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We derive the statistics of the efficiency under the assumption that thermodynamic fluxes fluctuate with
normal law, parametrizing it in terms of time, macroscopic efficiency, and a coupling parameter ζ. It has a
peculiar behavior: no moments, one sub-, and one super-Carnot maxima corresponding to reverse operating
regimes (engine or pump), the most probable efficiency decreasing in time. The limit ζ → 0 where the
Carnot bound can be saturated gives rise to two extreme situations, one where the machine works at its
macroscopic efficiency, with Carnot limit corresponding to no entropy production, and one where for a
transient time scaling like 1=ζ microscopic fluctuations are enhanced in such a way that the most probable
efficiency approaches the Carnot limit at finite entropy production.
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Efficiency quantifies how worth a local gain at the
expense of a global loss is. In thermodynamics, “losses”
are measured by the rate σ̄2 > 0 at which entropy is
externalized to the environment in the form of a degraded
form of energy, while “gain” is the rate −σ̄1 at which
entropy is expelled from a system to upgrade its own state.
Globally, entropy is produced at rate σ̄ ¼ σ̄2 þ σ̄1, and the
second law of thermodynamics σ̄ ≥ 0 conveys that locally
one cannot earn more of what is globally lost. Then, the
efficiency η̄ ¼ −σ̄1=σ̄2 is bounded by the (scaled) Carnot
efficiency ηc ¼ 1. Alas, in craving this limit one is deluded
by the fact that it occurs at zero power, which is useless for
any activity to be accomplished in a reasonable time.
This picture is only tenable for macroscopic systems. For

microscopic systems subject to random fluctuations, the
concept of a stochastic efficiency has been recently
introduced by Verley et al. [1,2]. The first notion one
has to revise is that a fluctuating efficiency can indeed
exceed the Carnot limit, when in a machine designed to
convert in average a form of input power into a form of
output power (e.g., an engine producing work at the
expense of a heat flow), for a rare event the input and
output are reversed (e.g., a pump that employs mechanical
work to absorb heat). Moreover, it has been observed that
for time-symmetric protocols in the long time limit the
Carnot efficiency becomes the least probable in a “large
deviation” sense [3]—a very counterintuitive and fascinat-
ing result that, in its time-asymmetric variant [2,4], is
already subject to experimental inquiry [5]. Corrections at
long finite times have been estimated in Ref. [4].
In this Letter, we derive the full probability density

function (PDF) of the efficiency, under the assumption that
thermodynamic fluxes are distributed with a multivariate
Gaussian with cumulants growing linearly in time. The
efficiency PDF displays quite peculiar features. In particu-
lar, it does not afford moments of any order so that

there is no average efficiency and mean-square error.
Experimentally, this implies that any data analysis should
focus on most probable values. About the latter, after an
initial transient the distribution becomes bimodal, as
observed numerically in Ref. [6]. As time elapses, the
more pronounced maximum drifts towards the always
smaller macroscopic value of the efficiency, while a less
pronounced maximum at higher efficiency moves in the
super-Carnot region towards infinity. We provide a clear
physical interpretation of these two peaks. Finally, we
argue that the macroscopic framework fails to capture
another way of approaching Carnot efficiency at finite
entropy production, at finite time, when microscopic
fluctuations are enhanced so as to affect the macroscopic
behavior.
Macroscopic nonequilibrium thermodynamics [7] is

rooted on two assumptions, both of which are today being
challenged in the framework of the stochastic theory of
nonequilibrium thermodynamics [8,9]: Certain fluxes
x ¼ ðx1; x2Þ, with units of an extensive physical quantity
per time, take definite values x̄. Fluxes are linearly related
to their conjugate thermodynamic forces f via x̄ ¼ Lf ,
where the linear response matrix L is assumed to be
positive semidefinite and symmetric by virtue of the
Onsager reciprocity relations, yielding a non-negative
macroscopic entropy production rate σ̄ ¼ f · Lf .
We relax the first assumption, by supposing that at a

given time t fluxes x are distributed with law PtðxÞ. Each
current produces entropy at rate σi ¼ fixi, for a total
entropy production rate σ ¼ σ1 þ σ2, with units of kB
per time. Then, the adimensional efficiency

