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Université Paris XI

work in coll. with Axel de Goursac, Raimar Wulkenhaar

hep-th/0703075

Non-Commutative Geometry and Physics, Orsay, 23-27th April 2007



Noncommutative Induced Gauge Theory, Orsay, 23-27th April 2007 Jean-Christophe Wallet, LPT-Orsay

Motivations

I Attempt to construct possible candidate(s) for renormalisable actions for
gauge theories on noncommutative D = 4 Moyal “space”. The popular
noncommutative analog of the Yang-Mills action

∫
d4x(Fµν ? Fµν)(x) has

UV/IR mixing.

I ?? Examine how to extend, if possible, the Harmonic term to gauge theories
in order to get a renormalisable action for gauge theory?

I Similar investigation using the same way we followed (based on effective
actions) has been carried out independently by H. Grosse and M. Wohlgenannt
[hep-th/0703169]. The basic ingredients (gauge transforms, starting
actions) and the computational tools (x-space formalism versus matrix basis)
are different. But each analysis gave rise to similar candidate actions.

I Pick SH(φ, φ†), couple it to external Aµ in a gauge invariant way, integrate
over matter and get effective action Γ(A).

I Guess possible form(s) for a candidate as a renormalisable gauge action
I Is there some additional terms that appear in the action, beyond Fµν ? Fµν .
I How does the harmonic term survive in the resulting effective action?
I Check whether or not ∃ some relic of the Langmann-Szabo duality
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The general structure

I The structure of the resulting action:

Sf ∼
∫

d4x
( α

4g2
Fµν ? Fµν +

Ω′

4g2
{Aµ,Aν}2

? +
κ

2
Aµ ?Aµ

)
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Content

1 The noncommutative set-up - Main features
Noncommutative connections - Basics
The free module case
The gauge transformations
Invariant connection and natural tensor form
Curvature

2 Coupling external gauge potential to a scalar model
The minimal coupling prescription
From coupled scalar action to effective gauge action

3 Computation of the one-loop effective action
Defining the effective action
Diagramatics
The structure of the effective action
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The noncommutative set-up - Main features Noncommutative connections - Basics

Noncommutative connections - Basics

I Moyal algebra M with Moyal ?-product, unital, involutive algebra, assumed to
be equiped with a differential calculus based on ∂µ. (Recall M=L ∩R; L
(resp. R): subspace of elements of S ′(R4) whose multiplication from right
(resp. left) by any Schwarz function is Schwartz). [see e.g Gracia-Bondia, Varilly,

J.M.P 1988; Grossmann et al., Ann. Inst. Fourier 1968].

I In NC geometry, the connections defined from set of sections of vector
bundles in ordinary geometry can be generalized to connections on modules
over an algebra.

I Let H be a right M-module with a hermitean structure h. A connection is
defined by a linear map from H to H verifying a Leibnitz rule:

∇µ : H → H
∇µ(m ? f ) = ∇µ(m) ? f + m ? ∂µf , ∀m ∈ H, ∀f ∈M

I The connection is further assumed to preserve the hermitian structure h, i.e

∂µh(m1,m2) = h(∇µm1,m2) + h(m1,∇µm2), ∀m1,m2 ∈ H

(Recall that h is a sesquilinear map from H×H to M verifying

h(m1 ? f1,m2 ? f2)=f †1 ? h(m1,m2) ? f2, ∀f1, f2∈M, ∀m1,m2∈H)
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The noncommutative set-up - Main features The free module case

The case H = M

I We will assume H = M (the algebra plays the role of the module). This
implies that the connection is determined by ∇µ(I). Set

∇A
µ(I) ≡ −iAµ

(Setting m=I in the definition of ∇µ yields ∇A
µ(I ? f )= ∇A

µ(I) ? f +∂µf
≡∂µf − iAµ ? f ). This can serve as defining a noncommutative analog of the
gauge potential Aµ ∈ M.

I Here, the hermitian structure we will take is

h(f1, f2) = f †1 ? f2

so that the above connections are hermitian provided A†µ=Aµ.

I Gauge transformations are defined by the automorphisms of the module M
preserving the hermitian structure h: γ ∈ Auth(M). One has

γ(f ) = γ(I ? f ) = γ(I) ? f , ∀f ∈M
h
(
γ(f1), γ(f2)

)
= h(f1, f2) ∀f1, f2 ∈M

The latter relation implies

γ(I)† ? γ(I) = I
so that the gauge transformations are determined by γ(I) ∈ U(M), where
U(M) is the group of unitary elements of M.

