Warped extra-dimension paradigm: precision EW data & tests at ILC

G. Moreau Laboratoire de Physique Théorique, Orsay, France

partly from...

C. Bouchart, G.M. NPB 2008

A. Djouadi, G.M., F. Richard *NPB* 2007

PLAN

- I) Introduction
- II) Comparison of EW fits in RS/SM
- III) The case of heavy flavors
- IV) Testing warped ED models at ILC
- V) Conclusion

I) Introduction

Problems/Solutions in the Higgs boson sector

- a) Quantum instability of the Higgs mass: $\delta m_h^2 \propto \Lambda_{NP}^2$
- ~> Supersymmetry (MSSM): $\delta m_h^2 \approx \tilde{m}^2 \approx (10^2 GeV)^2$ as no quadratic dvg.
- ~> Extra Dimensions (ADD,RS): δm_h^2 protected by $\Lambda_{NP} < M_{grav} \approx TeV$ (Higgsless): models without Higgs boson!
- ~> Composite Higgs (MHCM): δm_h^2 protected by $\Lambda_{NP} = \Lambda_{IR} \approx TeV$ [& possibly till Λ_{NP} via a global symmetry]
 - b) Quantum instability of the Higgs quartic coupling λ
- ~> Supersymmetry (MSSM): SUSY => $\lambda = g^2$ protects λ
- ~> Extra Dimensions (gauge-Higgs unif.): GAUGE SYM. => $\lambda = g^2$ protects λ (Higgsless): no high-energy Higgs potential

c) <u>EW Symmetry Breaking dynamics</u>

- ~> Supersymmetry (mSUGRA): EWSB triggered by negative Higgs mass induced radiatively (via top quark loop)
- ~> Composite Higgs (MHCM): EWSB triggered by negative Higgs mass induced radiatively (via top quark loop)
- ~> Extra Dimensions (Higgsless): SB by field Boundary Conditions & KK masses for fermions/bosons

So the main approaches towards the Higgs questions are SUSY or ED like

+ renew of interest for ED-type scenarios:

EXP. – no discovery of superpartners @ LEPII (nor Tevatron Run II)

TH. – AdS/CFT correspondance (98') => calculability of EW observables (03') in Composite Higgs scenarios (84')

+ other attractive features of the Extra-Dimension scenarios:

- WIMP candidates for the dark matter of universe (UED,RS) stable due to a KK-parity
- Unification of gauge couplings (ADD) at high-energies (RS)
- Fermion mass and flavor models (ADD,RS) ≠ in SUSY
- ED = necessary ingredient for high-energy string theories

The EW constraints in the warped ED models:

Bulk gauge bosons/fermions mix with their KK excitations

=> tree-level contributions to EW observables
so the challenges are to...

- [1] respect the constraints from EW precision data
 - ~> Bulk custodial symmetry

$$O(4)$$
 $SU(2)_L \times SU(2)_R$
 $\downarrow \downarrow \approx \qquad \qquad \downarrow \downarrow$
 $O(3)$ $SU(2)_V \times P_{LR}$

- ~> Brane-localized kinetic terms for fermions/gauge fields
- [2] interprete anomalies in the SM fit of EW data (main one: Ab_{FB})
 - ~> Bulk flavor structure

EW BOUNDS IN WARPED ED SCENARIOS / DUAL MODELS

5D holographic version	RS with bulk fields	gauge-Higgs unification	Higgsless models
4D dual (in AdS/CFT) interpretation	composite Higgs boson	composite Higgs pseudo-Goldstone boson of a global symmetry (as for little Higgs with T parity)	technicolor models
EW constraints {with a custodial symmetry}	S,T within 95%C.L. [S>0; T>0; U \approx 0] for $M_{KK} \approx 3 \text{TeV}$, $m_h \approx 115-500$ GeV $\frac{(without\ custodial:\ e.g.\ M_{KK} \approx 6.4 \text{TeV}}{m_h \approx 1 \text{TeV}}$	S,T within 95%C.L. [S>0 ; T>0, <0 ; $U\approx0$] for $M_{KK}\approx3$ TeV, $m_h\approx115-190$ GeV	S=1.15 (excess by factor 5); $T \approx 0$; $U \approx 0$, for $M_{KK} \approx 1.2 TeV$

