Noncommutative Induced Gauge Theory

Jean-Christophe Wallet

Laboratoire de Physique Théorique Université Paris XI

work in coll. with Axel de Goursac, Raimar Wulkenhaar

hep-th/0703075

Non-Commutative Geometry and Physics, Orsay, 23-27th April 2007

▲母 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ▲ 臣 ● � � �

Attempt to construct possible candidate(s) for renormalisable actions for gauge theories on noncommutative D = 4 Moyal "space". The popular noncommutative analog of the Yang-Mills action $\int d^4x (F_{\mu\nu} \star F_{\mu\nu})(x)$ has UV/IR mixing.

- Attempt to construct possible candidate(s) for renormalisable actions for gauge theories on noncommutative D = 4 Moyal "space". The popular noncommutative analog of the Yang-Mills action $\int d^4x (F_{\mu\nu} \star F_{\mu\nu})(x)$ has UV/IR mixing.
- ?? Examine how to extend, if possible, the Harmonic term to gauge theories in order to get a renormalisable action for gauge theory?

- Attempt to construct possible candidate(s) for renormalisable actions for gauge theories on noncommutative D = 4 Moyal "space". The popular noncommutative analog of the Yang-Mills action $\int d^4x (F_{\mu\nu} \star F_{\mu\nu})(x)$ has UV/IR mixing.
- ?? Examine how to extend, if possible, the Harmonic term to gauge theories in order to get a renormalisable action for gauge theory?
- Similar investigation using the same way we followed (based on effective actions) has been carried out independently by H. Grosse and M. Wohlgenannt [hep-th/0703169]. The basic ingredients (gauge transforms, starting actions) and the computational tools (x-space formalism versus matrix basis) are different. But each analysis gave rise to similar candidate actions.

- Attempt to construct possible candidate(s) for renormalisable actions for gauge theories on noncommutative D = 4 Moyal "space". The popular noncommutative analog of the Yang-Mills action $\int d^4x (F_{\mu\nu} \star F_{\mu\nu})(x)$ has UV/IR mixing.
- ?? Examine how to extend, if possible, the Harmonic term to gauge theories in order to get a renormalisable action for gauge theory?
- Similar investigation using the same way we followed (based on effective actions) has been carried out independently by H. Grosse and M. Wohlgenannt [hep-th/0703169]. The basic ingredients (gauge transforms, starting actions) and the computational tools (x-space formalism versus matrix basis) are different. But each analysis gave rise to similar candidate actions.
- Pick S_H(φ, φ[†]), couple it to external A_μ in a gauge invariant way, integrate over matter and get effective action Γ(A).
 - Guess possible form(s) for a candidate as a renormalisable gauge action
 - ▶ Is there some additional terms that appear in the action, beyond $F_{\mu\nu} \star F_{\mu\nu}$.
 - How does the harmonic term survive in the resulting effective action?
 - ▶ Check whether or not \exists some relic of the Langmann-Szabo duality

The general structure

▶ The structure of the resulting action:

$$S_f \sim \int d^4x \Big(rac{lpha}{4g^2} F_{\mu
u} \star F_{\mu
u} + rac{\Omega'}{4g^2} \{ \mathcal{A}_\mu, \mathcal{A}_
u \}^2_\star + rac{\kappa}{2} \mathcal{A}_\mu \star \mathcal{A}_\mu \Big)$$

◆母→◆臣→◆臣→ 臣 のへで

Content

The noncommutative set-up - Main features

- Noncommutative connections Basics
- The free module case
- The gauge transformations
- Invariant connection and natural tensor form
- Curvature

2 Coupling external gauge potential to a scalar model

- The minimal coupling prescription
- From coupled scalar action to effective gauge action

3 Computation of the one-loop effective action

- Defining the effective action
- Diagramatics
- The structure of the effective action

The noncommutative set-up - Main features

The noncommutative set-up - Main features

- Noncommutative connections Basics
- The free module case
- The gauge transformations
- Invariant connection and natural tensor form
- Curvature

2 Coupling external gauge potential to a scalar model

3 Computation of the one-loop effective action

Jean-Christophe Wallet, LPT-Orsay Noncommutative connections - Basics

Noncommutative connections - Basics

Noncommutative connections - Basics

Moyal algebra *M* with Moyal ★-product, unital, involutive algebra, assumed to be equiped with a differential calculus based on ∂_µ. (Recall *M*=*L* ∩ *R*; *L* (resp. *R*): subspace of elements of *S'*(*R*⁴) whose multiplication from right (resp. left) by any Schwarz function is Schwartz). [see e.g Gracia-Bondia, Varilly, J.M.P 1988; Grossmann et al., Ann. Inst. Fourier 1968].

Noncommutative connections - Basics

- Moyal algebra *M* with Moyal ★-product, unital, involutive algebra, assumed to be equiped with a differential calculus based on ∂_µ. (Recall *M*=*L* ∩ *R*; *L* (resp. *R*): subspace of elements of *S'*(*R*⁴) whose multiplication from right (resp. left) by any Schwarz function is Schwartz). [see e.g Gracia-Bondia, Varilly, J.M.P 1988; Grossmann et al., Ann. Inst. Fourier 1968].
- In NC geometry, the connections defined from set of sections of vector bundles in ordinary geometry can be generalized to connections on modules over an algebra.

Noncommutative connections - Basics

- Moyal algebra *M* with Moyal ★-product, unital, involutive algebra, assumed to be equiped with a differential calculus based on ∂_µ. (Recall *M*=*L* ∩ *R*; *L* (resp. *R*): subspace of elements of *S'*(*R*⁴) whose multiplication from right (resp. left) by any Schwarz function is Schwartz). [see e.g Gracia-Bondia, Varilly, J.M.P 1988; Grossmann et al., Ann. Inst. Fourier 1968].
- In NC geometry, the connections defined from set of sections of vector bundles in ordinary geometry can be generalized to connections on modules over an algebra.
- ▶ Let H be a right M-module with a hermitean structure h. A connection is defined by a linear map from H to H verifying a Leibnitz rule:

$$\nabla_{\mu} : \mathcal{H} \to \mathcal{H}$$
$$\nabla_{\mu}(m \star f) = \nabla_{\mu}(m) \star f + m \star \partial_{\mu}f, \ \forall m \in \mathcal{H}, \quad \forall f \in \mathcal{M}$$

Noncommutative connections - Basics

- Moyal algebra *M* with Moyal ★-product, unital, involutive algebra, assumed to be equiped with a differential calculus based on ∂_µ. (Recall *M*=*L* ∩ *R*; *L* (resp. *R*): subspace of elements of *S'*(*R*⁴) whose multiplication from right (resp. left) by any Schwarz function is Schwartz). [see e.g Gracia-Bondia, Varilly, J.M.P 1988; Grossmann et al., Ann. Inst. Fourier 1968].
- In NC geometry, the connections defined from set of sections of vector bundles in ordinary geometry can be generalized to connections on modules over an algebra.
- ► Let \mathcal{H} be a right \mathcal{M} -module with a hermitean structure *h*. A connection is defined by a linear map from \mathcal{H} to \mathcal{H} verifying a Leibnitz rule:

$$\nabla_{\mu}: \mathcal{H} \to \mathcal{H}$$

$$abla_{\mu}(m\star f) =
abla_{\mu}(m)\star f + m\star \partial_{\mu}f, \ \forall m\in\mathcal{H}, \quad \forall f\in\mathcal{M}$$