7
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The noncommutative set-up - Main features The gauge transformations

The gauge transformations

I Now, we set γ(I) ≡ g . Then, the action of the gauge group on any matter
field φ ∈M is

φg = g ? φ

for any g ∈ U(M) (Gauge transformation is a morphism of module). This is a
kind of noncommutative analog of the transformation of the matter fields
under the “fundamental representation”.

I The action of the gauge group on the connection ∇A
µ is defined by

(∇A
µ)γ(φ) = γ(∇A

µ(γ−1φ)), ∀φ ∈M.

I This implies the following gauge transformation for Aµ

Ag
µ = g ? Aµ ? g† + ig ? ∂µg†

(Combine γ(φ) = γ(I ? φ) = g ? φ with ∇A
µ(φ) = ∂µφ− iAµ ? φ and

(∇A
µ)g ≡ ∂µ − iAg

µ)

I In M, the derivative ∂µ is an inner derivative, since one has

∂µφ = [iξµ, φ]?, ξµ ≡ −Θ−1
µν xν

8
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The noncommutative set-up - Main features Invariant connection and natural tensor form

Gauge-invariant connections

I Inner derivations implies the existence of a (canonical) gauge-invariant
connection. Not specific to Moyal. Reflects general theorem 1of
derivation-based noncommutative frameworks valid when the algebra = the
module; already occurs within matrix-valued models.
[see e.g Dubois-Violette, Kerner, Madore, JMP 1990; Dubois-Violette, Masson,

J.Geom.Phys.1998].

I Here, this canonical connection is defined by ξµ=≡ −Θ−1
µν xν . It verifies

ξg
µ = ξµ

can be checked from general form of gauge transformations for Aµ combined
with ∂µφ = [iξµ, φ]?. (Other way: ∇ξ

µ verifies ∇ξ
µφ= ∂µφ− iξµ ? φ= −iφ ? ξµ

where the last equality stems from ∂µφ = [iξµ, φ]?. Then,
(∇ξ

µ)g (φ) = g ? (∇ξ
µ(g† ? φ)) = −iφ ? ξµ = ∇ξ

µφ so that ξg
µ = ξµ)

I The above gauge-invariant connection can be used to define the following
tensorial form

∇A
µ −∇ξ

µ = −i(Aµ − ξµ) ≡ −iAµ

which coincides with the so called covariant coordinates.

1A 1-form ξ such that df = [ξ, f ], ∀f ∈M defines a canonical gauge-invariant connection9
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1A 1-form ξ such that df = [ξ, f ], ∀f ∈M defines a canonical gauge-invariant connection9
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Gauge-invariant connections

I Inner derivations implies the existence of a (canonical) gauge-invariant
connection. Not specific to Moyal. Reflects general theorem 1of
derivation-based noncommutative frameworks valid when the algebra = the
module; already occurs within matrix-valued models.
[see e.g Dubois-Violette, Kerner, Madore, JMP 1990; Dubois-Violette, Masson,

J.Geom.Phys.1998].

I Here, this canonical connection is defined by ξµ=≡ −Θ−1
µν xν . It verifies

ξg
µ = ξµ

can be checked from general form of gauge transformations for Aµ combined
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Curvature

I The curvature for the connection ∇A
µ defined as

FA
µν ≡ i [∇A

µ,∇A
ν ]?

takes the usual form

Fµν = ∂µAν − ∂νAµ − i [Aµ,Aν ]?
or alternatively in terms of Aµ

Fµν = Θ−1
µν − i [Aµ,Aν ]? = F ξ

µν − i [Aµ,Aν ]?

I The gauge transformations for Aµ and FA
µν are given by

Ag
µ = g ?Aµ ? g†, (FA

µν)g = g ? FA
µν ? g†

I Note that the invariant connection defined by ξµ is a constant curvature
connection since one has

F ξ
µν = Θ−1

µν

10
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The noncommutative set-up - Main features Curvature

Other ”gauge transformations”? I

I Other type of transformations considered by H.G and M.W:

φU = U ? φ ? U† ≡ α(φ)

for any U ∈ U(M). ∼NC analog of ”gauge transformation in the adjoint
representation”. The corresponding ”covariant derivative” is

Dµ(φ) = ∂µφ− i [Aµ, φ]?