η ¼ −
f1x1
f2x2

¼ −
σ1
σ2

ð1Þ

is a stochastic variable distributed with PDF
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PtðηÞ ¼
Z

dx1dx2δ
!
ηþ x1f1

x2f2

"
Ptðx1; x2Þ

¼ φ
Z

dxjxjPtð−φηx; xÞ; ð2Þ

where φ ¼ f2=f1 can be assumed to be positive. A
remarkable fact one immediately encounters is that the
efficiency can fluctuate beyond the Carnot limit. The
probability of an efficiency higher than that of Carnot
coincides with the probability of negative entropy produc-
tion rate,

Ptðη < 1Þ ¼ Ptðσ > 0Þ ¼ hθðσÞit; ð3aÞ

Ptðη > 1Þ ¼ Ptðσ < 0Þ ¼ hθðσÞe−tσit; ð3bÞ

where θ is Heaviside’s step function. The rightmost
equations follow from the fluctuation theorem [10,11]

PtðσÞ
Ptð−σÞ

¼ etσ; ð4Þ

which states that processes producing negative entropy are
exponentially disfavored with respect to those producing
positive entropy. Therefore, that super-Carnot efficiencies
are unlikely compared to sub-Carnot efficiencies is an
incarnation of the fluctuation theorem.
Exact results can be obtained by assuming that fluxes are

distributed with normal multivariate density function

PtðxÞ ¼
t

4π
ffiffiffiffiffiffi
jLj

p exp
$
−
t
4
ðx − x̄Þ · L−1ðx − x̄Þ

%
; ð5Þ

where j · j is the determinant. That (one-half) the correlation
matrix should be identified with the linear response matrix
is corroborated by the Green-Kubo relations

Lij ¼
t
2
hðxi − x̄iÞðxj − x̄jÞi; ð6Þ

another well-known consequence of the fluctuation theo-
rem [12]. The time dependence in Eq. (5) is due to the fact
that the time-integrated fluxes tx̄ increase linearly in time,
and correspondingly so do their cumulants. Under these
assumptions, the efficiency PDF Eq. (2) can be exactly
calculated (see the Supplemental Material [13]). It
only depends on four adimensional parameters: The
macroscopic efficiency η̄, the coupling parameter ζ ¼
jLj=ðL11L22Þ ∈ ½0; 1& that for thermoelectric devices [14]
is related to the so-called figure of merit zT ¼ 1=ζ − 1, the
average entropy production rate σ̄, which sets the time scale
and can be reabsorbed by a time reparametrization τ ¼ tσ̄,
and ϵ ¼ '1. With σ̄ being the only extensive parameter,
large τ stands both for large times and the macroscopic
limit. We obtain (Supplemental Material [13])

PτðηÞ ¼
e−τ=4

πaðηÞ
ffiffiffiffiffiffi
jCj

p f1þ
ffiffiffiffiffi
πτ

p
hðηÞeτhðηÞ2erf½

ffiffiffi
τ

p
hðηÞ&g

ð7Þ

where erf is the error function and

aðηÞ ¼ ð1 − ηÞ2 þ 1

jCj

!
η − η̄
1 − η̄

"
2

; ð8aÞ

hðηÞ ¼ 1 − η

2
ffiffiffiffiffiffiffiffiffi
aðηÞ

p : ð8bÞ

Here, jCj ¼ jLjf21f22=σ̄2 is the determinant of the matrix
with dimensionless entries Cij ¼ Lijfifj=σ̄. It can be
expressed in terms of our parameters as

jCj ¼ zT
2

!
1þ ϵ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 4

zT
η̄

ð1 − η̄Þ2

s "
− η̄
ð1 − η̄Þ2

; ð9Þ

where ϵ ¼ ' accounts for the existence of two probability
distributions corresponding to given parameters. For jLj to
be real, the known bound

η̄ ≤
1 −

ffiffiffi
ζ

p

1þ
ffiffiffi
ζ

p ð10Þ

must hold [14]. Importantly, aðηÞ is positive semidefinite.
Let us study the efficiency PDF in detail. First, it is a

power-law distribution with tails

Pτðη → '∞Þ ∝ η−2; ð11Þ

which, after submission of this Letter, has been proven to
be a universal property of efficiency distributions [15]. As a
consequence, it does not afford finite moments of any order.
Hence, the macroscopic efficiency η̄ is not the average
efficiency hηit, which is not finite.
In Fig. 1, the efficiency distribution is plotted as the bold

curve. Remarkably, for a large class of parameters it
displays two maxima at ηm; η(m and a minimum, the latter
slightly off the Carnot efficiency. Hence, not only super-
Carnot efficiencies are possible, but indeed, there appears a
local maximum with an efficiency higher than that of
Carnot. To understand its physical origin, we distinguish
four operational regimes of the machine, according to the
signs of the two contributions σ1 and σ2 to the entropy
production rate. The two regimes contributing to positive
efficiencies are the machine −þ that employs process 2
flowing along its spontaneous tendency, to drive process 1
against its spontaneous tendency (e.g., heat engine) and the
dual machine þ− where the system’s spontaneous ten-
dency is used to drive the environment against its tendency
(e.g., the heat pump). Correspondingly, we have
θðηÞPτðηÞ ¼ Pþ−