► The connection is further assumed to preserve the hermitian structure *h*, i.e $\partial_{\mu}h(m_1, m_2) = h(\nabla_{\mu}m_1, m_2) + h(m_1, \nabla_{\mu}m_2), \quad \forall m_1, m_2 \in \mathcal{H}$

(Recall that *h* is a sesquilinear map from $\mathcal{H} \times \mathcal{H}$ to \mathcal{M} verifying $h(m_1 \star f_1, m_2 \star f_2) = f_1^{\dagger} \star h(m_1, m_2) \star f_2, \forall f_1, f_2 \in \mathcal{M}, \forall m_1, m_2 \in \mathcal{H})$

Jean-Christophe Wallet, LPT-Orsay The free module case

The case $\mathcal{H} = \mathcal{M}$

The case $\mathcal{H} = \mathcal{M}$

We will assume H = M (the algebra plays the role of the module). This implies that the connection is determined by ∇_µ(I). Set

$$abla^{\mathcal{A}}_{\mu}(\mathbb{I}) \equiv -iA_{\mu}$$

(Setting $m=\mathbb{I}$ in the definition of ∇_{μ} yields $\nabla^{A}_{\mu}(\mathbb{I} \star f) = \nabla^{A}_{\mu}(\mathbb{I}) \star f + \partial_{\mu}f$ $\equiv \partial_{\mu}f - iA_{\mu} \star f$). This can serve as defining a noncommutative analog of the gauge potential $A_{\mu} \in \mathcal{M}$.

The case $\mathcal{H} = \mathcal{M}$

We will assume H = M (the algebra plays the role of the module). This implies that the connection is determined by ∇_µ(I). Set

$$abla^{\mathcal{A}}_{\mu}(\mathbb{I}) \equiv -iA_{\mu}$$

(Setting $m=\mathbb{I}$ in the definition of ∇_{μ} yields $\nabla^{A}_{\mu}(\mathbb{I} \star f) = \nabla^{A}_{\mu}(\mathbb{I}) \star f + \partial_{\mu}f$ $\equiv \partial_{\mu}f - iA_{\mu} \star f$). This can serve as defining a noncommutative analog of the gauge potential $A_{\mu} \in \mathcal{M}$.

• Here, the hermitian structure we will take is

$$h(f_1,f_2)=f_1^{\dagger}\star f_2$$

so that the above connections are hermitian provided $A^{\dagger}_{\mu} = A_{\mu}$.

The case $\mathcal{H} = \mathcal{M}$

We will assume H = M (the algebra plays the role of the module). This implies that the connection is determined by ∇_µ(I). Set

$$abla^{\mathcal{A}}_{\mu}(\mathbb{I}) \equiv -iA_{\mu}$$

(Setting $m=\mathbb{I}$ in the definition of ∇_{μ} yields $\nabla^{A}_{\mu}(\mathbb{I} \star f) = \nabla^{A}_{\mu}(\mathbb{I}) \star f + \partial_{\mu}f$ $\equiv \partial_{\mu}f - iA_{\mu} \star f$). This can serve as defining a noncommutative analog of the gauge potential $A_{\mu} \in \mathcal{M}$.

• Here, the hermitian structure we will take is

$$h(f_1,f_2)=f_1^{\dagger}\star f_2$$

so that the above connections are hermitian provided $A^{\dagger}_{\mu} = A_{\mu}$.

► Gauge transformations are defined by the automorphisms of the module M preserving the hermitian structure h: γ ∈ Aut_h(M). One has

$$\gamma(f) = \gamma(\mathbb{I} \star f) = \gamma(\mathbb{I}) \star f , \quad \forall f \in \mathcal{N} \ h(\gamma(f_1), \gamma(f_2)) = h(f_1, f_2) \quad \forall f_1, f_2 \in \mathcal{M}$$

The latter relation implies

$$\gamma(\mathbb{I})^{\dagger} \star \gamma(\mathbb{I}) = \mathbb{I}$$

so that the gauge transformations are determined by $\gamma(\mathbb{I}) \in \mathcal{U}(\mathcal{M})$, where $\mathcal{U}(\mathcal{M})$ is the group of unitary elements of \mathcal{M} .

Jean-Christophe Wallet, LPT-Orsay The gauge transformations

The gauge transformations

▶ Now, we set $\gamma(\mathbb{I}) \equiv g$. Then, the action of the gauge group on any matter field $\phi \in \mathcal{M}$ is

$$\phi^{g} = g \star \phi$$

for any $g \in \mathcal{U}(\mathcal{M})$ (Gauge transformation is a morphism of module). This is a kind of noncommutative analog of the transformation of the matter fields under the "fundamental representation".

▶ Now, we set $\gamma(\mathbb{I}) \equiv g$. Then, the action of the gauge group on any matter field $\phi \in \mathcal{M}$ is

$$\phi^{g} = g \star \phi$$

for any $g \in \mathcal{U}(\mathcal{M})$ (Gauge transformation is a morphism of module). This is a kind of noncommutative analog of the transformation of the matter fields under the "fundamental representation".

► The action of the gauge group on the connection $\nabla^{\mathcal{A}}_{\mu}$ is defined by $(\nabla^{\mathcal{A}}_{\mu})^{\gamma}(\phi) = \gamma(\nabla^{\mathcal{A}}_{\mu}(\gamma^{-1}\phi)), \quad \forall \phi \in \mathcal{M}.$

Now, we set γ(I) ≡ g. Then, the action of the gauge group on any matter field φ ∈ M is

$$\phi^{\mathsf{g}} = \mathsf{g} \star \phi$$

for any $g \in \mathcal{U}(\mathcal{M})$ (Gauge transformation is a morphism of module). This is a kind of noncommutative analog of the transformation of the matter fields under the "fundamental representation".

- ► The action of the gauge group on the connection ∇^A_μ is defined by $(\nabla^A_\mu)^\gamma(\phi) = \gamma(\nabla^A_\mu(\gamma^{-1}\phi)), \quad \forall \phi \in \mathcal{M}.$
- This implies the following gauge transformation for A_μ A^g_μ = g ★ A_μ ★ g[†] + ig ★ ∂_μg[†]
 (Combine γ(φ) = γ(I ★ φ) = g ★ φ with ∇^A_μ(φ) = ∂_μφ - iA_μ ★ φ and
 (∇^A_μ)^g ≡ ∂_μ - iA^g_μ)

▶ Now, we set $\gamma(\mathbb{I}) \equiv g$. Then, the action of the gauge group on any matter field $\phi \in \mathcal{M}$ is

$$\phi^{\mathsf{g}} = \mathsf{g} \star \phi$$

for any $g \in \mathcal{U}(\mathcal{M})$ (Gauge transformation is a morphism of module). This is a kind of noncommutative analog of the transformation of the matter fields under the "fundamental representation".