I Covariance under the above: (Dµ(φ))U=U ? (Dµ(φ)) ? U† is insured provided

AU
µ = U ? Aµ ? U† + iU ? ∂µU†

I It defines an automorphism α of algebra:

α(φ1 ? φ2) = α(φ1) ? α(φ2)

Dµ satisfies a Leibnitz rule

Dµ(φ1 ? φ2) = Dµ(φ1) ? φ2 + φ1 ? Dµ(φ2)

so that Dµ is a derivation. These NC analogs of ”gauge transformation in the
adjoint representation” can be understood in terms of actual NC gauge
transformations provided the initial algebra M is enlarged to M by M⊗Mo ,
where Mo is the opposite algebra which amounts to deal with real structure
instead of hermitian structure.

11
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Coupling external gauge potential to a scalar model

1 The noncommutative set-up - Main features

2 Coupling external gauge potential to a scalar model
The minimal coupling prescription
From coupled scalar action to effective gauge action

3 Computation of the one-loop effective action
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Coupling external gauge potential to a scalar model

The 4-dimensional “harmonic” complex scalar model

I Start from the simplest complex-valued extension of the initial ϕ4
4 with

harmonic term.
[Grosse, Wulkenhaar, CMP 2005; Gurau, Magnen, Rivasseau, Vignes-Tourneret, CMP 2006]

I The action is

S(φ) =

∫
d4x

(
∂µφ† ? ∂µφ + Ω2(x̃µφ)† ? (x̃µφ) + m2φ† ? φ

)
(x) + Sint

Here, φ is a complex scalar field with mass m, Ω∈[0, 1] and x̃µ = 2Θ−1
µν xν .

I The interaction term Sint is

Sint = S0
int + SNO

int =

∫
λ(φ† ? φ ? φ† ? φ)(x) + κ(φ† ? φ† ? φ ? φ)(x)

I S(φ) restricted to SO
int (κ=0) is renormalisable for any value of Ω. Notice that

the action is covariant under the Langmann-Szabo duality.

I The effect of the inclusion of non-orientable interactions on the
renormalisability is not known.
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Coupling external gauge potential to a scalar model The minimal coupling prescription

The minimal coupling prescription

I Owing to the special role played by ξµ, the minimal coupling prescription can
be conveniently written as (de Goursac, JCW, Wulkenhaar, hep-th/0703075)

∂µφ 7→ ∇A
µφ = ∂µφ− iAµ ? φ,

x̃µφ 7→ −2i∇ξ
µφ + i∇A

µφ = x̃µφ + Aµ ? φ.

(∇ξ
µφ = ∂µφ− iξµ ? φ). Prescription consistent with structure of modules

over algebra. Roughly, this permits one to introduce covariant derivatives
where it is needed in the action.

I As a consequence, gauge invariance of the resulting action functional will be
obtained thanks to the relation

(∇A,ξ
µ (φ))g = g ? (∇A,ξ

µ (φ))

I This minimal coupling prescription is applied to the D = 4 action S(φ).
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Coupling external gauge potential to a scalar model From coupled scalar action to effective gauge action

From coupled scalar action to effective gauge action

I The resulting gauge invariant coupled action is given by

S(φ,A) =S(φ) +

∫
d4x

(
(1 + Ω2)φ† ? (x̃µAµ) ? φ

− (1− Ω2)φ† ? Aµ ? φ ? x̃µ + (1 + Ω2)φ† ? Aµ ? Aµ ? φ
)
(x),

where S(φ) involves only the orientable part of the interaction terms SO
int .

I Next step: Compute at the one-loop order the effective action Γ(A) obtained
by integrating over the scalar field φ in S(φ,A), for any value of Ω ∈ [0, 1]

I Goals:
I Guess possible form(s) for a candidate as a renormalisable gauge action
I Is there some additional terms that appear in the action, beyond the expected

Fµν ? Fµν .
I How does the harmonic term survive in the resulting effective action?
I Check whether or not some relic of the Langmann-Szabo shows up in the

effective action
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Computation of the one-loop effective action

Computation of the one-loop effective action

1 The noncommutative set-up - Main features

2 Coupling external gauge potential to a scalar model

3 Computation of the one-loop effective action
Defining the effective action
Diagramatics
The structure of the effective action
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Computation of the one-loop effective action Defining the effective action

The one-loop effective action

I The effective action is formally obtained through the evaluation of the
following functional integral

e−Γ(A) ≡
∫

DφDφ†e−S(φ,A) =

∫
DφDφ†e−S(φ)e−Sint(φ,A),

Sint(φ,A) denotes the terms involving the external gauge potential Aµ.
I At the one-loop order, the above functional reduces to

e−Γ1loop(A) =

∫
DφDφ†e−Sfree(φ)e−Sint(φ,A)

