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Abstract.  We study the fluctuations of systems modeled by time periodically 
driven Markov jump processes. We focus on observables defined through time-
periodic functions of the system’s states or transitions. Using large deviation 
theory, canonical biasing and Doob transform, we characterize the asymptotic 
fluctuations of such observables after a large number of periods by obtaining 
the Markov process that produces them. We show that this process, called 
driven process, is the optimizer under constraint of the large deviation function 
for occupation and jumps.
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1.  Introduction

Large deviation theory aims to predict the decay rate of a probability when increasing a 
parameter [1–3], e.g. number of realizations, time, system size. The stochastic variables 
we consider are physical observables characterizing the system of interest. Statistical 
properties of such observables follow then in an asymptotic limit. Large deviation 
theory is widely used in statistical physics [4, 5], both at equilibrium and out of equi-
librium. At equilibrium, it gives a formal point of view on thermodynamics [6, 7] and 
thermodynamic potentials [8–13]. Within large deviation theory, state functions such 
as entropy or free energy are large deviation functions (LDFs) or cumulant generating 
functions (CGFs), and variational principles follow from a saddle point approximation. 
Out of equilibrium, the notion of state function disappears, but large deviation theory 
still brings a Legendre structure approaching that of equilibrium statistical mechanics 
[14]. This theory allows to compute transition probabilities between nonequilibrium 
states or statistics of observables such as activity, energy or matter currents. Examples 
include systems with noise-induced transitions [15–17], kinetically constrained models 
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[18–20], and chemical reaction networks for which a Lagrangian/Hamiltonian descrip-
tion has been derived in [21]. Algorithms computing numerically the probability of rare 
events have also been developed in the framework of large deviation theory [22–27]. 
More generally, the concept of large deviations appears in many fields such as dynamics 
of population [28, 29], finance [30] and bio-informatics [31].

Focusing on systems modeled by Markov jump processes, we are interested in the 
fluctuations of an observable A extensive in time that satisfies a large deviation prin-
ciple. A may be a physical observable such as heat current, work or entropy produc-
tion. We do not specify A as it exists no relevant set of extensive observables that can 
characterize any nonequilibrium steady state. However, we know from the large devia-
tion perspective on statistical mechanics that the rare event statistics of a system in a 
given equilibrium state informs on all thermodynamic states of the same system. In the 
same line of idea, for nonequilibrium systems, a large deviation of A for a given process 
corresponds to a typical value of A for another process [14, 32, 33]. The question here 
is to determine the dynamics of the latter process, first to compare it with the former 
one, and second to be able to sample typical realizations leading to the chosen value 
a of observable A. For this reason, we consider in the following a process submitted 
to a condition on a (rare) value a of observable A. We then connect this conditioned 
process to an eective conditioning-free process taking a as a typical value. Such a 
connection has been done recently in the time-homogeneous case in [14, 34–36]. In 
this paper, we extend this result for periodically driven processes and for observables 
involving time-periodic functions.

This extension is motivated by the fact that many thermodynamic machines, 
including engines, operate via cycles or under periodic control. Such machines are 
experimentally studied nowadays at the fluctuating level [37–40]. Achieving a complete 
theory on the conditioning of those systems requires first to understand the fluctuations 
of periodically driven processes, which have attracted interest at the theoretical level 
[41–43]. Besides externally driven systems, spontaneous oscillations exist for systems in 
stationary nonequilibrium, see for instance the Brusselator model of chemical reactions 
[44, 45], or the three-state model studied in [46].

In this paper, we start in section 2 by defining our periodically driven Markov jump 
process and the conditioning observable A. Then, we introduce the moment generat-
ing and the scaled cumulant generating functions (SCGF) for observable A. Next, we 
express the SCGF in terms of the spectral elements associated with the one-period 
propagator for the generating function. In section 3, we address the problem of condi-
tioning a Markov process on rare values of A. This conditioned process corresponds to 
a microcanonical ensemble of trajectories, i.e. trajectories filtrated on the value of A. 
However, this process has usually no Markov property. Like in equilibrium statistical 
mechanics, we use in section 3 the canonical ensemble of trajectories (by exponentially 
biasing each trajectory probability) to build a canonical process which is Markovian. 
In the limit of a large number of periods, we show that the canonical process becomes 
the so-called driven process that will appear later as an optimal process for which 
A converges in probability to the microcanonical value. Assuming a unique relation 
between the canonical bias and the conditioning value a, the driven process defines 
the conditioning-free process which is asymptotically equivalent to the microcanonical 
process. In section 4, we show from a variational point of view that the driven process 
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is related to the optimizer of the 2.5 LDF of occupations and transition probabilities 
under the constraint A = a. Hence, the driven process is the most probable process 
that reproduces the fluctuation a. This method is in clear analogy with Jaynes’ maxi-
mum entropy principle in which entropy is replaced by the 2.5 LDF. In section 5, we 
conclude this paper by illustrating our results on a periodically modulated two level 
system conditioned on a current that is dierently defined on each part of the period.

2. Definitions and notations

2.1. Periodically driven Markov jump processes

We consider a continuous-time Markov jump process defined on a finite state space [47, 
48], z(t) giving the state of the system at time t. The generator of this Markov process 
is denoted by k where kxy ≡ kxy(t) for x �= y is the transition rate from state y  to state 
x at time t (non-negative) and kyy ≡ −λy with

λy(t) ≡
∑
x �=y

kxy(t)� (1)

is the escape rate from state y  at time t. We assume that the transition rates are time-
periodic functions with period T, k(t+ T ) = k(t), possibly with discontinuities. We 
denote by πx ≡ πx(t) the probability to be in state x at time t. It satisfies the master 
equation

∂πx

∂t
=

∑
y

kxyπy.� (2)

It remains normalized to 1 when it evolves according to the master equation  since 
by construction 

∑
x kxy = 0, ∀y. We suppose that at time t = nT  and for n → ∞, π 

reaches a periodic solution of the master equation πTips—where TiPS stands for time 
periodic state—i.e. πTips(τ + T ) = πTips(τ), ∀τ ∈ [0, T [.