τ ðηÞ þ P−þ
τ ðηÞ where
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Pþ−
τ ðηÞ ¼

Z

þσ1>0
−σ2>0

dx1dx2Ptðx1; x2Þδ
!
ηþ f1x1

f2x2

"
ð12Þ

and similarly for P−þ
τ . Shaded plots are provided in Fig. 1,

showing that each of the two maxima is almost exclusively
determined by one of the two modes of the machine, the
second of which by inversion of input and output has
typical efficiency 1=η(m < 1. Regimes þþ and −− con-
tribute to the tail of the distribution at η < 0.
Let us now study the behavior of PτðηÞ in scaled

time, depicted in Fig. 2. At τ ¼ 0 we obtain a Cauchy
distribution P0ðηÞ ¼ 1=½πaðηÞ

ffiffiffiffiffiffi
jCj

p
&, with maximum at

η0 ¼ −L12f1=ðL22f2Þ. We have η0 ≥ η̄, and equality can
only occur for jCj ¼ 0. This implies that the most probable
efficiency decreases in time towards η̄. Furthermore, at
thermodynamic equilibrium where all the forces vanish,

f → 0 at finite φ, it can be shown that Peq
τ ðηÞ ¼ P0ðηÞ,

which means that systems at equilibrium do not evolve. As
time elapses a transition to a bimodal distribution occurs,
with the super-Carnot maximum drifting to infinity. We can
define a critical time τc at which there appears an inflection
point in PτðηÞ. Numerical plots of τc in terms of η̄ and c
show that the critical time is higher the closer to the
maximal efficiency and to the “loose coupling” condition
ζ → 1 (Supplemental Material [13]). Finally, in the long
time limit one has erfð

ffiffiffi
τ

p
hÞ ∼ 1 − e−τh

2
=ð

ffiffiffiffiffi
πτ

p
jhjÞ [16] and

Pτ→∞ðηÞ ∼
e−τ=4

πaðηÞjCj

!
1 −

h
jhj

þ
ffiffiffiffiffi
πτ

p
eτhðηÞ

2

"
: ð13Þ

The large-time behavior is captured by the large
deviation rate function IðηÞ ¼ −limτ→∞τ−1 lnPτðηÞ ¼
1=4 − hðηÞ2 ≥ 0, which was first calculated and thoroughly
analyzed by Verley et al. [1,2]. The rate function has only
two extrema, a minimum Iðη̄Þ ¼ 0 and a maximum
Ið1Þ ¼ 1=4, and asymptotically Ið'∞Þ ¼ ½4jCjð1− η̄Þ2þ
4&−1 ≤ Ið1Þ. Then, the more pronounced maximum tends to
the macroscopic efficiency η̄, while the minimum tends to
the Carnot efficiency. The second maximum does not
appear in the large deviation rate function because at
infinite time it moves to infinity, since it belongs to a
subdominant decay mode. This proves the existence of a
critical time τc, as there must exist another maximum for
the distribution to converge.
The quest for the Carnot limit is very subtle. By Eq. (10),

the Carnot bound can be saturated in the limit ζ → 0, giving
rise to two extreme situations related to the spectrum and
eigenvectors of the response matrix L → Lϵ. For ϵ ¼ −
(“tight coupling”), by Eq. (9) the correlation matrix
becomes degenerate,

L− ¼
!

