, RoP3 — R3Ps] + a3 [P3, Ro Py — R3 P
= (R [P, P3| + [P, Ro] P1) — a3 (R3 [P3, ] + [P3, R3] P»)
= OéQ(*ih)PgC — Oég(*’ih)PgC = *Z'(*Oégpg + OéQPQ) = —ia X .ﬁh

Let us choose the Weyl representation (only in this exercise, to illustrate another repre-
sentation) to calculate

[H,8] = [&-f’—i—ﬁm,Sl} .

e We have:



e We have:

_P.z . & A
@ Ps] = a-Ps-sap= | Tonrala 0 )2
0 P-coy—oP-d | 2
h [0'1, ﬁ : E] 0
o2 0 — {01, P. 6’}
_ h(iPy %3203 + iP5 €%20y 0
2 0 —(iPy €"23203 + i Py €132205)
. ih P20'3 - PgO‘Q 0
- 0 —P309
= ih(—PgOég + Pgag)
= jax ﬁ|1
Hence [H, Ly + S1] = —id@ x P|, +id@ x P|; = 0. After generalisation, [H,j] = 0.

2 Charge conjugation operator

The Lagrangian of Quantum ElectroDynamics (QED) reads as:

— — 1
Lorp = Wy Dy — maptp — 1 F,F*

Dy=0d,+iLa

= Aus Dimensions: [£] = [E]*, [¢)] = [E]

At AR — 0\ ()

Gauge transformations b @ g

Exercise : Show that the QED Lagrangian is gauge invariant.
F,, invariant & ¢ too as ¢ = PTA0 = ()R s (71 Pp*) g0 = 1Ny
For ¢ = —e,

Dy = (0, —ieA, +ied e M)

—iedXe= Y 4 e TR — e Aue TN + e he =Y
= e ND, —ieA, )
e—ie)\ D“ T,ZJ .

12



Euler-Lagrange equation with a new term for ) :

or— ,,.
@ Zzpfyu(quu)qp} = ey Ay
[V 0 — mip] + ey Ay =
iV (Op —ieAp)p —myp =
(VD)o — mp =

o O O O

WDy 1Y —map = (13)
Let us check:
—ma) + eJ’y“AM = 9 8;1@7#
i(Oy +ied )Py +myp = 0
A version of Eq.(13) should exist for the anti-particle state . :
" (O + ieAy) e — mipe = 0 (14)
This equation defines 1), ; let’s find it via Eq.(13), by complex conjugating it,
—i’y“*(ﬁﬂ +ieA,)Y" —my* =0
By using —Cy*" = 4#CA°,
z[ - cy%#*] (0, + ieA )" —mCy % = 0
{i’y“(aﬂ +ieA,) — m}C’yO@/J* =0
So the identification of Eq.(13) and Eq.(14) gives rise to ¢ = C@t = Cy%*
Let us check that in the Dirac-Pauli representation, C satisfies,
1 0 0 o 0 o
0_ .2 _ .52 _ 2\ _ . 2
et = (3 5) (o §) (2 T
—1 1
1 —1
— |l -1 (15)
—1 1

13



Action of C' on 1™M):

gt =0y =iy [ N |0 e
4 i i)
E+m \p1+ips

1
= 1 -1 Ny ( 0 )eip'x
)
1 E+m \p1+ip2

1 (p1—ip2)
E+m \ —p3 .

1

—_

— U(l)(ﬁ) eip:t

The spinor solutions are, {1, 3 G B with,

(wc)c = (C’}’Ow*)c
= CY(CY %)
= (")
(0

Exercise : Show the following useful formula’s in this representation.

CIy'C = (—4")

(15)x(C7") ™ =Cn M (C1) 7 = o

(C’}/O)_l _ 70—10—1 as C’YO( 70—1 C—l) -1
| I— |
70 as y040=1
so, —C 709 A0 Cl =4t
| I— |

.
yHt since Eq.(6)*: ykt=r0"yu* ’70
| I—

~0

€ =-C'] and

CA0C = —%0 & 400 = —Cr0 = —(C0)t = —10W
C(CY°) = —Cy°(CyY)
D20 =
C2— 00 — 1
(-O)e) =1

14



()" 5 Ciesol = 09"
Eq.(15)
CCT=CH'(°Ch) =%y = 1
—1 Eq.(15)
From which one can easily deduce,
C = -t
-1 _ t
c= C ‘ -1 — _C
c! = —C
T
c'= -C ‘ ot~ o
Exercise : Show that 1, = —¢*C~! which will be useful as well when writing covariant terms.
(Vo) = ¢670
= (C7*.)1°
— wt,y()(t) Ic_f‘l'l ,70
c-1
— wt,y() C*l,yo
| —
_,yo(t)cr—l
=1
| |

= 'y (-C7
while, the following quantity makes no sense,

¥ ==y ™.