II) Comparison of EW fits in RS/SM

The RS model with bulk fields:

RS addresses the gauge hierarchy:

$$M_{grav} \approx TeV \approx Q_{EW}$$

RS generates the mass hierarchies:

$$m_e \ll m_t$$

Planck-brane

TeV-brane

Improved goodness-of-fit

EW observables are expressed in terms of oblique parameters encoding the New Physics...

p-value 10.3%
$$\Leftrightarrow \chi^2/11 = 1.56$$

$$S_{\rm RS} \simeq 2\pi \left(\frac{2.4v}{M_{KK}}\right)^2 \qquad T_{\rm RS} \simeq k\pi^2 R_c \frac{\tilde{g}^2}{8e^2} \frac{\tilde{M}^2}{k^2} \left(\frac{2.4v}{M_{KK}}\right)^2$$

p-value 37.3% $\Leftrightarrow \chi^2/10 = 1.08$

Better quality of fit in RS than in SM cause..

- 1) positive contribution T_{RS} (custodial symmetry breaking)
- 2) SM fit degraded by the $\sin^2\theta_W$ measurement derived *directly* from $\mathbf{A^b}_{FB}$:

Best-fit Higgs mass

 \Re RS fit can be better for any m_h>115GeV (e.g. m_h=190GeV => h->Z⁰Z⁰)

for
$$m_h$$
= 500 GeV
$$\begin{cases} p\text{-value can be @ 25.3\% in RS if } M_{KK} = 4 \text{ TeV} \\ p\text{-value is only @ 2.5 } 10^{-9} \text{ in SM} \\ m_h \text{ excluded in gauge-Higgs unification & SUSY} \end{cases}$$

=> the discovery of a heavy Higgs would constitute a sign for RS

the best-fit m_h value is possibly larger than the LEP2 direct limit of 115GeV

in contrast with the SM where the best-fit m_h is 76^{-24}_{+33} GeV (getting even smaller by excluding A^b_{FB})

III) The case of heavy flavors

Interpretation in a generic extra-dimensional model:

$$\begin{vmatrix} \delta Q_{Z}^{f_{l}} | \approx 1 \% & << \left| \delta Q_{Z}^{b_{L/R}} | \approx |-1.5/30\%| & m_{b'}(c_{t_{R}}) & << m_{f'}(c_{light}) \end{vmatrix}$$
Coupling $Z_{KK}f_{l}\overline{f_{l}} & << \text{Coupling } Z_{KK}b\overline{b} & m_{t}(c_{t_{R}}) \uparrow \Rightarrow m_{b'}(c_{t_{R}}) \downarrow$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

natural conditions within the RS model

$$\{Q_{1L}\} \equiv (\mathbf{2}, \mathbf{3})_{1/6} = \begin{pmatrix} q'_{(5/3)L} & t_{1L} & b'_{L} \\ t'_{L} & b_{1L} & q'_{(-4/3)L} \end{pmatrix} \quad \{t_{R}^{c}\} \equiv (\mathbf{3}, \mathbf{2})_{1/6} = \begin{pmatrix} q'_{(5/3)R} & t_{R}^{c\prime} \\ \overline{t_{R}^{c\prime}} & b_{R}^{c\prime\prime} \\ b'_{R}^{c\prime} & q'_{(-4/3)R}^{c\prime\prime} \end{pmatrix}$$

representations:
$$\{Q_{2L}\} \equiv (\mathbf{2},\mathbf{3})_{-5/6} = \left(\begin{array}{ccc} t_{2L} & b_L^{\prime\prime} & q_{(-4/3)L}^{\prime\prime\prime} \\ b_{2L} & q_{(-4/3)L}^{\prime\prime} & q_{(-7/3)L}^{\prime\prime} \end{array} \right) \ \{b_R^c\} \equiv (\mathbf{1},\mathbf{2})_{-5/6} = \left(\begin{array}{ccc} b_R^c & q_{(-4/3)R}^{c\prime\prime} \end{array} \right)$$

Fit of R_b + 8 data for $A^b_{FB}(\sqrt{s})$

- \rightarrow p-value 10% $\Leftrightarrow \chi^2/9 = 1.63$
- \rightarrow p-value 8% $\Leftrightarrow \chi^2/9 = 1.71$