We call a path the succession of states visited by the system in addition to the 
knowledge of the times at which transitions occur. In the following, we denote a path 
by [z] and assume that it starts at t  =  0 and ends at t = nT , if not otherwise stated. 
We label {zi}Ni=0 the visited states and {ti}Ni=0 the times at which the system jumps 
such that

z(t) = zi for ti � t < ti+1.� (3)
Time t0  =  0 is the initial time and tN is the last jump time before the final time nT . The 
path probability Pk,π(0)[z] of path [z] is given by

Pk,π(0)[z] = πz0(0) exp

[
N−1∑
i=0

ln
(
kzi+1,zi(ti+1)

)
−

∫ nT

0

λz(t)(t)dt

]
,� (4)

where the index π(0) refers to the initial state probability.
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2.2. Observable, scaled cumulant generating function and tilted matrix

We are now interested in the fluctuations of an observable AnT ≡ AnT [z] that is a real 
functional of the paths up to the final time nT . For sake of generality, we consider the 
following two-components observable At[z] on the shorter time interval [0, t] defined by

At[z] ≡
1

t




N−1∑
i=0

gzi+1,zi(ti+1)θ(t− ti+1)

∫ t

0

dτfz(τ)(τ)


� (5)

where θ(t) is the Heavyside function, g and f are time periodic functions with period 
T, i.e. g(τ + T ) = g(τ) and f(τ + T ) = f(τ), ∀τ ∈ R. When specifying the components 
of matrices g and vector f, observable AnT [z] may represent physical quantities. For 
instance, it will be the number of jumps per unit time if gxy  =  1 and f y   =  0 for all x and 
y , and the occupation time in state x if gy ,z  =  0 and fy = δxy with δ the Kronecker delta.

We assume that AnT  satisfies the large deviation principle

P (a) ∼
n→∞

e−nTI(a),� (6)

where P (a) is the probability of the rare event {AnT [z] = a | a ∈ R2} and I(a) its asso-
ciated LDF or rate function. The LDF describes the exponential decay with time of 
the probability that AnT  takes a value at an arbitrary distance from its typical one. In 
order to study the fluctuations of AnT  in the long-time limit, we introduce the generat-
ing function for At

G(γ, t) ≡ Eπ(0)

[
etγ·At[z]

]
,� (7)

where Eπ(0)[·] is the path average on [z] with initial probability π(0). The central dot · 
stands for the scalar product and vector γ =

(
γ1 γ2

) † is the conjugate variable of At. 
The generating function at time t imposing the final state z(t) = x writes

Gx(γ, t) ≡ Eπ(0)

[
etγ·At[z]δx,z(t)

]
.� (8)

The SCGF for AnT  is defined by

φ(γ) ≡ lim
n→∞

1

nT
lnG(γ, nT ).� (9)

The conditioned generating function Gx satisfies the ordinary dierential equation [43, 
49–51]

∂tGx(γ, t) =
∑
y

κxy(γ, t)Gy(γ, t),� (10)

where we have introduced the tilted (or dressed) operator κ of components

κxy(γ, t) ≡
{

kxy(t)e
γ1 gxy(t) if x �= y,

−λx(t) + γ2 fx(t) if x = y.
� (11)

Notice that by definition κ(γ, τ + T ) = κ(γ, τ), ∀τ ∈ R. In the following, we keep in 
mind that κ depends on γ and drop γ in the notations for clarity. The tilted matrix 
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can be seen as the generator of a new process, called the tilted process, that contains 
information on the large deviations of AnT , but that is not norm conserving since ∑

x κxy �= 0, ∀y. We formally solve equation (10) with initial condition G(γ, 0) = π(0) 
writing

G(γ, t) =
←−
Qκ(t, 0)π(0),� (12)

in terms of the propagator

←−
Qκ(t, t0) ≡ ←−exp

∫ t

t0

κ(t′) dt′,� (13)

involving the time-ordered exponential ←−exp, see appendix C. 
←−
Qκ(t, t0) is the unique 

solution of the initial matrix value problem d
dt
X(t) = κ(t)X(t), with X(0) =  the 

identity matrix in the state space.

2.3. Spectral elements of the one-period propagator for the tilted process

From now on, we assume that the final time is always nT  and omit the subscript nT  
for our generic observable A[z] ≡ AnT [z]. This observable evaluated for a stochastic 
process z(t) on [0, nT ] becomes the random variable A. In this section, we relate gen-

erating functions for A to the spectrum and eigenspace of the propagator 
←−Qκ(T, 0), 

giving them a physical interpretation.

Let ρT  be the largest (dominant) eigenvalue of 
←−Qκ(T, 0) (unicity is ensured by 

Perron–Frobenius theorem), rT its right (column) eigenvector and lT  its left (row) 
eigenvectors:

←−Qκ(T, 0)rT = ρT rT ,� (14)

lT
←−Qκ(T, 0) = ρT lT .� (15)

The eigenvectors lT  and rT can be chosen up to a multiplicative constant that we set 
by imposing

1 · rT = 1,� (16)

lT · rT = 1,� (17)
where 1 is the vector whose components are all 1. Furthermore, we remark that 
lT · π(0) < ∞ since the state space is finite.

We now make a connection between the spectral elements of the propagator and 
the large deviations of A. From equations (8) and (12), property D.5 of appendix D and 
using the periodicity of κ, the generating functions G and Gx at time nT  write

G(nT ) = Eπ(0)

[
enTγ·A[z]

]
= 1 ·

(←−Qκ(T, 0)
nπ(0)

)
=

∑
x,y

[←−Qκ(T, 0)
n
]
xy
πy(0),

� (18)

https://doi.org/10.1088/1742-5468/ab74c4
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Gx(nT ) = Eπ(0)

[
enTγ·A[z]δx,z(nT )

]
=

∑
y

[←−Qκ(T, 0)
n
]
xy
πy(0).� (19)

The asymptotic expansion of 
←−
Qκ(nT, 0) at large n is given by

←−
Qκ(T, 0)

n ≈
n→∞

(ρT )
n rT lT .� (20)

With equations (16)–(18), it yields

φ(γ) = lim
n→∞

1

nT
lnEπ(0)

[
enTγ·A[z]

]
=

1

T
ln ρT .� (21)

The SCGF φ is proportional to the logarithm of the largest eigenvalue of the single-

period propagator 
←−
Qκ(T, 0) [43, 51]. Similarly, combining equations (18)–(20) and using 

equations (16) and (17), we find

lim
n→∞

e−nTφEx0

[
enTγ·A[z]

]
= (lT )x0 ,� (22)

lim
n→∞

Eπ(0)

[
enTγ·A[z]δz(nT ),x

]
Eπ(0) [enTγ·A[z]]

= (rT )x,� (23)

where Ex0 is the path average over [z] with a Kronecker delta centered on x0 as ini-
tial probability. Hence, equations (22) and (23) allow to write the eigenvectors of the 
propagator in terms of path averages. Hence, we have extended for periodically driven 
processes the results of [35] that hold in the time-homogeneous case.