C

15



3 The spinors and their normalisations

As we have seen,

— dP dP
_ 0, _ _ 3 _ 3 _
; dPpP
with i we®® = wW(it), [WEHP = o,

so that,
M, M) / &z =2E
P A

unit
—_
=1
where Vit is a reference volume. Those relations translate into a more compact form,
using the previous orthogonal conditions,

™' gy m o~ gnm 2E, Ym=1,...,4 (and u™ 1 o™ v, m)
| I—| | M— |
[[u[|2>0 E>0

O (=)™ u(—p)™ = 5" 2E

(1)o@ ™ = 5" 2F,
E>0

The conditions derived allow one to find out the normalisation factors,

WO N2 10 o — ()]
u\‘ = +p3+p ip2)
|2E(>0)| ’ 1‘ [ 3 1 ( 2 }(|E]+m)2
_ NP [E? + % + 2Em] + [E? — p?]
- ! (E +m)?
= M| ——
(E 4+ m)?

so that, | Ny = (F —|—m)%

o'W = NG 2((|E| +m)? [} = (ip2)* + p3] + 1) = [Na] = [Na| = | Na| = | V3|

Normalisation conditions on @, o :

g™y ™ = g 2m‘ [n,m =1,2]

7M™ = —5" 9m | [n,m = 1,2]

16



Exercise: Demonstration.

The spinor @ requires the Dirac equation to obtain some information on it,

(h—m)u=0, ul (¥ Tpu—=m) 7 =0, uly(yp, —m) =0
x~0
a(p—m) =0| |v(p+m)=0] (16)

This commutation is needed: 7’”70 = 707“

p=0 : A0 =70,0
Relation correct :{ p#0 : ~A* 40 -0k =0
Ll

=—nk

Eq.(16)(™) x A0y (m) u(y*p, — m)y'u =0
To be added.
TMA0 x Bq.(10)™) : ay0(y#p, —m)u = 0

—p°
w°poy"u + 11 pou + TP u + TP — 27 m = 0
—2uupo—2(ut "}/0)’}’0 u m=0
—

1

One thus obtains,

7y m) — ™

(M (m)
ZE’ gnm

Completeness relations:

> @) w ) =prm|,
n=1,2 J
@) T E) =p-m|
_ ]
n=1,2
Demonstration:
1
P3 P1 —ip2 () t0_ 4 1
N|1,0,— — y =
(’0’ E+m’ E—}—m) J = -1

17



i

1 1 0
0 0 0

1 ( p3 ) p3/(E +m) 0
Etm \p1+irg (1 +ip2)/(E+m) 0

—p3/(E + m)
0

—p3/(E + m)?
—p3(p1 + ip2)/(E + m)?

0
—(p1 +ip2)/(E +m)
— (P} + p3)/(E +m)*
+p3(p1 + ip2)/(E +m)?

—ps/(BE~A+T7)
—(p1 +3ip2)/M

—p%/(E+m)

—(p1 —ip2)/(E +m)
0

—p3(p1 — ip2)/(E + m)?
—(F +p3) /(B +m)?

0
+p3/(E +m)
+ps(p1 — ip2)/(E + m)?
—p3/(E + m)?

—(p1 — ip2)/(EAT)
(EA-T)

+p3/
0

-p*/(E + m)?‘

1 0 0
0 0 1
N < 1 (plfipz) > 0 (p1 —ip2)/(E+m)
B+m \ 0 —pg/(E+m)
1 0
0 1
" ps/(EA-TT) (p1 — ip2)/(EAm)
(p1 + ip2)/(E + m) —ps /(EAT)
with,
E? —m?
P (E+m) - =
P /( ) m

To be compared with,

Po+m

+m= H4m =
4 s < —prot

pof+prBak

pro” _
—po+m

18



4 Lorentz transformations

4.1 Bilinear terms

Let us make an exhaustive list of the bilinear quantitites 1 f(7#)v in order to construct
Lorentz invariant objects — useful to write realistic Lagrangians for spin-1/2 particles.
For that purpose, we introduce the 75 matrix defined accordingly to,

3B 2 Oy l243

Exercise: Show that [°T = 7% | | (7%)2 = 1| and |y°4* +4#4° =0 |.