- ► The action of the gauge group on the connection $\nabla^{\mathcal{A}}_{\mu}$ is defined by $(\nabla^{\mathcal{A}}_{\mu})^{\gamma}(\phi) = \gamma(\nabla^{\mathcal{A}}_{\mu}(\gamma^{-1}\phi)), \quad \forall \phi \in \mathcal{M}.$
- ► This implies the following gauge transformation for A_{μ} $A_{\mu}^{g} = g \star A_{\mu} \star g^{\dagger} + ig \star \partial_{\mu}g^{\dagger}$ (Combine $\gamma(\phi) = \gamma(\mathbb{I} \star \phi) = g \star \phi$ with $\nabla_{\mu}^{A}(\phi) = \partial_{\mu}\phi - iA_{\mu} \star \phi$ and $(\nabla_{\mu}^{A})^{g} \equiv \partial_{\mu} - iA_{\mu}^{g}$)
- ► In \mathcal{M} , the derivative ∂_{μ} is an inner derivative, since one has $\partial_{\mu}\phi = [i\xi_{\mu}, \phi]_{\star}, \quad \xi_{\mu} \equiv -\Theta_{\mu\nu}^{-1}x_{\nu}$

Jean-Christophe Wallet, LPT-Orsay Invariant connection and natural tensor form

Gauge-invariant connections

 $_9$ ¹A 1-form ξ such that $df = [\xi, f], \forall f \in \mathcal{M}$ defines a canonical gauge-invariant connection $\mathfrak{I} \subseteq \mathfrak{K}$

Gauge-invariant connections

Inner derivations implies the existence of a (canonical) gauge-invariant connection. Not specific to Moyal. Reflects general theorem ¹of derivation-based noncommutative frameworks valid when the algebra = the module; already occurs within matrix-valued models.
 [see e.g Dubois-Violette, Kerner, Madore, JMP 1990; Dubois-Violette, Masson,

J.Geom.Phys.1998].

¹A 1-form ξ such that $df = [\xi, f], \forall f \in \mathcal{M}$ defines a canonical gauge-invariant connection $\mathfrak{I} \subseteq \mathfrak{N}$

Gauge-invariant connections

- Inner derivations implies the existence of a (canonical) gauge-invariant connection. Not specific to Moyal. Reflects general theorem ¹of derivation-based noncommutative frameworks valid when the algebra = the module; already occurs within matrix-valued models. [see e.g Dubois-Violette, Kerner, Madore, JMP 1990; Dubois-Violette, Masson, J.Geom.Phys.1998].
- Here, this canonical connection is defined by $\xi_{\mu} = \equiv -\Theta_{\mu\nu}^{-1} x_{\nu}$. It verifies

$$\xi^{g}_{\mu} = \xi_{\mu}$$

can be checked from general form of gauge transformations for A_{μ} combined with $\partial_{\mu}\phi = [i\xi_{\mu}, \phi]_{\star}$. (Other way: ∇^{ξ}_{μ} verifies $\nabla^{\xi}_{\mu}\phi = \partial_{\mu}\phi - i\xi_{\mu}\star\phi = -i\phi\star\xi_{\mu}$ where the last equality stems from $\partial_{\mu}\phi = [i\xi_{\mu}, \phi]_{\star}$. Then, $(\nabla^{\xi}_{\mu})^{g}(\phi) = g \star (\nabla^{\xi}_{\mu}(g^{\dagger}\star\phi)) = -i\phi\star\xi_{\mu} = \nabla^{\xi}_{\mu}\phi$ so that $\xi^{g}_{\mu} = \xi_{\mu})$

¹A 1-form ξ such that $df = [\xi, f], \forall f \in \mathcal{M}$ defines a canonical gauge-invariant connection $\mathfrak{I} \subseteq \mathfrak{K}$

Gauge-invariant connections

- Inner derivations implies the existence of a (canonical) gauge-invariant connection. Not specific to Moyal. Reflects general theorem ¹of derivation-based noncommutative frameworks valid when the algebra = the module; already occurs within matrix-valued models. [see e.g Dubois-Violette, Kerner, Madore, JMP 1990; Dubois-Violette, Masson, J.Geom.Phys.1998].
- Here, this canonical connection is defined by $\xi_{\mu} = \equiv -\Theta_{\mu\nu}^{-1} x_{\nu}$. It verifies

$$\xi^{g}_{\mu} = \xi_{\mu}$$

can be checked from general form of gauge transformations for A_{μ} combined with $\partial_{\mu}\phi = [i\xi_{\mu}, \phi]_{\star}$. (Other way: ∇^{ξ}_{μ} verifies $\nabla^{\xi}_{\mu}\phi = \partial_{\mu}\phi - i\xi_{\mu}\star\phi = -i\phi\star\xi_{\mu}$ where the last equality stems from $\partial_{\mu}\phi = [i\xi_{\mu}, \phi]_{\star}$. Then, $(\nabla^{\xi}_{\mu})^{g}(\phi) = g \star (\nabla^{\xi}_{\mu}(g^{\dagger}\star\phi)) = -i\phi\star\xi_{\mu} = \nabla^{\xi}_{\mu}\phi$ so that $\xi^{g}_{\mu} = \xi_{\mu}$)

The above gauge-invariant connection can be used to define the following tensorial form

$$abla^{\mathcal{A}}_{\mu} -
abla^{\xi}_{\mu} = -i(\mathcal{A}_{\mu} - \xi_{\mu}) \equiv -i\mathcal{A}_{\mu}$$

which coincides with the so called covariant coordinates.

¹A 1-form ξ such that $df = [\xi, f]$, $\forall f \in \mathcal{M}$ defines a canonical gauge-invariant connection $\Im \land \Im$

Jean-Christophe Wallet, LPT-Orsay Curvature

Jean-Christophe Wallet, LPT-Orsay Curvature

Curvature

► The curvature for the connection ∇^A_μ defined as $F^A_{\mu\nu} \equiv i [\nabla^A_\mu, \nabla^A_\nu]_*$

takes the usual form

$$F_{\mu
u} = \partial_{\mu}A_{
u} - \partial_{
u}A_{\mu} - i[A_{\mu}, A_{
u}]_{\star}$$

or alternatively in terms of \mathcal{A}_{μ}

$$F_{\mu\nu} = \Theta_{\mu\nu}^{-1} - i[\mathcal{A}_{\mu}, \mathcal{A}_{\nu}]_{\star} = F_{\mu\nu}^{\xi} - i[\mathcal{A}_{\mu}, \mathcal{A}_{\nu}]_{\star}$$

Jean-Christophe Wallet, LPT-Orsay Curvature

Curvature

► The curvature for the connection ∇^A_μ defined as $F^A_{\mu\nu} \equiv i [\nabla^A_\mu, \nabla^A_\nu]_\star$

takes the usual form

$$\mathcal{F}_{\mu
u} = \partial_{\mu}\mathcal{A}_{
u} - \partial_{
u}\mathcal{A}_{\mu} - i[\mathcal{A}_{\mu},\mathcal{A}_{
u}]_{\star}$$

or alternatively in terms of \mathcal{A}_{μ}

$$F_{\mu\nu} = \Theta_{\mu\nu}^{-1} - i[\mathcal{A}_{\mu}, \mathcal{A}_{\nu}]_{\star} = F_{\mu\nu}^{\xi} - i[\mathcal{A}_{\mu}, \mathcal{A}_{\nu}]_{\star}$$