I The effective action Γ1loop(A) can be conveniently obtained in the x-space
formalism. Compute relevant diagrams using the Mehler-type propagator
C (x , y) ≡ 〈φ(x)φ†(y)〉 (set Ω̃ ≡ 2Ω

θ and x ∧ y ≡ 2xµΘ−1
µν yν)

C (x , y) =
Ω2

π2θ2

∫ ∞

0

dt

sinh2(2Ω̃t)
exp(− eΩ

4 coth(eΩt)(x−y)2− eΩ
4 tanh(eΩt)(x+y)2−m2t)

combined with the vertex whose generic expression is∫
d4x(f1 ? f2 ? f3 ? f4)(x) =

1

π4θ4

∫ 4∏
i=1

d4xi f1(x1)f2(x2)f3(x3)f4(x4)

× δ(x1 − x2 + x3 − x4)e
−i

P
i<j (−1)i+j+1xi∧xj .
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Sint(φ,A) denotes the terms involving the external gauge potential Aµ.

I At the one-loop order, the above functional reduces to

e−Γ1loop(A) =

∫
DφDφ†e−Sfree(φ)e−Sint(φ,A)

I The effective action Γ1loop(A) can be conveniently obtained in the x-space
formalism. Compute relevant diagrams using the Mehler-type propagator
C (x , y) ≡ 〈φ(x)φ†(y)〉 (set Ω̃ ≡ 2Ω

θ and x ∧ y ≡ 2xµΘ−1
µν yν)

C (x , y) =
Ω2

π2θ2

∫ ∞

0

dt

sinh2(2Ω̃t)
exp(− eΩ

4 coth(eΩt)(x−y)2− eΩ
4 tanh(eΩt)(x+y)2−m2t)

combined with the vertex whose generic expression is∫
d4x(f1 ? f2 ? f3 ? f4)(x) =

1

π4θ4

∫ 4∏
i=1

d4xi f1(x1)f2(x2)f3(x3)f4(x4)

× δ(x1 − x2 + x3 − x4)e
−i

P
i<j (−1)i+j+1xi∧xj .
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Computation of the one-loop effective action Diagramatics

Diagramatics
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The structure of the effective action

I The result for any Ω∈[0, 1] can be writen as

Γ(A) =
Ω2

4π2(1+Ω2)3

(∫
d4u (Aµ ?Aµ −

1

4
ũ2)

)(
1

ε
+ m2 ln(ε)

)
− (1−Ω2)4

192π2(1+Ω2)4

(∫
d4u Fµν ? Fµν

)
ln(ε)

+
Ω4

8π2(1+Ω2)4

(∫
d4u (Fµν ? Fµν + {Aµ,Aν}2

? −
1

4
(ũ2)2)

)
ln(ε) + . . . ,

I It is similar to the expression obtained by Grosse and Wohlgenannt from a
matrix base approach using heat kernel expansion.

I It involves, beyond the usual expected Yang-Mills contribution
∼
∫

d4x Fµν ? Fµν , additional gauge invariant terms of quadratic and quartic
order in Aµ, ∼

∫
d4x Aµ ?Aµ and ∼

∫
d4x {Aµ,Aν}2

?.

I It involves a mass-type term for the gauge potential Aµ (a bare mass term for
a gauge potential is forbidden by gauge invariance in commutative Yang-Mills
theories).
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Computation of the one-loop effective action The structure of the effective action

The structure of the effective action II

I The fact that the tadpole is non-vanishing is a rather unusual feature for a
Yang-Mills type theory. Indicates that Aµ has a non vanishing expectation
value.

I Action ”symmetric” under [, ]?�{, }?: ∼
∫

d4x {Aµ,Aν}2
? accompanying the

Yang-Mills term ∼ [Aµ,Aν ]2?.

I Conjecture that the following class of actions

S ∼
∫

d4x
( α

4g2
Fµν ? Fµν +

Ω′

4g2
{Aµ,Aν}2

? +
κ

2
Aµ ?Aµ

)
involves suitable candidates for renormalisable actions for gauge theory
defined on Moyal spaces.
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Computation of the one-loop effective action The structure of the effective action

Next step

I Clarify the vacuum problem

I What goes on for IR singularity in the polarisation tensor?
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Computation of the one-loop effective action The structure of the effective action

Vertices involving Aµ

φ

φ†

Aµ

ξµ

φ

φ†

ξµ

Aµ

ξµ

φ†

φ

Aµ

φ

φ†

Aµ

Aµ
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Computation of the one-loop effective action The structure of the effective action