3. Conditioning: building an eective process

We saw in the previous section that the propagator based on the tilted matrix allows to 
describe the large deviations of A. We are now interested in conditioning our original 
Markov process by filtering the ensemble of paths to select those leading to a chosen 
value of A. This defines the so-called microcanonical process for which we aim to find 
an equivalent Markov process in the long-time limit. Some results of this section are 
stated in section 8.8 of [52].

3.1. Microcanonical process

The process z(t) conditioned on the event {A[z] = a | a ∈ R2} is described by the micro-
canonical path probability [35]

Pmicro
a,π(0)[z] = Pk,π(0) [z | A [z] = a] .� (24)

In general, there is no Markov generator that can exactly generate this microcanonical 
ensemble of paths. Yet, there is another process called the canonical process that is 
Markovian and that has the interesting property to be asymptotically equivalent (in a 
way to be defined later) to the microcanonical process [35, 53].

https://doi.org/10.1088/1742-5468/ab74c4
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3.2. Canonical process

The canonical path probability is connected to the original process by an exponential 
tilting of the path probability Pk,π(0)[z] [35]:

Pcano
γ,π(0)[z] ≡

enTγ·A[z]Pk,π(0)[z]

Eπ(0) [enTγ·A[z]]
=

Pκ,π(0)[z]

Eπ(0) [enTγ·A[z]]
,� (25)

where

Pκ,π(0)[z] = Pk,π(0)[z]e
nTγ·A[z]

� (26)

is obtained by inserting equation (11) in the definition of a path probability of equa-
tion (4). This path probability is a natural generalization at the path level of the equi-
librium probability in the canonical ensemble. This definition has already been used in 
many articles, for instance for the simulation of transition paths associated with glassy 
systems [54, 55].

The canonical process is Markovian: it is generated by a norm conserving Markov 
generator that we derive in the following. To do so, we look for a generator Kn that 
satisfies

PKn,π′(0)[z] ≡ Pcano
γ,π(0)[z],� (27)

where π′(0) is an initial probability that may be dierent from π(0). Moreover, we 
want Kn to generate a process that conserves probability, hence we look for a vector 
Cn such that

Kn ≡ κCn ≡ D(Cn)κD(Cn)−1 −D(Cn)−1D(Cnκ)� (28)

is built from a Doob transform as defined in appendix A. Looking at the path prob-
ability in equation (A.3) obtained from a Doob transform, Cn ≡ Cn(t) should be chosen 
as the solution of

{
Ċn = −Cnκ,

Cn(nT ) = 1,
� (29)

such that the time extensive term in the exponential of equation  (A.3) vanishes. 
Equivalently, using property D.3 of appendix D, Cn writes

Cn(t) = 1
←−Qκ(nT, t).� (30)

Inserting equation (28) in equation (A.3), we obtain that the path probability asso-
ciated with κCn

 is given by

PκCn ,π(0)[z] = Pκ,π(0)[z] (C
n
x0
)−1(0),� (31)

or equivalently

Pκ,π(0)[z] = PκCn , π(0)◦Cn(0)[z],� (32)
where ° is the Hadamard product: (u ◦ v)x ≡ uxvx. From equations (18) and (30), we 
remark that the generating function can be expressed in terms of Cn as

https://doi.org/10.1088/1742-5468/ab74c4
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G(nT ) = Cn(0) · π(0),� (33)
implying

Pcano
γ,π(0)[z] = P

κCn ,
Cn(0)◦π(0)
Cn(0)·π(0)

[z]� (34)

from equations (25) and (32). In other words, the canonical path probability is asso-
ciated with the time-dependent generator Kn = κCn

 for the initial probability 
Cn(0) ◦ π(0)/[Cn(0) · π(0)]. This shows that the canonical process has a corresponding 
Markov generator and can thus be considered as a Markov process. Note that this gen-
erator depends explicitly on the number of periods n.

In the next section, we focus on the asymptotic dynamics in the limit n → ∞ by 
considering the process towards which the canonical process converges at long time.

3.3. Driven process

The driven process is defined as the limit of the canonical process as n → ∞ [35]. Since 
the canonical process comes from the Doob transform of the tilted operator using Cn, 
the driven process will be built similarly. In the limit n → ∞, using equations (16) and 
(20), we find that Cn(τ) for τ ∈ [0, T [ is given asymptotically by

Cn(τ) = 1
←−Qκ(T, 0)

n
[←−Qκ(τ, 0)

]−1

∼
n→∞

(ρT )
nlT

[←−Qκ(τ, 0)
]−1

.� (35)

Note that Abel–Jacobi–Liouville formula ensures the invertibility of 
←−Qκ(τ, 0). Since 

scalar constants play no role in the Doob transform, we introduce the function of time 
l ≡ l(τ):

l(τ) ≡ lT

[←−Qκ(τ, 0)
]−1

,� (36)

that is by construction the solution of
{
l̇ = −lκ,

l(0) = lT .
� (37)

Using equation (15) and the periodicity of κ, the vector l satifies

l(τ + T ) = ρ−1
T l(τ).� (38)

We define the Markov generator K ≡ K(γ, τ) of the driven process at all time τ  by the 
Doob transform of the tilted matrix κ associated with vector l:

K ≡ κl = D(l)κD(l)−1 −D(l)−1D(lκ).� (39)

Note that the positivity of l(t) at all t is ensured by the positivity of 
←−Qκ(t, 0) and Perron–

Frobenius theorem (which ensures the positivity of lT ). For time-homogeneous processes, 
i.e. for time-independent generators k(t) = k and κ(t) = κ, lT  becomes T-independent 
and is the left-eigenvector of eTκ (and of κ) associated with its dominant eigenvalue 

ρT  (respectively 1
T
ln ρT ). The function l(τ) in (36) becomes l(τ) = lT e

−τκ = e−
τ
T
ln ρT lT . 

Since the exponential term disappear in the Doob transform, the driven process is the 

https://doi.org/10.1088/1742-5468/ab74c4
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Doob transform of the tilted matrix with respect to lT , which is consistent with the 
results of [35].

From equations (28) and (35), we see that the generator of the driven process is 
given by the limit of the canonical transition matrix as n → ∞:

lim
n→∞

Kn(γ, τ) = κl(γ, τ) = K(γ, τ).� (40)

One interesting property of K is its periodicity. Indeed, from equation (38) and the 
periodicity of κ, we have K(γ, τ + T ) = K(γ, τ), ∀τ ∈ R.