► The gauge transformations for \mathcal{A}_{μ} and $F^{A}_{\mu\nu}$ are given by $\mathcal{A}^{g}_{\mu} = g \star \mathcal{A}_{\mu} \star g^{\dagger}, \quad (F^{A}_{\mu\nu})^{g} = g \star F^{A}_{\mu\nu} \star g^{\dagger}$

Jean-Christophe Wallet, LPT-Orsay Curvature

Curvature

► The curvature for the connection ∇^A_μ defined as $F^A_{\mu\nu} \equiv i [\nabla^A_\mu, \nabla^A_\mu]_*$

takes the usual form

$$F_{\mu
u} = \partial_{\mu}A_{
u} - \partial_{
u}A_{\mu} - i[A_{\mu}, A_{
u}]_{\star}$$

or alternatively in terms of \mathcal{A}_{μ}

$$F_{\mu\nu} = \Theta_{\mu\nu}^{-1} - i[\mathcal{A}_{\mu}, \mathcal{A}_{\nu}]_{\star} = F_{\mu\nu}^{\xi} - i[\mathcal{A}_{\mu}, \mathcal{A}_{\nu}]_{\star}$$

► The gauge transformations for \mathcal{A}_{μ} and $F^{A}_{\mu\nu}$ are given by $\mathcal{A}^{g}_{\mu} = g \star \mathcal{A}_{\mu} \star g^{\dagger}, \quad (F^{A}_{\mu\nu})^{g} = g \star F^{A}_{\mu\nu} \star g^{\dagger}$

Note that the invariant connection defined by ξ_μ is a constant curvature connection since one has

$$F_{\mu\nu}^{\xi} = \Theta_{\mu\nu}^{-1}$$

◆□ ◆ ● ◆ ● ◆ ● ◆ のへぐ

Jean-Christophe Wallet, LPT-Orsay Curvature

Other "gauge transformations"? I

Other type of transformations considered by H.G and M.W:

$$\phi^{U} = U \star \phi \star U^{\dagger} \equiv \alpha(\phi)$$

for any $U \in \mathcal{U}(\mathcal{M})$. ~NC analog of "gauge transformation in the adjoint representation". The corresponding "covariant derivative" is

 $D_{\mu}(\phi) = \partial_{\mu}\phi - i[A_{\mu},\phi]_{\star}$

Jean-Christophe Wallet, LPT-Orsay Curvature

Other "gauge transformations"? I

• Other type of transformations considered by H.G and M.W: $\phi^{U} = U \star \phi \star U^{\dagger} \equiv \alpha(\phi)$

for any $U \in \mathcal{U}(\mathcal{M})$. ~NC analog of "gauge transformation in the adjoint representation". The corresponding "covariant derivative" is

$$D_{\mu}(\phi) = \partial_{\mu}\phi - i[A_{\mu},\phi]_{\star}$$

► Covariance under the above: $(D_{\mu}(\phi))^{U} = U \star (D_{\mu}(\phi)) \star U^{\dagger}$ is insured provided $A^{U}_{\mu} = U \star A_{\mu} \star U^{\dagger} + iU \star \partial_{\mu}U^{\dagger}$

Jean-Christophe Wallet, LPT-Orsay Curvature

Other "gauge transformations"? I

• Other type of transformations considered by H.G and M.W: $\phi^{U} = U \star \phi \star U^{\dagger} \equiv \alpha(\phi)$

for any $U \in \mathcal{U}(\mathcal{M})$. ~NC analog of "gauge transformation in the adjoint representation". The corresponding "covariant derivative" is

$$D_{\mu}(\phi) = \partial_{\mu}\phi - i[A_{\mu},\phi]_{\star}$$

- ► Covariance under the above: $(D_{\mu}(\phi))^{U} = U \star (D_{\mu}(\phi)) \star U^{\dagger}$ is insured provided $A^{U}_{\mu} = U \star A_{\mu} \star U^{\dagger} + iU \star \partial_{\mu}U^{\dagger}$
- It defines an automorphism α of algebra:

$$\alpha(\phi_1 \star \phi_2) = \alpha(\phi_1) \star \alpha(\phi_2)$$

 D_{μ} satisfies a Leibnitz rule

$$D_{\mu}(\phi_1 \star \phi_2) = D_{\mu}(\phi_1) \star \phi_2 + \phi_1 \star D_{\mu}(\phi_2)$$

so that D_{μ} is a derivation. These NC analogs of "gauge transformation in the adjoint representation" can be understood in terms of *actual* NC gauge transformations provided the initial algebra \mathcal{M} is enlarged to \mathcal{M} by $\mathcal{M} \otimes \mathcal{M}^{o}$, where \mathcal{M}^{o} is the opposite algebra which amounts to deal with real structure instead of hermitian structure.

Noncommutative Induced Gauge Theory, Orsay, 23-27th April 2007 Coupling external gauge potential to a scalar model

Coupling external gauge potential to a scalar model

The noncommutative set-up - Main features

Coupling external gauge potential to a scalar model The minimal coupling prescription From coupled scalar action to effective gauge action

3 Computation of the one-loop effective action

Noncommutative Induced Gauge Theory, Orsay, 23-27th April 2007 Coupling external gauge potential to a scalar model

The 4-dimensional "harmonic" complex scalar model

The 4-dimensional "harmonic" complex scalar model

- Start from the simplest complex-valued extension of the initial φ_4^4 with harmonic term.
 - [Grosse, Wulkenhaar, CMP 2005; Gurau, Magnen, Rivasseau, Vignes-Tourneret, CMP 2006]

Start from the simplest complex-valued extension of the initial φ_4^4 with harmonic term.

[Grosse, Wulkenhaar, CMP 2005; Gurau, Magnen, Rivasseau, Vignes-Tourneret, CMP 2006]

The action is

$$S(\phi) = \int d^4x (\partial_\mu \phi^\dagger \star \partial_\mu \phi + \Omega^2 (\widetilde{x}_\mu \phi)^\dagger \star (\widetilde{x}_\mu \phi) + m^2 \phi^\dagger \star \phi)(x) + S_{int}$$

Here, ϕ is a complex scalar field with mass m, $\Omega \in [0, 1]$ and $\tilde{x}_{\mu} = 2\Theta_{\mu\nu}^{-1} x_{\nu}$.

 \blacktriangleright Start from the simplest complex-valued extension of the initial φ_4^4 with harmonic term.

[Grosse, Wulkenhaar, CMP 2005; Gurau, Magnen, Rivasseau, Vignes-Tourneret, CMP 2006]

The action is

$$S(\phi) = \int d^4x ig(\partial_\mu \phi^\dagger \star \partial_\mu \phi + \Omega^2 (\widetilde{x}_\mu \phi)^\dagger \star (\widetilde{x}_\mu \phi) + m^2 \phi^\dagger \star \phi ig)(x) + S_{int}$$

Here, ϕ is a complex scalar field with mass m, $\Omega \in [0, 1]$ and $\tilde{x}_{\mu} = 2\Theta_{\mu\nu}^{-1} x_{\nu}$. \blacktriangleright The interaction term S_{int} is

$$S_{int} = S_{int}^{0} + S_{int}^{NO} = \int \lambda (\phi^{\dagger} \star \phi \star \phi^{\dagger} \star \phi)(x) + \kappa (\phi^{\dagger} \star \phi^{\dagger} \star \phi \star \phi)(x)$$

 \blacktriangleright Start from the simplest complex-valued extension of the initial φ_4^4 with harmonic term.