Tadpole diagram I
The amplitude for the tadpole diagram is

T1 =
Ω2

4π6θ6

∫
d4x d4u d4z

∫ ∞

0

dt e−tm2

sinh2(Ω̃t) cosh2(Ω̃t)
Aµ(u) e−i(u−x)∧z

× e−
eΩ
4 (coth(eΩt)z2+tanh(eΩt)(2x+z)2

((1− Ω2)(2x̃µ + z̃µ)− 2ũµ)

Introduce the following 8-dimensional vectors X , J and the 8× 8 matrix K defined
by

X =

(
x
z

)
, K =

(
4 tanh(Ω̃t)I 2 tanh(Ω̃t)I− 2iΘ−1

2 tanh(Ω̃t)I + 2iΘ−1 (tanh(Ω̃t) + coth(Ω̃t))I

)
, J =

(
0
i ũ

)
.

This permits one to reexpress the amplitude in a form such that some Gaussian
integrals can be easily performed:

T1 =
Ω2

4π6θ6

∫
d4x d4u d4z

∫ ∞

0

dt e−tm2

sinh2(Ω̃t) cosh2(Ω̃t)
Aµ(u)

× e−
1
2 X .K .X+J.X ((1− Ω2)(2x̃µ + z̃µ)− 2ũµ)

By performing the Gaussian integrals on X , we find

T1 = − Ω4

π2θ2(1 + Ω2)3

∫
d4u

∫ ∞

0

dt e−tm2

sinh2(Ω̃t) cosh2(Ω̃t)
Aµ(u)ũµ e

− 2Ω
θ(1+Ω2)

tanh(eΩt)u2

.

23



Noncommutative Induced Gauge Theory, Orsay, 23-27th April 2007 Jean-Christophe Wallet, LPT-Orsay

Computation of the one-loop effective action The structure of the effective action

Tadpole diagram II

Inspection of the behaviour of T1 for t → 0 shows that this latter expression has a
quadratic as well as a logarithmic UV divergence. From Taylor expansion:

T1 =− Ω2

4π2(1 + Ω2)3

(∫
d4u ũµAµ(u)

)
1

ε
− m2Ω2

4π2(1 + Ω2)3

(∫
d4u ũµAµ(u)

)
ln(ε)

− Ω4

π2θ2(1 + Ω2)4

(∫
d4u u2ũµAµ(u)

)
ln(ε) + . . . ,

where ε → 0 is a cut-off and the ellipses denote finite contributions.
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Higher order terms

I The regularisation of the diverging amplitudes is performed in a way that
preserves gauge invariance of the most diverging terms. In D = 4, these are
UV quadratically diverging so that the cut-off ε on the various integrals over
the Schwinger parameters (

∫∞
ε

dt) must be suitably chosen.

I We find that this can be achieved with
∫∞

ε
dt for T ′′2 while for T ′2 the

regularisation must be performed with
∫∞

ε/4
.

I In field-theoretical language, gauge invariance is broken by the naive
ε-regularisation of the Schwinger integrals and must be restored by adjusting
the regularisation scheme. Note that the logarithmically divergent part is
insensitive to a finite scaling of the cut-off.

25



Noncommutative Induced Gauge Theory, Orsay, 23-27th April 2007 Jean-Christophe Wallet, LPT-Orsay
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Higher order terms II
I The one-loop effective action can be expressed in terms of heat kernels:

Γ1loop(φ,A) = −1

2

∫ ∞

0

dt

t
Tr
(
e−tH(φ,A) − e−tH(0,0)

)
(2)

= −1

2
lim
s→0

Γ(s)Tr
(
H−s(φ,A)− H−s(0, 0)

)
,

where H(φ,A) = δ2S(φ,A)
δφ δφ† . Expanding:

H−s(φ,A) =
(
1 + a1(φ,A)s + a2(φ,A)s2 + . . .

)
H−s(0, 0), (3)

we obtain

Γ1loop(φ,A) = −1

2
lim
s→0

Tr
((

Γ(s+1)a1(φ,A)+sΓ(s+1)a2(φ,A)+. . .
)
H−s(0, 0)

)
.

With Γ(s + 1) = 1− sγ + . . . we have

Γ1loop(φ,A) = −1

2
lim
s→0

Tr
(
a1(φ,A)H−s(0, 0)

)
− 1

2
Ress=0 Tr

((
a2(φ,A)− γa1(φ,A)

)
H−s(0, 0)

)
. (4)

The second line is the Wodzicki residue which corresponds to the
logarithmically divergent part of the one-loop effective action. The
quadratically divergent part − 1

2 lims→0 Tr
(
a1H

−s(0, 0)
)

in the action which
cannot be gauge-invariant.
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