In the following, we show that the driven and canonical path probabilities are 
asymptotically equivalent. Two paths Pn and Qn are said to be logarithmically equiva-

lent if limn→∞
1
n
ln Pn

Qn
, and we denote it Pn � Qn. In this case, if an observable satisfies 

a large deviation principle with respect to Pn and Qn, then the corresponding LDFs 

vanish at the same values. This means that, in case of logarithmic equivalence, this 
observable takes the same typical values with respect to both paths in the limit n → ∞ 
[35, 53]. Using equations (21), (37), (39) and (A.3), the path probability of the driven 
process writes

PK,π(0)[z] = Pκ,π(0)[z] lznT
(0) e−nTφ l−1

z0
(0).� (41)

Using the definitions of the canonical path probability (25) and driven path probability 
(41), we get

PK,π(0)[z]

Pcano
γ,π(0)[z]

= lznT
(0) e−nTφ lz0(0)Eπ(0)

[
enTγ·A[z]

]
.� (42)

Hence, using the definition of the SCGF (9), we finally find:

lim
n→∞

1

nT
ln

PK,π(0)[z]

Pcano
γ,π(0)[z]

= 0.� (43)

The driven path probability and the canonical path probability are then logarithmi-
cally equivalent:

PK,π(0)[z] � Pcano
γ,π(0)[z].� (44)

Finally, we remark that the TiPS probability for the driven process can be obtained 
from the solution of the initial value problem of equation (37) for l and the intial value 
problem for r ≡ r(τ)

{
ṙ = κr,

r(0) = rT ,
� (45)

or alternatively

r(t) ≡
←−Qκ(t, 0)rT .� (46)

Using equation (14) and the periodicity of κ, the vector r satisfies:

r(t+ T ) = ρTr(t).� (47)

https://doi.org/10.1088/1742-5468/ab74c4


Periodically driven jump processes conditioned on large deviations

11https://doi.org/10.1088/1742-5468/ab74c4

J. S
tat. M

ech. (2020) 033208

The TiPS probability of the driven process µ ≡ µ(t), defined as the T -periodic solution 
of the master equation:

{dµ
dt

= Kµ

µ(0) = µ(T ),
� (48)

writes in terms of the vectors l and r

µ(t) = l(t) ◦ r(t).� (49)
Indeed, equations (37), (39) and (45) yield for all x

∑
y

Kxy(lyry) =
∑
y

{
lxκxyl

−1
y lyry − l−1

x lyκyxlxrx

}
� (50)

= lxṙx + l̇xrx� (51)

=
d

dt
(lxrx),� (52)

while equations (38) and (47) lead to

l(0) ◦ r(0) = l(T ) ◦ r(T ),� (53)
which proves that µ is the solution of equation  (48). Notice that our normalization 
choice in equation (17) ensures the normalization of µ(0). We emphasize that in this 
section we have essentially extended for the periodic case the results of [35] for the 
time-homogeneous case.

3.4. Free-conditioning process

We saw that the canonical process tends to the driven process in the long-time limit. 
We still need to obtain the Markov process that is equivalent at large time to the 
microcanonical process for which {A[z] = a | a ∈ R2 }. This process is called the 
free-conditioning process.

From [53], the canonical and microcanonical path probabilities (thought respec-
tively as biased and conditioned path ensembles based on Pk,π(0)[z] and observable A) 
are logarithmically equivalent if the LDF I is convex at a. In this case, and assuming 
that I is dierentiable for simplicity, the equivalence holds for γ = ∇I(a), where ∇I(a) 
is the gradient of I evaluated at a. Mathematically, this writes:

Pmicro
a,π(0)[z] � Pcano

γ,π(0)[z]
∣∣
γ=∇I(a) .� (54)

When combined with the logarithmic equivalence between the driven and canonical 
path probabilities of equation  (44), we find that the free-conditioning process is the 
driven process for γ = ∇I(a). Mathematically, this writes:

Pmicro
a,π(0)[z] � PK,π(0)[z]

∣∣
γ=∇I(a) .� (55)

Notice that if I is not convex at a, there is no Markov process equivalent to the micro-
canonical process.
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Periodically driven jump processes conditioned on large deviations

12https://doi.org/10.1088/1742-5468/ab74c4

J. S
tat. M

ech. (2020) 033208

4. Variational representation of the driven process

In this section, we derive the driven process from a variational approach. This route 
requires to determine the functional to be minimized and playing the role of entropy 
in Jaynes’ maximum entropy principle of statistical mechanics. This functional is the 
level 2.5 LDF for occupations and transition probabilities. We find that the driven 
process is the ‘most probable’ process for which observable A takes asymptotically a 
chosen value.

The occupation density pnx(τ)[z] at phase τ ∈ [0, T [ is the path functional

pnx(τ)[z] =
1

n

n−1∑
m=0

δx,z(τ+mT )� (56)

that counts the fraction of time the system has been in state x at phase τ  of each period 
along the path [z]. The occupation density is a positive vector of normalization 1 that 
converges to πTips, when considering the process of generator k. The empirical trans

ition probability ωn
xy(τ)[z]

ωn
xy(τ)[z] =

1

n

n−1∑
m=0

1

dτ

∑
s∈[τ,τ+dτ ]

δy,z(s−+mT )δx,z(s++mT ),� (57)

with dτ an infinitesimal time, measures the number of transitions y → x per unit of 
time at phase τ , or more precisely during [τ, τ + dτ ]. When considering the process of 

generator k, ω converges to k ◦ πTips, with 
[
k ◦ πTips

]
xy

≡ kxyπ
Tips
y . We can rewrite the 

conditioning observable A of equation (5) in terms of pn[z] and ωn[z] using the period-
icity of f and g:

A (ωn[z],pn[z]) =

(
A1(ω

n[z])

A2(p
n[z])

)
≡

(
1
T

∫ T

0
dτ

∑
x,y �=x ωn

xy[z](τ) gxy(τ)
1
T

∫ T

0
dτ

∑
x p

n
x[z](τ) fx(τ)

)
.� (58)

At long time nT , the probability to observe the occupation pn[z] = p and the 
empirical transition probability ωn[z] = ω satifies a large deviation principle:

P (ω,p) ∼
n→∞

e−nTI2.5(ω,p),� (59)

where the 2.5 LDF is given by [56]

I2.5(ω,p) =
∑
y,x �=y

1

T

∫ T

0

dτ

[
py(τ)

(
kxy(τ)−

ωxy(τ)

py(τ)

)
+ ωxy(τ) ln

ωxy(τ)

kxy(τ) py(τ)