[Grosse, Wulkenhaar, CMP 2005; Gurau, Magnen, Rivasseau, Vignes-Tourneret, CMP 2006]

The action is

$$S(\phi) = \int d^4x ig(\partial_\mu \phi^\dagger \star \partial_\mu \phi + \Omega^2 (\widetilde{x}_\mu \phi)^\dagger \star (\widetilde{x}_\mu \phi) + m^2 \phi^\dagger \star \phi ig)(x) + S_{int}$$

Here, ϕ is a complex scalar field with mass m, $\Omega \in [0, 1]$ and $\tilde{x}_{\mu} = 2\Theta_{\mu\nu}^{-1} x_{\nu}$. The interaction term S_{int} is

$$S_{int} = S_{int}^{0} + S_{int}^{NO} = \int \lambda (\phi^{\dagger} \star \phi \star \phi^{\dagger} \star \phi)(x) + \kappa (\phi^{\dagger} \star \phi^{\dagger} \star \phi \star \phi)(x)$$

S(φ) restricted to S^O_{int} (κ=0) is renormalisable for any value of Ω. Notice that the action is covariant under the Langmann-Szabo duality.

 \blacktriangleright Start from the simplest complex-valued extension of the initial φ_4^4 with harmonic term.

[Grosse, Wulkenhaar, CMP 2005; Gurau, Magnen, Rivasseau, Vignes-Tourneret, CMP 2006]

The action is

$$\mathcal{S}(\phi) = \int d^4 x ig(\partial_\mu \phi^\dagger \star \partial_\mu \phi + \Omega^2 (\widetilde{x}_\mu \phi)^\dagger \star (\widetilde{x}_\mu \phi) + m^2 \phi^\dagger \star \phi ig)(x) + \mathcal{S}_{int}$$

Here, ϕ is a complex scalar field with mass m, $\Omega \in [0, 1]$ and $\tilde{x}_{\mu} = 2\Theta_{\mu\nu}^{-1} x_{\nu}$. The interaction term S_{int} is

$$S_{int} = S_{int}^{0} + S_{int}^{NO} = \int \lambda (\phi^{\dagger} \star \phi \star \phi^{\dagger} \star \phi)(x) + \kappa (\phi^{\dagger} \star \phi^{\dagger} \star \phi \star \phi)(x)$$

- S(φ) restricted to S^O_{int} (κ=0) is renormalisable for any value of Ω. Notice that the action is covariant under the Langmann-Szabo duality.
- The effect of the inclusion of non-orientable interactions on the renormalisability is not known.

Noncommutative Induced Gauge Theory, Orsay, 23-27th April 2007 Coupling external gauge potential to a scalar model

The minimal coupling prescription

 Owing to the special role played by ξ_μ, the minimal coupling prescription can be conveniently written as (de Goursac, JCW, Wulkenhaar, hep-th/0703075)

$$\begin{aligned} \partial_{\mu}\phi &\mapsto \nabla^{\mathcal{A}}_{\mu}\phi = \partial_{\mu}\phi - i\mathcal{A}_{\mu}\star\phi, \\ \widetilde{x}_{\mu}\phi &\mapsto -2i\nabla^{\xi}_{\mu}\phi + i\nabla^{\mathcal{A}}_{\mu}\phi = \widetilde{x}_{\mu}\phi + \mathcal{A}_{\mu}\star\phi \end{aligned}$$

 $(\nabla^{\xi}_{\mu}\phi = \partial_{\mu}\phi - i\xi_{\mu}\star\phi)$. Prescription consistent with structure of modules over algebra. Roughly, this permits one to introduce covariant derivatives where it is needed in the action.

The minimal coupling prescription

 Owing to the special role played by ξ_μ, the minimal coupling prescription can be conveniently written as (de Goursac, JCW, Wulkenhaar, hep-th/0703075)

$$\begin{aligned} \partial_{\mu}\phi &\mapsto \nabla_{\mu}^{\mathcal{A}}\phi = \partial_{\mu}\phi - i\mathcal{A}_{\mu}\star\phi, \\ \widetilde{x}_{\mu}\phi &\mapsto -2i\nabla_{\mu}^{\xi}\phi + i\nabla_{\mu}^{\mathcal{A}}\phi = \widetilde{x}_{\mu}\phi + \mathcal{A}_{\mu}\star\phi \end{aligned}$$

 $(\nabla^{\xi}_{\mu}\phi = \partial_{\mu}\phi - i\xi_{\mu}\star\phi)$. Prescription consistent with structure of modules over algebra. Roughly, this permits one to introduce covariant derivatives where it is needed in the action.

As a consequence, gauge invariance of the resulting action functional will be obtained thanks to the relation

$$(\nabla^{\mathcal{A},\xi}_{\mu}(\phi))^{\mathsf{g}} = \mathsf{g} \star (\nabla^{\mathcal{A},\xi}_{\mu}(\phi))$$

The minimal coupling prescription

 Owing to the special role played by ξ_μ, the minimal coupling prescription can be conveniently written as (de Goursac, JCW, Wulkenhaar, hep-th/0703075)

$$\begin{aligned} \partial_{\mu}\phi &\mapsto \nabla_{\mu}^{A}\phi = \partial_{\mu}\phi - iA_{\mu}\star\phi, \\ \widetilde{x}_{\mu}\phi &\mapsto -2i\nabla_{\mu}^{\xi}\phi + i\nabla_{\mu}^{A}\phi = \widetilde{x}_{\mu}\phi + A_{\mu}\star\phi \end{aligned}$$

 $(\nabla^{\xi}_{\mu}\phi = \partial_{\mu}\phi - i\xi_{\mu}\star\phi)$. Prescription consistent with structure of modules over algebra. Roughly, this permits one to introduce covariant derivatives where it is needed in the action.

As a consequence, gauge invariance of the resulting action functional will be obtained thanks to the relation

$$(\nabla^{\mathcal{A},\xi}_{\mu}(\phi))^{g} = g \star (\nabla^{\mathcal{A},\xi}_{\mu}(\phi))$$

• This minimal coupling prescription is applied to the D = 4 action $S(\phi)$.

Noncommutative Induced Gauge Theory, Orsay, 23-27th April 2007 Coupling external gauge potential to a scalar model

From coupled scalar action to effective gauge action

The resulting gauge invariant coupled action is given by

$$\begin{split} S(\phi,A) = & S(\phi) + \int d^4 x \, \left((1+\Omega^2) \phi^{\dagger} \star (\widetilde{x}_{\mu} A_{\mu}) \star \phi \right. \\ & - (1-\Omega^2) \phi^{\dagger} \star A_{\mu} \star \phi \star \widetilde{x}_{\mu} + (1+\Omega^2) \phi^{\dagger} \star A_{\mu} \star A_{\mu} \star \phi)(x), \end{split}$$

where $S(\phi)$ involves only the orientable part of the interaction terms S_{int}^{O} .

