Master 1 — General Physics Major SQFT

QUANTUM FIELD THEORY

Tutorials (n’3) I

1. Complex field.- Let us study the Hamiltonian of the free complex field.

(a) Show that the operators dg) and fzg) satisfy the canonical commutation relations as well

as [dfoﬂ, é;“] = 0, where the annihilation operator ép is associated to the anti-particle of

4-momentum p*.

(b) Express the Hamiltonian H in terms of the annihilation (creation) operators dg) and é,(ﬁ.

Starting from the result of the course (beginning of Section 4.3):

~ 1 " A AT A AA al a
=5 [0, [ty + hing) + (il + )]

let us compare it with (omitting the p subscripts just here),

aa' +a'a = 5( 1a1 - zalag + zagai + a2a; + aial + m{ag - zagal + agag) ;
221— QTQ 1 A oAt PPN caoAf ~ oAt AT oA cata At A AT A
aa' +a'a = §(a1a1 + 141Gy — 1G2G] + G2a) + a1y — 1a]as + 10501 + Gha9)
implying,
~AAt T 22 22 A Af AT A A AT AT A
aa' +a'a+aa' +a'a = ajay + aya1 + a0y + a5as ,
so that,

2. Propagator.- Demonstrate that the propagator for the complex field operator gZB(l‘“) obeys the
property
G — ) (=< 0Bl (@ ))0 >) = iG(a™ — o).

where x* denotes the 4-coordinates and 7 selects the time-ordering.
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Let us for instance consider the case t’ > ¢ (the other case undergoes a similar demonstration):
iG(a" — ") = <O0lr[p(x")e! ()]0 >=< 0|¢(x ’”)é*( “)10 >
d3p'

= <0
|/\/27T 32E, \/271' 32E

A —zSE/.j) + é;ezx/p>(d]];/ezmp/ + ép,e_iib.j)/)“) >

—ix! . ptiz.p’ » AT
e apa,, |0 >

O'/ \/(27r)32Ep/ \/(27T)32Ep/

e~ privy (a iy + 0O (F—p) 1)[0 >

| v

< 0|

V(2r)32E, J \/(2m)32E,
d*p/

/\/27r32E V (27)32E,,

where we have used respectively th~e Equations (26), (27), ([25]), (17) and (21)-(31) [recalling
the semi-compact notation |0 > ®|0 >= |0 > (compact one)] of the course. On the other side,

—zac’.p-l—ixp’é(?)) (ﬁ_ ];7) (1)

iG(at —a") = <0lr[b(@")o! ()]0 >=< 0|6 (z")¢ ( )I0 >
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P 4 e P (e 4 Gl e )]0 >

—ix! . p+ix.p’ 2 AT
e apa,, |0 >
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dp P i oAk A -
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/\/27r32E V/ (2m)32E,, =7 @)

where we have used respectively the Equations (26), (17), ([25]), (27) and (21)-(31) of the
course. The comparison of the identical results in Eq.(T) and Eq.(2) allows to conclude that,
indeed, one finds:

iG(2™" — 2t = iG (" — 2.
Notice that for example Eq.(2)) leads to,

n n d3 . /
< 07[d(a")dT ()]0 >= / (2@% G D _ G — )

(where the last step is based on Eq.([30]) of the course) which allows one to demonstrate the
Eq.([32]) of the course.

3. Evolution operator.- Check that the evolution operator Uo(t) — it ([, being the time-
independent free Hamiltonian) for the free quantum state is solution of the equation,

d ~ oA
— U, HyUy(t
Zdt o(t) = HoUy(2)
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and is a unitary operator.

Inserting the Uo(t) exponential expression into this equation, we get,

do e (S B
ia[]l — iHot + THth + )= H[1 — iHot + Tﬂg# + ..
. 1 . . .
i[0 — iHy — §2H§t 4. = Hy —iHZt + ...
which is a true relation (at first orders here).

Let us now use the Uy(t) exponential expression to check the Uy (¢) unitarity at first order:

Uy Ul = (1 —iHot + O@)(1 +iH Dt + O(1?))
~—~
Uyt
= 1 + iHyt — iHot + O(t?)

4. Wick contraction.- In this exercise we will relate the time-ordering, the normal-ordering and
the Wick contraction.

(a) Demonstrate the commutation relation, [¢(2*), (2*)] = 0, among field operators invol-
ving identical time-components ¢ = ¢'.

~

(b) Demonstrate the equality property, : ¢(z*)p(2"™) : = : ¢(='*)p(x*) :, where : ¢(z)P(2*) -
denotes the normal-ordering.

(c) Using previous question, show that the time-ordering between two fields is given by

~

T[dr(a)da(2™)] = pr(a*)da(2™) : + by (a")pa(a™)

where ¢ ()¢, (2*) denotes the Wick contraction.
| EE——|

desteske
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