L11 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L11L22

p
þOðζÞ

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L11L22

p
þOðζÞ L22

"
; ð14Þ

where OðζÞ are terms of order ζ. For ϵ ¼ þ (“singular
coupling”), L tends to the inverse of a degenerate matrix,
i.e., Lþ ¼ L−=OðζÞ, with jLþj → ∞.
To reach Carnot efficiency, a second independent

condition (“self-duality”) must hold: φ attains value
φ( ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L11=L22

p
, which affords an interesting interpreta-

tion in terms of the probability of the inverse efficiency
(Supplemental Material [13]). When ζ → 0, this condition
makes f either the null eigenvector of L− relative to its null
eigenvalue or of Lþ relative to its finite eigenvalue. In the
tight-coupling regime, this condition is known as the “stall
force” [17].
Expressing the efficiency in terms of the adimensional

parameters ζ and ϕ ¼ φ=φ( (for L12 < 0) as [18]

η̄ðζ;ϕÞ ¼ −
1 − ϕ

ffiffiffiffiffiffiffiffiffiffiffi
1 − ζ

p

ϕ2 − ϕ
ffiffiffiffiffiffiffiffiffiffiffi
1 − ζ

p ; ð15Þ

FIG. 1 (color online). Bold curve: efficiency distribution PτðηÞ
for parameter values ζ ¼ 0.01, η̄ ¼ 0.6, τ ¼ 10, ϵ ¼ þ1. Filled
curves beneath: P−þ

τ ðηÞ and Pþ−
τ ðηÞ, showing that each maxi-

mum is mostly due to one working mode of the engine.

FIG. 2 (color online). Main frame: Efficiency distribution at
various scaled times, for ζ ¼ 0.05, η̄ ¼ 0.3, ϵ ¼ þ. The vertical
dotted lines correspond to η̄ and ηc. Inset: Contour plot of the
efficiency PDF as a function of η and τ (in log scale). Maxima are
points where the level lines have horizontal tangents. After a
critical time, a second maximum drifting to infinity appears.
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one finds that the two limits towards self-duality and
towards tight or singular coupling do not commute,

1 ¼ −lim
ζ→0

lim
ϕ→1

η̄ ¼ þlim
ϕ→1

lim
ζ→0

η̄ : ð16Þ

Then, a macroscopic Carnot efficiency is “fragile,” as the
self-dual forces needed to attain it are those that slightly out
of ζ ¼ 0 give a “dud” machine that dissipates to obtain
nothing, with macroscopic efficiency η̄ ¼ −1.
Nevertheless, the probabilistic level is richer. At tight

coupling the bivariate Gaussian Eq. (5) becomes univariate
with support along x1=x2 ¼ −φ(, and the efficiency PDF a
Dirac delta centered at the macroscopic efficiency. Then
tightly coupled machines work macroscopically at all
scaled times.
More interesting is the singular coupling. Figure 3 shows

that in this limit all extrema tend to accumulate towards the
Carnot efficiency, where the density concentrates. Despite
the fact that the two peaks survive, convergence to a Dirac
delta can be proven by the following argument [19]: From
Eqs. (7) and (8), h → 1=2, a → ð1 − ηÞ2, and the efficiency
PDF converges to a distribution with support in η ¼ 1,
which is then necessarily a finite combination of derivatives
of the Dirac delta PτðηÞ ¼

PN
n¼0 pnδðnÞð1 − ηÞ [20]. Since

hgi > 0 for all positive test functions gðηÞ > 0, then
necessarily pn ¼ 0 but for p0 ¼ 1 □. Then, singular
coupling pushes the most probable efficiency towards
the Carnot limit at fixed τ; the shadings in Fig. 3 suggest
that in this limit the distribution is fairly insensitive to η̄.
Moreover, the contour plot in Fig. 3 supports that the most
probable efficiency stays at the same value for probability
densities evaluated at a fixed time τ ∝ 1=ζ, showing that

convergence to η̄ is more and more delayed. However, it
must be remembered that the physical time scale is set by
the entropy production rate. Necessarily, the matrix entries
of Lþ diverge; then in general σ̄ also diverges. Still, Lþ

admits a finite eigenvalue. Picking the forces along the
relative eigenvector, ϕ ¼ 1þOðζÞ, one obtains a finite
entropy production rate. Oddly, as discussed above, these
conditions are met when the macroscopic machine is dud.
To resume: At singular coupling, the effect of fluctua-

tions is macroscopically visible and permits us to work
close to Carnot efficiency at finite entropy production rate
for sufficiently long physical times. The conditions for
which the entropy production rate can be held finite are
those under which the machine eventually evolves towards
a dud fate. Notice that in this regime the system might flip
randomly across the close sharp peaks of the PDF.
However, the inset in Fig. 3 suggests that at intermediate
times reasonably high typical efficiencies will be favored
and that a large separation between such peaks (the dark
region of zero probability) occurs. Hence, to put it with a
motto, a singular machine doomed to be useless might be
efficiently useful for some time due to fluctuations; the
better in the short run, the worse in the long. By the Green-
Kubo relation of Eq. (6) the singular coupling limit is
approached when correlations between the currents diverge
and the inverse correlation matrix becomes degenerate. It is
tempting to parallel this behavior to the paradigm of
criticality at phase transitions, where fluctuations become
macroscopic, correlations diverge, and the covariance
matrix degenerates [21,22].
An important observation to be made here is that singular