Noncommutative Induced Gauge Theory, Orsay, 23-27th April 2007 Coupling external gauge potential to a scalar model

From coupled scalar action to effective gauge action

> The resulting gauge invariant coupled action is given by

$$\begin{split} S(\phi, A) = & S(\phi) + \int d^4x \; ((1 + \Omega^2)\phi^{\dagger} \star (\widetilde{x}_{\mu}A_{\mu}) \star \phi \\ & - (1 - \Omega^2)\phi^{\dagger} \star A_{\mu} \star \phi \star \widetilde{x}_{\mu} + (1 + \Omega^2)\phi^{\dagger} \star A_{\mu} \star A_{\mu} \star \phi)(x), \\ \text{where } S(\phi) \text{ involves only the orientable part of the interaction terms } S^O_{int}. \end{split}$$

Next step: Compute at the one-loop order the effective action Γ(A) obtained by integrating over the scalar field φ in S(φ, A), for any value of Ω ∈ [0, 1]

From coupled scalar action to effective gauge action

The resulting gauge invariant coupled action is given by

$$S(\phi, A) = S(\phi) + \int d^4 x \ ((1 + \Omega^2)\phi^{\dagger} \star (\widetilde{x}_{\mu}A_{\mu}) \star \phi$$
$$- (1 - \Omega^2)\phi^{\dagger} \star A_{\mu} \star \phi \star \widetilde{x}_{\mu} + (1 + \Omega^2)\phi^{\dagger} \star A_{\mu} \star A_{\mu} \star \phi)(x),$$

where $S(\phi)$ involves only the orientable part of the interaction terms S_{int}^O .

▶ Next step: Compute at the one-loop order the effective action $\Gamma(A)$ obtained by integrating over the scalar field ϕ in $S(\phi, A)$, for any value of $\Omega \in [0, 1]$

Goals:

- Guess possible form(s) for a candidate as a renormalisable gauge action
- ► Is there some additional terms that appear in the action, beyond the expected $F_{\mu\nu} \star F_{\mu\nu}$.
- How does the harmonic term survive in the resulting effective action?
- Check whether or not some relic of the Langmann-Szabo shows up in the effective action

Computation of the one-loop effective action

- **D** The noncommutative set-up Main features
- 2 Coupling external gauge potential to a scalar model
- 3 Computation of the one-loop effective action
 - Defining the effective action
 - Diagramatics
 - The structure of the effective action

Jean-Christophe Wallet, LPT-Orsay Defining the effective action

The one-loop effective action

The one-loop effective action

The effective action is formally obtained through the evaluation of the following functional integral

$$e^{-\Gamma(A)}\equiv\int D\phi D\phi^{\dagger}e^{-S(\phi,A)}=\int D\phi D\phi^{\dagger}e^{-S(\phi)}e^{-S_{int}(\phi,A)},$$

 $S_{int}(\phi, A)$ denotes the terms involving the external gauge potential A_{μ} .

The one-loop effective action

The effective action is formally obtained through the evaluation of the following functional integral

$$e^{-\Gamma(A)}\equiv\int D\phi D\phi^{\dagger}e^{-S(\phi,A)}=\int D\phi D\phi^{\dagger}e^{-S(\phi)}e^{-S_{int}(\phi,A)},$$

 $S_{int}(\phi, A)$ denotes the terms involving the external gauge potential A_{μ} . At the one-loop order, the above functional reduces to

$$e^{-\Gamma_{1loop}(A)} = \int D\phi D\phi^{\dagger} e^{-S_{free}(\phi)} e^{-S_{int}(\phi,A)}$$

The one-loop effective action

The effective action is formally obtained through the evaluation of the following functional integral

$$e^{-\Gamma(A)}\equiv\int D\phi D\phi^{\dagger}e^{-S(\phi,A)}=\int D\phi D\phi^{\dagger}e^{-S(\phi)}e^{-S_{int}(\phi,A)},$$

 $S_{int}(\phi, A)$ denotes the terms involving the external gauge potential A_{μ} .

At the one-loop order, the above functional reduces to

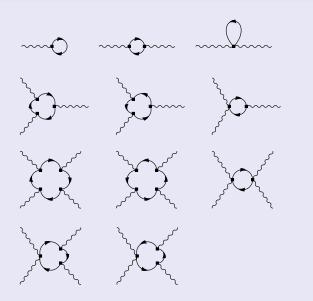
$$e^{-\Gamma_{1/oop}(A)}=\int D\phi D\phi^{\dagger}e^{-S_{free}(\phi)}e^{-S_{int}(\phi,A)}$$

► The effective action $\Gamma_{1/oop}(A)$ can be conveniently obtained in the *x*-space formalism. Compute relevant diagrams using the Mehler-type propagator $C(x,y) \equiv \langle \phi(x)\phi^{\dagger}(y) \rangle$ (set $\widetilde{\Omega} \equiv 2\frac{\Omega}{\theta}$ and $x \wedge y \equiv 2x_{\mu}\Theta_{\mu\nu}^{-1}y_{\nu}$) $C(x,y) = \frac{\Omega^2}{\pi^2\theta^2} \int_0^{\infty} \frac{dt}{\sinh^2(2\widetilde{\Omega}t)} \exp^{(-\frac{\widetilde{\Omega}}{4}\coth(\widetilde{\Omega}t)(x-y)^2 - \frac{\widetilde{\Omega}}{4}\tanh(\widetilde{\Omega}t)(x+y)^2 - m^2t)}$

combined with the vertex whose generic expression is

$$\int d^4 x (f_1 \star f_2 \star f_3 \star f_4)(x) = \frac{1}{\pi^4 \theta^4} \int \prod_{i=1}^4 d^4 x_i f_1(x_1) f_2(x_2) f_3(x_3) f_4(x_4)$$
$$\times \delta(x_1 - x_2 + x_3 - x_4) e^{-i \sum_{i < j} (-1)^{i+j+1} x_i \wedge x_j}.$$

Diagramatics



Jean-Christophe Wallet, LPT-Orsay The structure of the effective action

The structure of the effective action

Jean-Christophe Wallet, LPT-Orsay The structure of the effective action

The structure of the effective action

The result for any
$$\Omega \in [0, 1]$$
 can be writen as

$$\Gamma(A) = \frac{\Omega^2}{4\pi^2 (1+\Omega^2)^3} \left(\int d^4 u \left(\mathcal{A}_{\mu} \star \mathcal{A}_{\mu} - \frac{1}{4} \widetilde{u}^2 \right) \right) \left(\frac{1}{\epsilon} + m^2 \ln(\epsilon) \right)$$

$$- \frac{(1-\Omega^2)^4}{192\pi^2 (1+\Omega^2)^4} \left(\int d^4 u F_{\mu\nu} \star F_{\mu\nu} \right) \ln(\epsilon)$$

$$+ \frac{\Omega^4}{8\pi^2 (1+\Omega^2)^4} \left(\int d^4 u \left(F_{\mu\nu} \star F_{\mu\nu} + \{\mathcal{A}_{\mu}, \mathcal{A}_{\nu}\}_{\star}^2 - \frac{1}{4} (\widetilde{u}^2)^2 \right) \right) \ln(\epsilon) + \dots,$$