]
,

�

(60)

see [57] for the equivalent LDF in the diusive case and [58–61] in the time-homoge-
neous case. Equation (60) holds only for p(0) = p(T ) and ω(0) = ω(T ), and for conser-

vative transition probabilities with ṗx(τ) =
∑

y(ωxy(τ)− ωyx(τ)), ∀x, and normalized 
occupations with 

∑
y py(τ) = 1, ∀y, otherwise I2.5 is infinite. Notice that I2.5(ω,p) van-

ishes for p = πTips and ω = k ◦ πTips. Hence, without conditioning, A converges to 
A(k ◦ πTips,πTips) as n → ∞.
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As before, we are interested in conditioning our process on the event 
{A(ω,p) = a | a ∈ R2}. We look for the most probable pair (ω,p) compatible with 
A(ω,p) = a. This pair coincides with the typical value of (ωn[z],pn[z]) under the 
microcanonical path probability [5, 36]. It is obtained by minimizing the 2.5 LDF 
under the following constraints

	•	 �C0: A(ω,p) = a,

	•	 �C1: 
∑

y py(τ) = 1, ∀τ ∈ [0, T [,

	•	 �C2: ṗx(τ) =
∑

y(ωxy(τ)− ωyx(τ)), ∀x and ∀τ ∈ [0, T [,

	•	 �C3: p(T ) = p(0),

	•	 �C4: ω(T ) = ω(0).

This optimization problem amounts to computing the LDF of A and writes 
mathematically

I(a) = inf
p,ω|{Ci}4i=0

{
I2.5(ω,p)

}
.� (61)

Equation (61) is known as the contraction principle. Intuitively, the optimizer (ωa,pa) 
is expected to be associated with the generator of the conditioning-free process or simi-
larly the microcanonical process as n → ∞. Equivalently, we can instead compute the 
SCGF given by the Legendre tranform of the LDF in equation (61):

φ(γ) = sup
p,ω|{Ci}4i=1

{γ ·A(ω,p)− I2.5(ω,p)} .
� (62)

The optimizer (ωγ ,pγ) of equation (62) is the typical value of (ωn[z],pn[z]) under the 
canonical path probability [5, 36]. It is expected to be associated with the generator of 
the driven process. For convex LDF, equations (61) and (62) have the same solutions, 

i.e. if I is convex at a, (ωa,pa) = (ωγ ,pγ) for γ = ∇I(a). This is in agreement with the 
equivalence of the microcanonical process and the conditioned-free process/driven pro-
cess for γ = ∇I(a) [36]. In the following, we recover this result through direct calcul
ation of the optimum of

F(ω,p) = − I2.5(ω,p) + γ1 A1(ω) + γ2 A2(p)

− 1

T

∫ T

0

dτ c(τ)

[ ∑
y

py(τ)− 1

]

− 1

T

∫ T

0

dτ
∑
x

ux(τ)

[
ṗx(τ)−

∑
y

(ωxy(τ)− ωyx(τ))

]
,

�

(63)

where c and u are time dependent Lagrange multipliers respectively associated with 
the constraints C1 and C2. We assume in addition that u(T ) = u(0). Functional 
derivatives with respect to occupation and transition probabilities yield
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∂F
∂ωxy(τ)

= 0
∂F

∂py(τ)
= 0

⇒ ln ωxy(τ)

kxy(τ) py(τ)
+ (uy(τ)− uτ )− γ1 gxy(τ) = 0 for x �= y,

⇒
∑

x �=y

[
kxy(τ)− ωxy(τ)

py(τ)

]
+ c(τ)− γ2 fy(τ) − u̇y(τ) = 0.

� (64)
We transform the first equation of (64) into

ωxy(τ) = K ′
xy(τ) py(τ),� (65)

with

K ′
xy(τ) ≡ kxy(τ) e

γ1gxy(τ) eux(τ)−uy(τ) = κxy(τ)e
ux(τ)−uy(τ),� (66)

for x �= y and τ ∈ [0, T [. We define the diagonal elements such that the sum over the 
lines of any column of K′(τ) vanishes so that K′ satisfies ṗ = K′p via condition C2:

K ′
yy(τ) ≡ −

∑
x�=y

K ′
xy(τ) ≡ − Λ′

y(τ),� (67)

with Λ′
y(τ) the escape rate from state y  at time τ  associated with K′. From condition 

C3, p is the TiPS probability associated with K′. At this point, it remains to fix the 
Lagrange multipliers c and u. As suggested by the notation, K′ will turn out to be the 
generator K of the driven process defined in (39). To prove this, we see that the second 
equation of equation (64) becomes

c(τ) =
∑
x�=y

K ′
xy − λy(τ) + γ2 fy(τ) + u̇y(τ), ∀y.

� (68)

Using (11) and (66), we get

c =
∑
x�=y

κxye
ux−uy + κxx + u̇y.� (69)

Multiplying by euy, we finally obtain
{

d
dt
(eu) = −(eu) (κ− c1) ,

eu(0) = eu(T ),
� (70)

with (eu)x ≡ eux. The formal solution of (70) writes:

eu(t) = eu(T )←−Qκ−c1(T, t) = eu(0)e−
∫ T
t c ←−Qκ(T, t),� (71)

where we used property D.6 of appendix D in the second equality. Taking t  =  0:

eu(0)
←−Qκ(T, 0) = e

∫ T
0 c eu(0).� (72)

Hence, the optimization with respect to p (second equation of (64)) leads to a spectral 
equation. Since the vector eu(0) has positive components, by Perron–Frobenius theorem 

it is the unique—up to a normalization—left eigenvector of 
←−Qκ(T, 0) associated with 

its largest eigenvalue ρT , hence

e
∫ T
0 c = ρT .� (73)
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From equation (21), we find that the SCGF writes φ = 1
T

∫ T

0
c. We recover this result 

in appendix B directly from equation (62). Notice that we can rewrite equation (70) as:

d

dt

(
eu+

∫ T
t c

)
= −(eu+

∫ T
t c)κ.� (74)

Hence the vector eu+
∫ T
t c is solution of

{
Ẋ = −Xκ,

X(T ) = ρ−1
T X(0).

� (75)

From equation (37), we conclude that the vector l that appears in the Doob transform 
leading to the driven generator is related to the Lagrange multipliers through

l(t) = eu(t)+
∫ T
t c.� (76)

We emphasize that u(t) is set up to an additive and time-dependent function constant 
in the state space. Indeed, if C2 is satisfied for all states but one then it is satisfied for 
all states (in view of C1). Then, equation (76) is a choice for this remaining degree of 
freedom in u(t).