coupling pushes the system far from equilibrium. The
framework of stochastic thermodynamics encompasses
such systems by assuming that they are subtended by an
underlying Markovian dynamics, giving rise to non-
Gaussian current statistics. Gaussianity is only recovered
in the linear regime at large times by the central limit
theorem [23,24]. While the model of a Brownian particle in
a tilted plane studied in Ref. [1] has the exact Gaussian
propagators studied in this Letter, in general Markov
processes have a more complex behavior in time; in
particular, the average flux varies as the system evolves,
depending on the initial ensemble. Then, the exact short-
and large-time behavior of the efficiency distribution might
become model dependent. For asymmetric protocols, a
signature of non-Gaussian behavior is the off-Carnot least-
probable efficiency [2,4,5].
Nevertheless, our study points out that in the simplest

Gaussian scenario the efficiency PDF manifests peculiar
features that might possibly be universal: power-law tails,
no finite moments, a naturally occurring transition to a
bimodal distribution due to reverse working regimes, etc.
Particularly intriguing is the limit of a degenerate or
singular covariance matrix. While the former case is
intrinsically macroscopic and broadly studied [14,18],

FIG. 3 (color online). Graphs of ðη; PτðηÞÞ for τ ¼ 10, η̄ ¼ 0.3,
ϵ ¼ þ and for various coupling parameters (from bolder to
thinner) ζ ¼ 0.1; 0.01; 0.001; 0.0001. The shading represents the
distance to the corresponding curves for η̄ ¼ −1. Inset: Contour
plot of the efficiency PDFs corresponding to parameter ζ ¼ 0.1=τ
as a function of the efficiency η and the scaled time τ (in log
scale), showing that the PDF is invariant at all times, hence, that
singular coupling stretches the relaxation times. Lighter tones for
higher probabilities, darker for lower.
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we obtain a clear indication that the singular coupling
regime displays an interesting behavior that could lead to
the enhancement of the efficiency above its macroscopic
value. More light is to be shed on these issues by future
inquiry on the finite-time statistics of the efficiency in
stochastic models [15,17] in their rich phenomenology,
including maximum power generation [25,26], multitermi-
nal machines [27], broken time-reversal symmetry [28], the
insurgence of phase transitions, and in relation to the issue
of efficiency enhancement by noise [29] or by decoherence
[30]. Experimental setups that could test these predictions
are already available [31–35]. The full statistics of the
efficiency close to equilibrium has recently been sampled
for a Carnot engine realized with a Brownian particle, in the
quasistatic limit where the currents’ statistics is Gaussian
[5], and data analysis farther away from equilibrium might
soon be available.
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I. SUPPLEMENTARY MATERIAL

A. E�ciency p.d.f.

In this section we derive the probability density func-

tion of the e�ciency. Without possibility of confusion, we

will denote stochastic variables by the values they take.

Let us consider two normally distributed stochastic vari-

ables x = (x1, x2) (the fluxes)

P
t

(x) =

t

4⇡
p

|L|
exp



� t

4

(x� ¯

x) · L�1
(x� ¯

x)

�

. (1)

Defining f = L�1
¯

x (the forces), we want to calculate the

p.d.f. of the e�ciency

⌘ = �f1x1

f2x2
. (2)

It is convenient to define �
i

= f
i

x
i

(the entropy produc-

tion rates) with averages �̄
i

= f
i

x̄
i

. Let �̄ = �̄1+ �̄2. We

have

P 0
t

(�1,�2)d�1d�2 = P
t

(x1, x2)dx1dx2 (3)

yielding

P 0
t

(�1,�2) =
t

4⇡�̄
p

|C|
exp



� t

4�̄
(� � ¯

�) · C�1
(� � ¯

�)

�

.