Jean-Christophe Wallet, LPT-Orsay The structure of the effective action

The structure of the effective action

• The result for any $\Omega \in [0, 1]$ can be writen as

$$\begin{split} \Gamma(A) &= \frac{\Omega^2}{4\pi^2 (1+\Omega^2)^3} \left(\int d^4 u \; (\mathcal{A}_{\mu} \star \mathcal{A}_{\mu} - \frac{1}{4} \widetilde{u}^2) \right) \left(\frac{1}{\epsilon} + m^2 \ln(\epsilon) \right) \\ &- \frac{(1-\Omega^2)^4}{192\pi^2 (1+\Omega^2)^4} \left(\int d^4 u \; F_{\mu\nu} \star F_{\mu\nu} \right) \ln(\epsilon) \\ &+ \frac{\Omega^4}{8\pi^2 (1+\Omega^2)^4} \left(\int d^4 u \; (F_{\mu\nu} \star F_{\mu\nu} + \{\mathcal{A}_{\mu}, \mathcal{A}_{\nu}\}_{\star}^2 - \frac{1}{4} (\widetilde{u}^2)^2) \right) \ln(\epsilon) + \dots, \end{split}$$

It is similar to the expression obtained by Grosse and Wohlgenannt from a matrix base approach using heat kernel expansion.

The structure of the effective action

• The result for any $\Omega \in [0, 1]$ can be writen as

$$\begin{split} \Gamma(A) &= \frac{\Omega^2}{4\pi^2 (1+\Omega^2)^3} \left(\int d^4 u \, \left(\mathcal{A}_{\mu} \star \mathcal{A}_{\mu} - \frac{1}{4} \widetilde{u}^2 \right) \right) \left(\frac{1}{\epsilon} + m^2 \ln(\epsilon) \right) \\ &- \frac{(1-\Omega^2)^4}{192\pi^2 (1+\Omega^2)^4} \left(\int d^4 u \, F_{\mu\nu} \star F_{\mu\nu} \right) \ln(\epsilon) \\ &+ \frac{\Omega^4}{8\pi^2 (1+\Omega^2)^4} \left(\int d^4 u \, \left(F_{\mu\nu} \star F_{\mu\nu} + \{ \mathcal{A}_{\mu}, \mathcal{A}_{\nu} \}_{\star}^2 - \frac{1}{4} (\widetilde{u}^2)^2 \right) \right) \ln(\epsilon) + \dots, \end{split}$$

- It is similar to the expression obtained by Grosse and Wohlgenannt from a matrix base approach using heat kernel expansion.
- It involves, beyond the usual expected Yang-Mills contribution

 ∫ d⁴x F_{µν} ★ F_{µν}, additional gauge invariant terms of quadratic and quartic order in A_µ, ~ ∫ d⁴x A_µ ★ A_µ and ~ ∫ d⁴x {A_µ, A_ν}².

The structure of the effective action

• The result for any $\Omega \in [0, 1]$ can be writen as

$$\begin{split} \Gamma(A) &= \frac{\Omega^2}{4\pi^2 (1+\Omega^2)^3} \left(\int d^4 u \, \left(\mathcal{A}_{\mu} \star \mathcal{A}_{\mu} - \frac{1}{4} \widetilde{u}^2 \right) \right) \left(\frac{1}{\epsilon} + m^2 \ln(\epsilon) \right) \\ &- \frac{(1-\Omega^2)^4}{192\pi^2 (1+\Omega^2)^4} \left(\int d^4 u \, F_{\mu\nu} \star F_{\mu\nu} \right) \ln(\epsilon) \\ &+ \frac{\Omega^4}{8\pi^2 (1+\Omega^2)^4} \left(\int d^4 u \, \left(F_{\mu\nu} \star F_{\mu\nu} + \{ \mathcal{A}_{\mu}, \mathcal{A}_{\nu} \}_{\star}^2 - \frac{1}{4} (\widetilde{u}^2)^2 \right) \right) \ln(\epsilon) + \dots, \end{split}$$

- It is similar to the expression obtained by Grosse and Wohlgenannt from a matrix base approach using heat kernel expansion.
- It involves, beyond the usual expected Yang-Mills contribution ~ ∫ d⁴x F_{µν} ★ F_{µν}, additional gauge invariant terms of quadratic and quartic order in A_µ, ~ ∫ d⁴x A_µ ★ A_µ and ~ ∫ d⁴x {A_µ, A_ν}²_{*}.
- It involves a mass-type term for the gauge potential A_μ (a bare mass term for a gauge potential is forbidden by gauge invariance in commutative Yang-Mills theories).

Jean-Christophe Wallet, LPT-Orsay The structure of the effective action

The structure of the effective action II

Jean-Christophe Wallet, LPT-Orsay The structure of the effective action

The structure of the effective action II

The fact that the tadpole is non-vanishing is a rather unusual feature for a Yang-Mills type theory. Indicates that A_μ has a non vanishing expectation value.

Jean-Christophe Wallet, LPT-Orsay The structure of the effective action

The structure of the effective action II

- The fact that the tadpole is non-vanishing is a rather unusual feature for a Yang-Mills type theory. Indicates that A_μ has a non vanishing expectation value.
- Action "symmetric" under [,]_{*} ⇒ {,}_{*}: ~ ∫ d⁴x {A_μ, A_ν}²_{*} accompanying the Yang-Mills term ~ [A_μ, A_ν]²_{*}.

The structure of the effective action II

- The fact that the tadpole is non-vanishing is a rather unusual feature for a Yang-Mills type theory. Indicates that A_μ has a non vanishing expectation value.
- Action "symmetric" under [,]_{*} ⇒ {,}_{*}: ~ ∫ d⁴x {A_μ, A_ν}²_{*} accompanying the Yang-Mills term ~ [A_μ, A_ν]²_{*}.
- Conjecture that the following class of actions

$$S \sim \int d^4x \Big(rac{lpha}{4g^2} F_{\mu
u} \star F_{\mu
u} + rac{\Omega'}{4g^2} \{ \mathcal{A}_\mu, \mathcal{A}_
u \}^2_\star + rac{\kappa}{2} \mathcal{A}_\mu \star \mathcal{A}_\mu \Big)$$

involves suitable candidates for renormalisable actions for gauge theory defined on Moyal spaces.

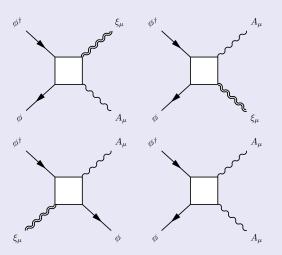
Jean-Christophe Wallet, LPT-Orsay The structure of the effective action

Next step

- Clarify the vacuum problem
- What goes on for IR singularity in the polarisation tensor?