We now show that the transition rate matrix K′ generates the driven process, i.e. 
we show that K′ writes as the Doob transform of κ associated with the vector l = l(τ). 
Using equations (11), (68) and (76), we transform equation (66) into

K ′
xy = κxye

ux−uy − [κxx + Λ′
x] δxy,� (77)

= κxye
ux−uy − [ (−λx + γ2fx) + (c+ λx − γ2 fx − u̇x) ] δxy,� (78)

= euxκxye
−uy − [c− u̇x] δxy,� (79)

= lxκxyl
−1
x + l−1

x l̇x δxy,� (80)

= lxκxyl
−1
x − l−1

x (lκ)x δxy,� (81)

= κl
xy.� (82)

Hence, we conclude that K′ = K (defined in (39)). Then, the optimum of equation (62) 
is reached for p = µ the TiPS probability of the driven process with generator K , and 
ω = K ◦ p the directional probability current associated with the probability p and 
rate matrix K : in the time-homogeneous case, we recover the results of [33, 36].

To conclude this section, the driven process is the most probable process that 
reproduces the dynamics satisfying the imposed value of the conditioning observable. 
In other words, it is the generator of an ‘optimal’ Markov process for which the condi-
tioning observable takes asymptotically the imposed value as a typical value.
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5.  Illustration on a solvable modulated two-level system

In this section, we consider a two level system with states denoted by e±. For simplic-
ity, the transition rate matrix is chosen symmetric and piecewise-constant. We take as 
conditioning observable a current defined through a time-periodic function. We com-
pute the SCGF and the rate matrices Kn and K for the canonical and driven processes. 
We study the convergence of the canonical transition rates toward the driven one as 
the number of periods n grows. We also comment qualitatively on the influence of the 
conditioning on the transition rates of the driven process.

The transition rate matrix used to model the system writes

k(t) =

(
−k(t) k(t)

k(t) −k(t)

)
.� (83)

The rate k(t) is a T-periodic and piecewise constant function of time

k(t) =

{
k0 for t ∈ [0, αT [,

k1 for t ∈ [αT, T [,� (84)

where ki  >  0, i = 0, 1 are two constants. We chose k0  =  1 to set the time scale. We use 
α ∈]0, 1[ as duty cycle of the piecewise modulation. The observable A is the scalar path 
functional

A[z] =
1

nT

∑
t∈[0,nT ] | z(t+) �=z(t−)

gz(t+),z(t−)(t),� (85)

where we assume that g is antisymmetric and piecewise constant with duty cycle α, i.e. 
g−+(t) = −g+−(t) ≡ g(t) and

g(t) =

{
g0 for t ∈ [0, αT [,

g1 for t ∈ [αT, T [.� (86)

When g0  =  1 and g1  =  0 for instance, A counts the net number of transitions e+ → e− 
occuring in the first part of each period. With e+, e− respectively the first and second 
basis vectors, the tilted operator associated to k and observable A writes

κ(γ, t) =

(
−k(t) k(t)e−γg(t)

k(t)eγg(t) −k(t)

)
.� (87)

Our theory relies on the propagator 
←−Qκ(t, 0) that we shall now obtain to proceed. 

The tilted operator being piecewise constant, this propagator can be writen explicitly. 
For t ∈ [0, αT [, we obtain

←−
Qκ(t, 0) = e−k0t

(
cosh(k0t) e−γg0 sinh(k0t)

eγg
0
sinh(k0t) cosh(k0t)

)
,� (88)

while for t ∈ [αT, T [, and introducing t0 ≡ αT  and t1 ≡ t1(t) ≡ t− αT , we have
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←−
Qκ(t, 0) =

←−
Qκ(t

0 + t1, 0) = e−k0t0−k1t1

×

( ∏
i cosh(k

iti) +
∏

i e
γ(1−2i)gi sinh(kiti)

∑
i e

−γgi sinh(kiti) cosh(k1−it1−i)∑
i e

γgi sinh(kiti) cosh(k1−it1−i)
∏

i cosh(k
iti) +

∏
i e

−γ(1−2i)gi sinh(kiti)

)
,

� (89)

where sums and products are on i = 0, 1.
The largest eigenvalue of the propagator over one period writes

ρT =
1

2

[
tr

←−Qκ(T, 0) +

√[
tr

←−Qκ(T, 0)
]2

− 4 det
←−Qκ(T, 0)

]
,� (90)

where tr and det stands for the trace and determinant, respectively. Using equation (21), 
the SCGF φ(γ) follows, see figure 1 for a numerical computation. The Legendre conju-
gate LDF I(a) is shown on the same figure. Notice that I vanishes at a  =  0 due to the 
symmetry of the rate matrix k: there are asymptotically as many transitions e+ → e− 
than transitions e− → e+ leading to a vanishing typical value for A.

The generator K being defined as the Doob transform of κ based on 

l(t) = l(0)[
←−Qκ(t, 0)]

−1, we need the left eigenvector l(0) = lT  of the one period propa-

gator associated to the eigenvalue ρT :

l(0) =
1

N




∏
i e

−kiti
[∑

i e
γgi sinh(kiti) cosh(k1−it1−i)

]

ρT −
∏

i e
−kiti

[∏
i cosh(k

iti) +
∏

i e
γ(1−2i)gi sinh(kiti)

]



†

,� (91)

with N  a normalizing factor following from equation (17). Inverting the propagators 
in equations (88) and (89), we can compute l(t) at any t ∈ [0, T [. Then, equation (39) 
yields an analytic expression for the generator of the driven process from which we 
have computed numerically one component shown on figure 2. Similarly, the generator 

Kn is defined as the Doob transform of κ based on Cn(t) = 1 [
←−Qκ(T, 0)]

n[
←−Qκ(t, 0)]

−1. 

Inverting the propagators of equations (88) and (89) and taking the nth power of the 
one period propagator, we can compute Cn(t) at any t ∈ [0, T [ for n ∈ . Then, equa-
tion  (28) yields an expression for the generator of the canonical process from which 

Figure 1.  (left) SCGF φ(γ) and (right) LDF I(a). The figures  are obtained for 
α = 0.3, T  =  1, k0  =  1, k1  =  0.1, g0  =  1, g1  =  −1.
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we have computed numerically one component shown on figure 2 for n = 1, 2, 5 and 
100. This figure illustrates the convergence of the canonical generator Kn towards the 
driven generator K when n → ∞ as stated in equation (40). We observe that the two 
generators K and Kn are piecewise continuous (with discontinuities at phases αT  and 
T) and time-dependent even though the original rate matrix k was piecewise constant.