[SM: p-value 0.8% $\Leftrightarrow \chi^2/9 = 2.47$]

$$\begin{cases} \lambda_t^{5D} k = 1 & c_1 = 0 & c_{bR} = 0.27 \\ \lambda_b^{5D} k = 1 & \cos \theta_{12} = 0.1 \end{cases}$$

Global Ab_{FB} fit @ and off the Z pôle:

SM: $\chi^2 = 24$ RSa: $\chi^2 = 20$ RSb: $\chi^2 = 14$

 b_R under $SU(2)_L \times SU(2)_R \times U(1)_X$: $\begin{cases} Q_X = (B - L)/2 \implies I_R^3 = -1/2 \text{ RSa} \\ Q_X = -5/6 \implies I_R^3 = +1/2 \text{ RSb} \end{cases}$

IV) Testing warped ED models at ILC

Indirect effects mainly in the heavy quark sector (b,t couplings to KK bosons up to $\times \sqrt{2\pi \, kR_c} \approx 8$)

- * Giga-Z: more data on A^b_{FB} / R_b to confirm or invalidate the anomaly (and its possible *RS* interpretation)
- contribution from s-channel exchange of KK Z, KK photon to top pair production in RS \rightarrow ILC sensitivity on M_{KK} ($\delta\sigma\approx1$ %, $A_{LR}^t\approx0.002$):
 - ~ 10-20 TeV! ... out of LHC reach {little hierarchy}

[De Pree, Sher 06]

$$ee^- \rightarrow \gamma/Z_{KK}^{(n)} \rightarrow t\bar{t}$$

THROUGH FCNC...

* tree-level FCNC process $e^+e^- \rightarrow t\bar{c}$ through Z^0 -KK's mixing in RS:

$$\sigma_{tc}/\sigma_{\mu\bar{\mu}} \approx 2.10^{-5}$$
 at $\sqrt{s} \approx 200 \text{ GeV}$

(+ angular distributions @ ILC can probe the prediction of Right-handed coupling dominance)

[Agashe, Perez, Soni 06]

THROUGH THE HIGGS...

- # Higgs compositeness effects / KK gauge boson mixings
 - ⇒ ho vertex corrections
 - \Rightarrow deviations in $\sigma(ff \rightarrow h^0) \times B(h^0 \rightarrow ...)$ [model-independent study]

[Giudice, Grojean, Pomarol, Rattazzi]

- \Rightarrow testable at LHC when deviations reach 20-60 % (m_h<150GeV) testable at ILC already @ the level of a few %
- Gravity-induced EWSB scenario in URS:
 - \Rightarrow corrections testable at ILC in $g_{h^0WW}^{N}/g_{h^0WW}^{N} \approx 0.5-0.7$ (m_h<1TeV)

[Davoudiasl, Lillie, Rizzo 05]

- Precise m_h reconstruct. @ILC $m_h^2/2xVEV^2 = \lambda_h$ experimental estimation VEV measurement (h^0Z^0 prod.)
 - > to be compared with e.g. VEV_{RS}
- * Higgs-radion mixing effects ...

Possibly even *direct* effects

within composite pseudo-GB Higgs scenarios where m_{custodians} 500GeV [<< M_{KK} ~ 3TeV] can be compatible with precision EW constraints:

[Contino, Da Rold, Pomarol 06]

the single production of these `custodians' (exotic colored fermions like b', $q_{5/3}$...) becomes accessible by a 1TeV e^+e^- machine..

** KK Higgs excitation in *URS*:

possible/difficult in a 1TeV ILC ($\approx 10^{-1}$ reduced $h^{(1)}$ -boson couplings)

[Davoudiasl, Lillie, Rizzo 05]

V) Conclusion

We have shown how, thanks to the custodial symmetry, flavor structure and quark representations, the *RS* model can simultaneously:

- solve the forward-backward Anomaly for the bottom
- improve the quality of precision EW fits w.r.t. SM
- for a best-fit Higgs mass above the LEP2 limit.

There exist various precision tests of warped ED models at ILC, mostly in the third generation quark sector.

& another model for $m_h = 500 \text{ GeV} \dots$