In the Dirac-Pauli representation,

0.1.2 3 _ —olo? 0 0 o3 - 0 —olo?o?
vy = 0 olo? 53 0 —\ _5lp2s3 0

as,

List of bilinear quantities:

Name H Expression H # of components
scalar Y1) 1
vector PyHap 4
tensor Yot 6
axial vector Py ytap 4
pseudo scalar || 17> 1

19



e Increasing order of v's : 799" = i7%y14%y34" < product of 3 v matrices as (y#)% = + 4*

1.2,.3.2.3 :

o ex:719v%y3 = in%9142~34243 is a product of 2 4's = it is a complete list of possibilities.

4.2 Lorentz invariants

One expects, through a Lorentz boost,

. 0 _ 0
P ) —m ) =0 e i O ) —m () = 0
with the Lorentz transformation: ot = A% 2
and the quantum transformation: X® = pxrrt

from WX = @ X]|P)

(| TT X' Ty = “Measure Invariance”

as well as the spinor field transformation:

(") P (@) =T ¢(a)
In the frame F,

P97 O, () —m (@) =0 since O = A} O

while in the frame F/,

T~y O [T(2)] = m T~ /(a') = 0

Y’ (2') ¥(z)
By identification,
. —1 . —1
Mo AP =TT & M(=B)" = TAHT1(8)
— IS —
classical transf. with ‘—p3’ quantum transf. by definition (v/#)

Exercise:

For the infinitesimal Lorentz transformation A", =4, + €,

20



check that the condition T'(6/) + €/;)y” = AT is well satisfied by |T =1 — % Tap P,
7 )
(%+ o)’ — 4 OeB ﬁaﬁ(éﬁ +ep)y” = )%_ Z’Y“Eaﬁ e’
K 1 ap v 1 B ap
" + 5 [F2157l e g = o hars — vs7ale
1
= —WYacg"
m 1 Sli_;jl af 1 v af
o1 = 71(=)29509 7" 70" = 272 an g™ 7 = 0
ot o
5
1 1
Py, + 5%460‘“ _5766“5 - 0
[
—%'YQEH’D‘
Py — Yt = 0
Exercise:
Show that : | 774 = 4°T~1| at order € .
Remark : careful treatment of the relation 7T = T~ at O(e).
It is equivalent to show that,
T = 1
1 t_apB 1 af 0
1 = {14 chars —s7]'e™ | 70 { 1+ Slvavs = v87]e™ |7
TAT T AT L ]
Y8V — Va7
Lple 'R 1+ 1l —viad]ees

*(*’YL’YlﬂLWL’Y;;)

(Infinitesimal) Lorentz invariants:

A first invariant is,
o= )Ty
= (TY)°Ty
PITTH Ty
= .
Besides, one can now write,
Py = T IAWHT Y
| I—— |

Afip‘ P
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together with,

/A _ A—1lo.
0, =770, =A""%,05
so that another invariant can be built,

FO Y =P ATLGNE 101 = Ty O
| F—

matrix (Sg
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5 The Higgs mechanism

5.1 The scalar potential

5.1.1 Free field

In quantum relativistic theory, the complex scalar field can have such a Lagrangian,

Ly = 0u9(0"0)" =V, V(¢) = m*¢o*

leading to EOM : (O+m?)¢p=0 & (O+m?)¢*=0
from the Euler-Lagrange equations,

oL oL

— Ak

¢ o(or®)

The Lagrangian can be rewritten in terms of real fields,

2

* 1 m2 2
Lo, 6%) & Lin(01,02) = Y 50u@i0"0s — =]

=1

leading to,

EOM : [(O+m?)¢; =0

The Hamiltonian density is then,

Hym = O¢illy, — L
2 1 le, = m?
= > <(30¢5i)2 - 5(30@)2 + 5V Vi + 2@2)
i=1
2

_ Lo, e g 2 1 o
o = ;(2(8 o) +2(V¢z) +5m ¢z>

Hum(p;) >0 is minimum at zero for the unique fields ¢ = ¢ =0 .

5.1.2 Self interaction

The potential can be modified accordingly to,

Ly = 0,00"¢" =V, V(¢)=—k*¢|*+ Ao|*
2 /1 k2 A
Ly = 2(2 Oui 3“¢i> + ?(¢%+¢%) - Z(¢%+¢%)

=1

o Lrew
9¢i

= —22(¢>% + ¢3)[2¢:] , sothat EOM: | (0 —k?*)¢; = —2\| o |* ¢s
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lol*

—|él?