On figure  3, we plot both driven rates K+−(t) and K−+ (t) and original rates 
k+−(t) = k−+(t) = k(t) to observe qualitatively the eect of the conditioning on our 
initial Markov process. We chose to impose a  =  0.4 net transitions from e+ to e− per 
unit time, counted positively if they occur on the first part of each cycle (g0  =  1) and 
negatively on the second part (g1  =  −1). In view of I’s strict convexity, the process that 
has a  =  0.4 as a typical event is the driven process for γ = 1.11 = I ′(0.4). In the original 
process, A is zero on average due to the symmetry of the rate matrix. Hence, imposing 
a  >  0 should increase the rate of the driven process for transitions e+ → e− on [0, αT [ 
and transitions e− → e+ on [αT, T ]. Compared to the original rate k, we see on figure 3 
that indeed K+− < k0 < K−+ on [0, αT [ so that transitions e+ → e− are prefered on 
average, and conversely K−+ < k1 < K+− on [αT, T ] so that transitions e− → e+ are 
prefered on average. Hence, the conditioning has broken the symmetry of the rate 
matrix and made it fully time dependent.

On figure 4, we plot the rate K+− for dierent values of a (associated to their corre
sponding γ). We observe that this rate from e− → e+ deviates more and more from 
k+− as |a| becomes larger, i.e. goes away from the mean 0 for the original process. The 
magnitude of change of the driven rate is thus in direct correspondence with the mag-
nitude of the conditioning. However, it is not intuitive to understand the growth of the 
transition rate. We can just say that the possibility of a time-dependent rate matrix 
oers a broader dynamical space to explore in the variational calculation compared to 
case of piecewise-constant rates.

Figure 2. K+−(t) and Kn
+−(t) as a function of time for dierent number of periods 

n = 1, 2, 5, 100. The figure is obtained for α = 0.3, T  =  1, k0  =  1, k1  =  0.1, g0  =  1, 
g1  =  −1, a  =  0.4 corresponding to γ = 1.11.

https://doi.org/10.1088/1742-5468/ab74c4


Periodically driven jump processes conditioned on large deviations

19https://doi.org/10.1088/1742-5468/ab74c4

J. S
tat. M

ech. (2020) 033208

6. Conclusion

Beyond the computation of the cumulants of a random variable A, recent developments 
in large deviation theory provide a mathematical framework to study path probabilities 
conditioned on an event A = a (microcanonical conditioning, A does not fluctuate). 
One aims to build a new Markov process for which A converges in probability to the 
value a at long time (canonical conditioning, A fluctuates). In this paper, we addressed 
this problem of process conditioning for observables defined through periodic functions 
in the framework of Markov jump processes with time-periodic generators. We took the 
period of these functions equal to the period of the generator, with no loss of general-
ity compared to the case of commensurable periods. We focused on jump processes, 

Figure 3.  Original transition rate k(t) (solid black line) and driven transition rates 
K+−(t) (red dotted line) and K−+(t) (blue dashed line). The figure is obtained for 
α = 0.3, T  =  1, k0  =  1, k1  =  0.1, g0  =  1, g1  =  −1, a  =  0.4 corresponding to γ = 1.11.

Figure 4.  Original transition rate k(t) (solid black line) and driven rate K+−(t) 
(colored lines) for dierent values of γ corresponding to dierent values of a. 
The figure  is obtained for α = 0.3, T  =  1, k0  =  1, k1  =  0.1, g0  =  1, g1  =  −1. The 
values a = −1.8,−0.5, 0, 0.4 correspond to γ = −3.59,−1.29, 0, 1.11, respectively. As 
expected, k = K when conditioning at the mean value a  =  0.
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but we expect our results to be transposable to general Markov processes. Starting 
from nonequilibrium path probabilities generalizing the canonical and microcanonical 
ensembles, we defined the Markov generator of the canonical process and its asymptotic 
equivalent after a large number of periods. The latter is the driven generator obtained 
from the Doob transform involving an eigenvector of the one-period propagator for 
the tilted operator (and its time evolution). This is consistent with the time-homoge-
neous theory where an eigenvector of the tilted matrix is involved instead. Finally, the 
conditioned-free process for which A takes asymptotically the microcanonical value a 
follows from the driven process. This result requires the ensemble equivalence between 
microcanonical and canonical path ensembles which is guaranteed by the convexity of 
the LDF for A, in straight connection with entropy’s concavity for the equivalence 
of equilibrium ensembles. This analogy between entropy and LDF is broader than the 
question of ensemble equivalence. In the same way that the canonical state probability 
follows from Jayne’s Maximum entropy principle in equilibrium statistical mechanics, 
the driven process follows from a constrained optimization problem on the 2.5 LDF.
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Appendix A. Definition of the Doob transform

Let M be an arbitrary Metzler matrix [62] with nonnegative o-diagonal components 
and v a vector whose elements are strictly positive. The Doob transform of M associ-
ated with v is defined by

Mv ≡ D(v)M D(v)−1 −D(v)−1D(vM),� (A.1)

where D(v) is the diagonal matrix with the components of v on its diagonal. 
Componentwise, equation (A.1) writes

Mv
xy(t) = vx(t)Mxy(t)v

−1
y (t)− v−1

x (t)(vM)x(t)δxy.� (A.2)

Mv is a norm conserving generator since 
∑

x M
v
xy = 0 for all y . The Doob transform is 

then a tool to build a norm conserving Markov generator out of a Metzler matrix. The 
above definition of the Doob transform is a special case of a more general definition, 
see [35]. We emphasize that the norm of the vector used in a Doob transform plays 
no role: For α ≡ α(t) a scalar function of time, the Doob transforms based on v(t) and 
α(t)v(t) are the same, i.e. Mαv = Mv. The path probability associated with the Doob 
transform Mv is given by [63]

PMv ,π(0)[z] = PM ,π(0)[z] vx(nT )(nT )

exp

[
−
∫ nT

0

(
v−1
x(t)(t)(vM)x(t)(t) + v−1

x(t)

∂v(t)

∂t

∣∣∣∣
x(t)

)
dt

]
v−1
x0
(0),

� (A.3)
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where the second term in the integrand is due to the time dependence of vector v lead-

ing to ln vxi
(ti+1)− ln vxi

(ti) =
∫ ti+1

ti
dt∂t ln vxi

(t) contributions for each interval of time 

[ti, ti+1] between two jumps.