(4)

Letting L
ij

be the entries of L, then the matrix C has

entries c
ij

= L
ij

f
i

f
j

/�̄ and it can be expressed as

C =

1

�̄

✓

�̄1 � c12 c12
c12 �̄2 � c12

◆

. (5)

Notice that P 0
t

only depends on three parameters, �̄1, �̄2

and c12 or, equivalently, �̄, ⌘̄ = ��̄1/�̄2 and |C|. Then

the e�ciency p.d.f. is given by

P
t

(⌘) =

Z

d�1d�2 �

✓

⌘ +

�1

�2

◆

P 0
t

(�1,�2)

=

Z

d�|�|P 0
t

(�⌘�,�) . (6)

We have

P 0
t

(�⌘�,�) =
t�̄

4⇡�̄
p

|C|
exp� t

4�̄

⇥

a(⌘)�2
+ 2b(⌘)� + c

⇤

(7)

where we introduced

a(⌘) =

1

|C| (c22⌘
2
+ 2c12⌘ + c11) (8a)

b(⌘) =

1

|C| [⌘(c22�̄1 � c12�̄2) + c12�̄1 � c11�̄2] (8b)

c =

1

|C| (c22�̄
2
1 � 2c12�̄1�̄2 + c11�̄

2
2). (8c)

Notice that a is adimensional, b has dimensions of an

entropy rate, and c of a squared entropy rate. In fact,

simple but tedious calculations show that

a(⌘) = (1� ⌘)2 +
1

|C|

✓

⌘ � ⌘̄

1� ⌘̄

◆2

(9a)

b(⌘) = �̄(⌘ � 1) (9b)

c = �̄2 . (9c)

Notice that a � 0 and equality can only hold if |L| = 0,

a case that we hereby exclude. We now separate P
t

(⌘) =
P+
t

(⌘) + P�
t

(⌘), where

P±
t

(⌘) =

Z ±1

0
d� �P 0

t

(�⌘�,�). (10)

Performing a change of variables � ! �� in P�
t

, we have

P±
t

=

t

4⇡�̄
p

|C|

Z ±1

0
d� �e�

t
4�̄ [a�

2±2b�+c

]. (11)

We can calculate the first and then change sign to b to

obtain the second. We obtain

P+
t

=

1

2⇡a
p

|C|

Z +1

0
d�

t(a� + b� b)

2�̄
e�

t
4�̄ (a�

2+2b�+c

)

=

1

2⇡a
p

|C|

⇢

Z +1

0
d�



� d

d�
e�

t
4�̄ (a�

2+2b�+c

)

�

� tb

2�̄

Z +1

0
d� e�

t
4�̄ (a�

2+2b�+c

)

�

=

1

2⇡a
p

|C|
e�

tc
4�̄

⇢

1� tb

2�̄

Z +1

0
d� e�

t
4�̄ (a�

2+2b�
)

�

=

1

2⇡a
p

|C|
e�

tc
4�̄

(

1� be
tb2

4�̄a

r

t

�̄a

Z +1

b

p
t

4�̄a

d� e��

2

)

.

(12)

Recognizing the complementary error function erfc(x) =

2/
p
⇡
R +1
x

e�y

2

dy and defining

h(⌘) =
�b(⌘)

2�̄
p

a(⌘)
=

1� ⌘

2

p

a(⌘)
(13)

we obtain

P±
t

=

1

2⇡a
p

|C|
e�

tc
4�̄

n

1±
p
⇡t�̄ h et�̄h

2

erfc (⌥
p
t�̄h)

o

.

(14)

Introducing ⌧ = t�̄, the full probability distribution reads

P
t

(⌘) =
e�

⌧
4

⇡a(⌘)
p

|C|

n

1 +

p
⇡⌧ h(⌘) e⌧h(⌘)

2

erf

⇥p
⌧h(⌘)

⇤

o

(15)

where we employed the fact that the error function erf =

1� erfc is odd.
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Furthermore, defining

P++
t

(⌘) =

Z

�1>0
�2>0

d�1d�2 P
0
t

(�1,�2) �

✓

⌘ +

�1

�2

◆

(16a)

P+�
t

(⌘) =

Z

�1>0
�2<0

d�1d�2 P
0
t

(�1,�2) �

✓

⌘ +

�1

�2

◆

(16b)

P�+
t

(⌘) =

Z

�1<0
�2>0

d�1d�2 P
0
t

(�1,�2) �

✓

⌘ +

�1

�2

◆

(16c)

P��
t

(⌘) =

Z

�1<0
�2<0

d�1d�2 P
0
t

(�1,�2) �

✓

⌘ +

�1

�2

◆

(16d)

we obtain

P++
t

(⌘) = ✓(�⌘)P+
(⌘) (17a)

P+�
t

(⌘) = ✓(+⌘)P�
(⌘) (17b)

P�+
t

(⌘) = ✓(+⌘)P+
(⌘) (17c)

P��
t

(⌘) = ✓(�⌘)P�
(⌘). (17d)

B. Reparametrization

The task is to express |C| in terms of the parameters

⇣ = |C|/c11c22 and ⌘̄. Notice that c11 + 2c12 + c22 = 1.