Jean-Christophe Wallet, LPT-Orsay The structure of the effective action

Vertices involving A_{μ}



7

Jean-Christophe Wallet, LPT-Orsay The structure of the effective action

Tadpole diagram I

The amplitude for the tadpole diagram is

$$T_1 = \frac{\Omega^2}{4\pi^6\theta^6} \int d^4x \ d^4u \ d^4z \int_0^\infty \frac{dt \ e^{-tm^2}}{\sinh^2(\widetilde{\Omega}t)\cosh^2(\widetilde{\Omega}t)} \ A_\mu(u) \ e^{-i(u-x)\wedge z}$$

$$\times e^{-\frac{\Omega}{4}(\coth(\Omega t)z^2 + \tanh(\Omega t)(2x+z)^2}((1-\Omega^2)(2\widetilde{x}_{\mu}+\widetilde{z}_{\mu}) - 2\widetilde{u}_{\mu})$$

Introduce the following 8-dimensional vectors X, J and the 8×8 matrix K defined by

$$X = \begin{pmatrix} x \\ z \end{pmatrix}, \quad K = \begin{pmatrix} 4 \tanh(\widetilde{\Omega}t)\mathbb{I} & 2 \tanh(\widetilde{\Omega}t)\mathbb{I} - 2i\Theta^{-1} \\ 2 \tanh(\widetilde{\Omega}t)\mathbb{I} + 2i\Theta^{-1} & (\tanh(\widetilde{\Omega}t) + \coth(\widetilde{\Omega}t))\mathbb{I} \end{pmatrix}, \quad J = \begin{pmatrix} 0 \\ i\widetilde{u} \end{pmatrix}$$

This permits one to reexpress the amplitude in a form such that some Gaussian integrals can be easily performed:

$$\mathcal{T}_{1} = \frac{\Omega^{2}}{4\pi^{6}\theta^{6}} \int d^{4}x \ d^{4}u \ d^{4}z \int_{0}^{\infty} \frac{dt \ e^{-tm^{2}}}{\sinh^{2}(\widetilde{\Omega}t)\cosh^{2}(\widetilde{\Omega}t)} \ A_{\mu}(u)$$

$$\times e^{-\frac{1}{2}X.K.X+J.X}((1-\Omega^{2})(2\widetilde{x}_{\mu}+\widetilde{z}_{\mu})-2\widetilde{u}_{\mu})$$
By performing the Gaussian integrals on X, we find
$$\mathcal{T} \qquad \frac{\Omega^{4}}{\sqrt{2\pi}} \int d^{4}u \int_{0}^{\infty} \frac{dt \ e^{-tm^{2}}}{\sqrt{2\pi}} A_{\mu}(u)\widetilde{u} = e^{-\frac{2\Omega}{\mu(1-\Omega^{2})}\tanh(\widetilde{\Omega}t)u^{2}}$$

 $\mathcal{T}_{1} = -\frac{\Omega^{4}}{\pi^{2}\theta^{2}(1+\Omega^{2})^{3}} \int d^{4}u \int_{0}^{\infty} \frac{dt \ e^{-tm}}{\sinh^{2}(\widetilde{\Omega}t)\cosh^{2}(\widetilde{\Omega}t)} \ \mathcal{A}_{\mu}(u)\widetilde{u}_{\mu} \ e^{-\frac{2\Omega}{\theta(1+\Omega^{2})}\tanh(\widetilde{\Omega}t)u^{2}}.$

Jean-Christophe Wallet, LPT-Orsay The structure of the effective action

Tadpole diagram II

Inspection of the behaviour of T_1 for $t \to 0$ shows that this latter expression has a quadratic as well as a logarithmic UV divergence. From Taylor expansion:

$$\begin{split} \mathcal{T}_{1} &= - \; \frac{\Omega^{2}}{4\pi^{2}(1+\Omega^{2})^{3}} \left(\int d^{4}u \; \widetilde{u}_{\mu}A_{\mu}(u) \right) \; \frac{1}{\epsilon} \; - \frac{m^{2}\Omega^{2}}{4\pi^{2}(1+\Omega^{2})^{3}} \left(\int d^{4}u \; \widetilde{u}_{\mu}A_{\mu}(u) \right) \; \ln \\ &- \; \frac{\Omega^{4}}{\pi^{2}\theta^{2}(1+\Omega^{2})^{4}} \left(\int d^{4}u \; u^{2}\widetilde{u}_{\mu}A_{\mu}(u) \right) \; \ln(\epsilon) \; + \dots, \end{split}$$

where $\epsilon \rightarrow 0$ is a cut-off and the ellipses denote finite contributions.

Higher order terms

- ▶ The regularisation of the diverging amplitudes is performed in a way that preserves gauge invariance of the most diverging terms. In D = 4, these are UV quadratically diverging so that the cut-off ϵ on the various integrals over the Schwinger parameters $(\int_{\epsilon}^{\infty} dt)$ must be suitably chosen.
- ▶ We find that this can be achieved with $\int_{\epsilon}^{\infty} dt$ for \mathcal{T}_{2}'' while for \mathcal{T}_{2}' the regularisation must be performed with $\int_{\epsilon/4}^{\infty}$.
- ► In field-theoretical language, gauge invariance is broken by the naive *ϵ*-regularisation of the Schwinger integrals and must be restored by adjusting the regularisation scheme. Note that the logarithmically divergent part is insensitive to a finite scaling of the cut-off.

Jean-Christophe Wallet, LPT-Orsay The structure of the effective action

Higher order terms II

▶ The one-loop effective action can be expressed in terms of heat kernels:

$$\Gamma_{1loop}(\phi, A) = -\frac{1}{2} \int_0^\infty \frac{dt}{t} \operatorname{Tr} \left(e^{-tH(\phi, A)} - e^{-tH(0, 0)} \right)$$
(2)
= $-\frac{1}{2} \lim_{s \to 0} \Gamma(s) \operatorname{Tr} \left(H^{-s}(\phi, A) - H^{-s}(0, 0) \right),$

where $H(\phi, A) = \frac{\delta^2 S(\phi, A)}{\delta \phi \, \delta \phi^{\dagger}}$. Expanding:

$$H^{-s}(\phi, A) = \left(1 + a_1(\phi, A)s + a_2(\phi, A)s^2 + \dots\right)H^{-s}(0, 0),$$
(3)

we obtain

$$\Gamma_{1loop}(\phi, A) = -\frac{1}{2} \lim_{s \to 0} \operatorname{Tr} \left(\left(\Gamma(s+1)a_1(\phi, A) + s\Gamma(s+1)a_2(\phi, A) + \dots \right) H^{-s}(0, 0) \right).$$
With $\Gamma(s+1) = 1 - s\gamma + \dots$ we have
$$\Gamma_{1loop}(\phi, A) = -\frac{1}{2} \lim_{s \to 0} \operatorname{Tr} \left(a_1(\phi, A) H^{-s}(0, 0) \right) \\
- \frac{1}{2} \operatorname{Res}_{s=0} \operatorname{Tr} \left(\left(a_2(\phi, A) - \gamma a_1(\phi, A) \right) H^{-s}(0, 0) \right). \quad (4)$$

The second line is the Wodzicki residue which corresponds to the logarithmically divergent part of the one-loop effective action. The quadratically divergent part $-\frac{1}{2} \lim_{s \to 0} \operatorname{Tr}(a_1 H^{-s}(0,0))$ in the action which cannot be gauge-invariant.