Appendix B. SCGF from the optimizer

We recover the SCGF for observable A by evaluating the 2.5 LDF at the optimum 
(ω,p) of our variational problem stated at equation (61). By definition of the second 
component of our observable A in equation (58) and using equation (68) we find

γ2 A2(p) =
1

T

∫ T

0

∑
x

px γ2 fx,� (B.1)

=
1

T

∫ T

0

[
c+

∑
x

px [λx − Λx]−
∑
x

pxu̇x

]
,� (B.2)

=
1

T

∫ T

0

[
c+

∑
x

px [λx − Λx] +
∑
x

ṗxux

]
,� (B.3)

where we used C3 in the integration by part. Using equations (65), (66) and C2, the 
LDF at the optimum writes

I(ω,p) =
1

T

∫ T

0

[∑
x

px [λx − Λx] +
∑
x,y �=x

ωxy [ux − uy] + γ1
∑
x,y �=x

ωxy gxy

]
,

�

(B.4)

=
1

T

∫ T

0

[∑
x

px [λx − Λx] +
∑
x,y �=x

ux [ωxy − ωyx] + γ1
∑
x,y �=y

ωxy gxy

]
,� (B.5)

=
1

T

∫ T

0

[∑
x

px [λx − Λx] +
∑
x

ux ṗx

]
+ γ1A1.� (B.6)

Combining equations (B.3) and (B.6), we finally obtain

γ1 A1(K ◦ p) + γ2 A2(p)− I2.5(K ◦ p,p) = 1

T

∫ T

0

c(τ)dτ = φ(γ).� (B.7)

The left-hand-side is the SCGF as the Legendre transform of the LDF. It follows that 
the SCGF is the time-average over a period of the Lagrange multiplier used to normal-
ize the occupation density, recovering the result stated in equation (73). As mentioned 
in the conclusion, the variational calculation of the SCGF is similar in many ways to 
the calculation of equilibrium canonical probability via the maximum entropy principle 
in which the SCGF (free energy) is also connected to the Lagrange multiplier that 
imposes probability normalization.
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Appendix C. Definitions of the time-ordered exponential

The ordered exponential 
←−
QM (t, 0) ≡ ←−exp

∫ t

0
M(t′) dt′ is the unique solution of the ini-

tial matrix value problem:

d

dt
X(t) = M (t)X(t), with X(0) = ,� (C.1)

that has the integral form

X(t) = +

∫ t

0

M (t′)X(t′)dt′.� (C.2)

Inserting this integral form into itself, one obtains the series expansion of the time 
ordered exponential

←−
QM (τ, 0) = +

∫ t

0

M (τ1)dτ1 +

∫ t

0

dτ1

∫ t1

0

dτ2 M (τ1)M (τ2)

+

∫ t

0

dτ1

∫ t1

0

dτ2

∫ t2

0

dτ3 M(τ1)M(τ2)M(τ3) + . . . .
�

(C.3)

Notice that the arrow on the exponential specifies the ordering of the product of 
M in the expansion for increasing time from right to left (having in mind that 
τn < · · · < τ3 < τ2 < τ1).

The reverse-ordered exponential 
−→QM (0, t) ≡ −→exp

∫ t

0
M (t′) dt′ is unique solution of 

the initial matrix value problem:

d

dt
X(t) = X(t)M (t), with X(0) = ,� (C.4)

that has the integral form

X(t) = +

∫ t

0

X(t′)M (t′)dt′.� (C.5)

Inserting this integral form into itself, one obtains the series expansion of the reverse-
ordered exponential

−→
QM (0, τ) = +

∫ t

0

M (τ1)dτ1 +

∫ t

0

dτ1

∫ τ1

0

dτ2 M (τ2)M(τ1)

+

∫ t

0

dτ1

∫ τ1

0

dτ2

∫ τ2

0

dτ3 M(τ3)M(τ2)M (τ1) + . . . .
�

(C.6)

Notice that the arrow on the exponential specifies the ordering of the product of M in the 
expansion for increasing time from left to right (we recall that τn < · · · < τ3 < τ2 < τ1).

Appendix D. Properties of the time-ordered exponential

For the reader convenience, we recall useful properties on linear dierential equa-
tions with periodic generators. See [64] for a full description of the theory.
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Property D.1 (Transpose of a propagator).  The transpose of a propagator based on 
generator M is the time reverse propagator based on the transposed generator M †

[←−
QM (t, 0)

]†
=

−→
QM†(0, t).� (D.1)

The property follows from the definitions and the fact that the transpose of a product 
of two matrices is the product of the two transposed matrices taken in the reverse order.

Property D.2 (Inverse of a propagator).  The inverse of a propagator based on gen-
erator M is the time reverse propagator based on the opposite generator −M

[←−
QM (t, 0)

]−1

=
−→
Q−M (0, t).� (D.2)

Assuming Ẋ = MX and since d
dt
(XX−1) = ẊX−1 +XẊ

−1
= 0, we have 

Ẋ
−1

= −X−1ẊX−1 = −X−1M . Hence the two propagators are connected.

Property D.3 (First relation between final and initial value problems).  The solution 
of the final value problem

d

dt
X(t) = −X(t)M (t), with X(T ) = ,� (D.3)

is given by X(t) =
←−QM (T, t).

Indeed, one can check directly that

d

dt

←−
QM (T, t) = lim

a→0

←−
QM (T, t+ a)−

←−
QM (T, t+ a)

←−
QM (t+ a, t)

a
,� (D.4)

= lim
a→0

←−
QM (T, t+ a)× −

←−
QM (t+ a, t)

a
,� (D.5)

=
←−QM (T, t)×

[
− d

ds

←−QM (s, t) |s=t

]
,� (D.6)

= −
←−QM (T, t) M

←−QM (t, t),� (D.7)

= −
←−QM (T, t) M .� (D.8)

Property D.4 (Second relation between final and initial value problems).  The solu-
tion of the final matrix value problem:

d

dt
X(t) = M (t)X(t), with X(T ) = ,� (D.9)

is given by X(t) =
[←−QM (T, t)

]−1

=
−→Q−M (t, T ).

This follows from combining properties D.2 and D.3.
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Property D.5 (Multiplicative property of propagators).  For any t1 ∈ [t0, t],

←−
QM (t, t0) =

←−
QM (t, t1)

←−
QM (t1, t0).� (D.10)

Property D.6 (Time-ordered exponential of the sum of commuting matrices).  If 

M(t1) and N (t2) commute for any t1,t2 ∈ R, then 
←−
QM+N (t, t0) =

←−
QM (t, t0)

←−
QN (t, t0).

Let us denote the left-hand side of the equality by X(t) and the right-

hand side by Y (t). On the one hand, Ẋ = (M +N )X. On the other hand, 

Ẏ = MY +
←−
QM (t, t0)N

←−
QN (t, t0) = (M +N )Y  since M and N  commute for any 

time. Thus, the matrices X and Y  satisfy the same matrix dierential equation. 
Besides, X(t0) = Y (t0) = , hence X(t) = Y (t), ∀t ∈ R.
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