Then

⌘̄ = �c11 + c12
c22 + c12

= �1 + c11 � c22
1 + c22 � c11

(18a)

⇣ =

|C|
c11c22

= 1� (1� c11 � c22)
2

4(c11c22)
. (18b)

From the first we obtain

c22 = c11 +
1 + ⌘̄

1� ⌘̄
(19)

and letting ⇠ = (1 + ⌘̄)/(1� ⌘̄) from the second we get

c211 +
⇠⇣ � 1

⇣
c11 +

(⇠ � 1)

2

4⇣
= 0 (20)

yielding

c11 =

1� ⇠⇣

2⇣

2

4

1±

s

1� ⇣

✓

1� ⇠

1� ⇠⇣

◆2
3

5

=

1� ⇠⇣

2⇣

 

1± 1

1� ⌘̄ 1+⇣

1�⇣

q

⌘̄2 � 2⌘̄ 1+⇣

1�⇣

+ 1

!

(21a)

c22 =

1 + ⇠⇣

2⇣

 

1± 1

1+⇣

1�⇣

� ⌘̄

q

⌘̄2 � 2⌘̄ 1+⇣

1�⇣

+ 1

!

. (21b)

Given

1� ⇠⇣ =

1� ⇣

1� ⌘̄

⇣

1� ⌘̄ 1+⇣

1�⇣

⌘

(22a)

1 + ⇠⇣ =

1� ⇣

1� ⌘̄

⇣

1+⇣

1�⇣

� ⌘̄
⌘

(22b)

we get

c11 =

1� ⇣

2⇣(1� ⌘̄)

✓

1� ⌘̄ 1+⇣

1�⇣

±
q

⌘̄2 � 2⌘̄ 1+⇣

1�⇣

+ 1

◆

(23a)

c22 =

1� ⇣

2⇣(1� ⌘̄)

✓

1+⇣

1�⇣

� ⌘̄ ±
q

⌘̄2 � 2⌘̄ 1+⇣

1�⇣

+ 1

◆

. (23b)

We then obtain

|C| = ⇣ c11c22

=

(1� ⇣)2

4⇣(1� ⌘̄)2

✓

1� ⌘̄ 1+⇣

1�⇣

±
q

⌘̄2 � 2⌘̄ 1+⇣

1�⇣

+ 1

◆

⇥

⇥
✓

1+⇣

1�⇣

� ⌘̄ ±
q

⌘̄2 � 2⌘̄ 1+⇣

1�⇣

+ 1

◆

= � ⌘̄

(1� ⌘̄)2
+

1� ⇣

2⇣

 

1±

s

1� 4⇣

1� ⇣

⌘̄

(1� ⌘̄)2

!

.

(24)

C. Equilibrium case

We consider the case f1, f2 ! 0 at fixed ' = f2/f1.
We have to evaluate Eq. (2) in the main text given that

x = (x1, x2) is distributed with

P
t

(x) =

t

⇡
p

|L|
exp� t

4

x · L�1
x. (25)

We have

P
t

(�⌘'x, x) =
t

⇡
exp� t

4|L|
⇥

a(⌘)x2
+ 2b(⌘)x+ c

⇤

(26)

where we introduced

a(⌘) =
1

|L|
�

L22'
2⌘2 + 2L12'⌘ + L11

�

. (27)

All follows as for the derivation of the general e�ciency

p.d.f., but for b = c = h = 0. Then the p.d.f. reads

P
t

(⌘) =
2'

⇡a(⌘)
p

|L|
. (28)

D. Degenerate case (Tight coupling)

Let |L| = 0. Under our conditions L12  0, we have

L12 = �
p

L11L22. (29)

The eigenvectors of L are: (

p
L11,�

p
L22)

T

relative to

eigenvalue L11+L22 = trL, and (

p
L22,

p
L11)

T

relative

to eigenvalue 0. Let

U =

1p
L11 + L22

✓ p
L11

p
L22

�
p
L22

p
L11

◆

(30)
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be the orthogonal matrix that performs the change of

coordinate into the diagonal matrix � = diag {L11 +

L22, 0}. Then
p
L = U

p
�UT

=

Lp
L11 + L22

. (31)

Furthermore, we introduce the Moore-Penrose pseudoin-

verse of L which is obtained by inverting all nonvanishing

eigenvalues:

L+
= U

✓

(L11 + L22)
�1

0

0 0

◆

UT

=

L

(L11 + L22)
2

(32)

Letting �x = (x � ¯

x), it is known that a degenerate

normal distribution is supported along the direction

�x =

p
Ly =

r

L11y1 � L22y2
L11 + L22

✓ p
L11

�
p
L22

◆

, y 2 R2

(33)

and that it has probability density

P
t

(x) = �

 

�x2 +

r

L22

L11
�x1

!

r

t

4⇡L11
e�

t
4�x·L+�x.