9|

The Hamitonian is now,

1

9,9
2k¢i

1 1o 1
Hy =) |500%)°+5Ve} - + (01 +63)°

A
L

V(br.oa)=—k2lo2+r ||
| I—|

(p6*)2=(|8|2)?

Defining u = |¢|? for simplicity, the minimum is at,

_ov _ 2 o_ K o_ K e
0—%—(—143 + A\2u) foru—ﬁ, ¢ = 2 ¢

0 k* i 0, .0y 1 k2 i

and ¢ = o€ (¢1+2¢2)72: ox €
| I—
g RO/V3

Graphically,

0 RY
*for@z‘ o #3 =0, ¢(1):’ _ RO then V minimum

* case ¢2 = 0 then |¢| = ¢1, so V(|¢|) =V (p1)

*x R? = ¢2 + ¢2 = 2|¢|* (invariance under rotation)

The vacuum is infinitely degenerate since Ly is invariant under the transformation:

$(x) = ¢/ () = ()

Ta

¢*(2) = ¢¥(x) = e7*¢"(x)
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V2¢° coordinates \%

¢1 = V2 Re(0)

¢2 = V2 Im(¢)

The field ¢(z") has a fixed vacuum e.g. at ¢% = 4/ ';—; exp{i}} and thus breaks the 7,
3

symmetry spontaneously, gb% ey el QS%.
3 3

5.2 Goldstone theorem
P(z¥)
1
The relevant solution is  ¢%(z¥) + d¢(2”) in analogy with Quantum Field Theory,
—

<< @0

(01¢°(x) + (") [a,a]|0) = ¢° .

It makes sense formally to consider the £(¢'s) form for the solution,

p(z”) = +  P(z") with 19 # ¢12  having minimum d)?’2

1
(Y1+i2) %

1
L3P = 3 50ubid" i = V(o)
with the potential,

V() = —k*u+
| I—

= MN—2u v* 4+ u?)

= 2o

= A((oP + Vao w2 =)
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once we have expressed,

u= (0 B) 0+ 07) =0 + 0 + o+ ) = o+ (o + 0V v
where ¢0 = ve0.
Neglecting higher order terms (§¢>%) and the constant v* [vacuum energy] not con-
tributing to EOM,

> 0
| —

1 1
LPF = S0u0s + SOun0Mr —  2wh  Yf.
mass 2V v=v?2 k

The Goldstone theorem predicts indeed that when a Lagrangian is invariant under a
continuous transformation which is broken by the vacuum, there exist a massless and
real scalar field in the theory: the Goldstone boson (here ¢)2). The other (real) scalar
field, 11, gets a mass through the spontaneous breaking of the symmetry.

5.3 Yukawa couplings

Let us introduce spinor fields in order to study the impact of the spontaneous symmetry
breaking on those.

2
L=Ly+ ﬁf;}ree + Ly =Ly +1i Z @W“au\h —-Yo @1\1’2 — Y*gf)*ﬁg\lfl

i=1
—
k2,
No new scalar field = H scalar = Hy (still) minimised by ¢° = 2 e

and no U9 + ¥(z") meaning ¥° = 0 as TW? # WO would break Lorentz symmetry.

L is invariant under the transformation,

¢'_>eia¢ : @>—>€_ia¢i
T}f U, — ey ; 21 — {iawl
\112 — \112 ; \112 — \IIQ

Choosing a transformation absorbing s,

1],
¢ — ¢’ +(¥h1 +itha) —=| e,
I_l V2
untransformed

one obtains the Lagrangian, replacing ¢(z) by [v + 11 (z)]/V/2,

Ly —s L3P, e — clree
Ly — —YyoU U YW, U 1Y¢\IJ\I/ 1Y*¢\I/\If

mixed mass terms L 1
‘Higgs-matter’ interaction terms
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A more realistic scenario: the Standard Model

- The symmetry is gauged (local transformation): 7, Ta(z)-

- The 1o degree of freedom is absorbed into the longitudinal polarisation of the massive
gauge bosons (in the so-called London gauge, physical gauge or unitary gauge).

- The group breaking U(1) — X is promoted to SU(2)r, x U(1)y — U(1)q.

- The Higgs boson (h) and the Goldstone bosons (G’s) arise from a SU(2);, doublet
of the kind,

H =

v+h -0
— m
\/5 + ZG ZO

and the Yukawa coupling of the Lagrangian has now the form,

t H*

The Higgs mechanism applies as well to supraconductivity and is then called the Meissner
effect.
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