(34)

Moreover, the average currents are not arbitrary but we

have

¯

x = Lf , which implies

P
t

(x) = �

 

x2 +

r

L22

L11
x1

!

r

t

4⇡L11
e�

t
4�x·L+�x.

(35)

Then, using a test function g(⌘), we have

h g i
t

=

Z

d⌘ g(⌘)

Z

dx1dx2 �

✓

⌘ +

x1f1
x2f2

◆

P
t

(x1, x2)

=

Z

dx1dx2 g

✓

� x1

x2'

◆

�

 

x2 +

r

L22

L11
x1

!

⇥

⇥
r

t

4⇡L11
e�

t
4�x·L+�x

= g ('⇤/') . (36)

By Eq. (16) in the main text at ⇣ ! 0, '⇤/' ! ⌘̄.

E. Fluctuation relation for self-dual p.d.f.

The two maxima of P
⌧

(⌘) are due to converse regimes.

It is then natural to define the stochastic variable ⌘⇤ =

��2/�1 and look at its p.d.f.

P ⇤
⌧

(⌘) = ⌘�2P
⌧

(1/⌘) (37)

Self-duality is the condition upon which P ⇤
⌧

(⌘) = P
⌧

(⌘),
implying the following fluctuation relation for the e�-

ciency

P s.d.
⌧

(⌘) =
1

⌘2
P s.d.
⌧

(1/⌘) (38)

Let us show that the choice ' = '⇤
yields this fluctu-

ation relation. First, it simple to show that ' = '⇤
=

p

L11/L22 implies the symmetry of the normal multivari-

ate for the currents

P s.d.
t

(x1, x2) = P s.d.
t

�

'x2,'
�1x1

�

. (39)

In fact, the Jacobian of the transformation (x1, x2) !
('x2,'

�1x1) is 1, and the identity between the quadratic

polynomials at exponent can be checked by direct sub-

stitution:

L22(x1�x̄1)
2�2L12(x1�x̄1)(x2�x̄2)+L11(x2�x̄2)

2
=

= L22('x2�x̄1)
2�2L12('x2�x̄1)(x1/'�x̄2)+L11(x1/'�x̄1)

2

(40)

In fact, equating order by order one can also show that

the choice ' = ±'⇤
are the only ones yielding Eq. (39).

Now let us consider the e�ciency p.d.f.:

P s.d.
t

(⌘) = '

Z

dx|x|P s.d.
t

(�⌘'x, x) (41)

= '

Z

dx|x|P s.d.
t

('x,�⌘x)

=

'

|⌘|⌘

Z

y(+1)

y(�1)
dy|y|P s.d.

t

(�'y/⌘, y)

=

'

⌘2

Z

dy|y|P s.d.
t

(�'y/⌘, y) =

1

⌘2
P s.d.

t

(1/⌘)

where on the third line we performed the change of coor-

dinates y(x) = �⌘x and we kept into account the order

of the extremes of integration by including a suitable ab-

solute value.

F. E�ciency at singular coupling

We say the covariance matrix tends to become singular

when its inverse tends to become degenerate. Let "(⇣) be
small of order ⇣. An almost degenerate inverse takes the

form

L�1
=

✓

m11 (1� ")
p
m11m22

(1� ")
p
m11m22 m22

◆

. (42)

Then we have

L =

1

2"

✓

L11 ("� 1)

p
L11L22

("� 1)

p
L11L22 L22

◆

(43)

where L11 = m�1
11 , L22 = m�1

22 . Eigenvalues:

�+ =

1

2✏
(L11 + L22)

✓

1� 2"
L1L2

(L11 + L22)
2

◆

(44a)

�� =

L1L2

L11 + L22
. (44b)

The first is divergent, the second finite. The eigenvector

f� relative to the finite eigenvalue is such that

f1
f2

=

r

L22

L11

✓

1 + "
L11 � L22

L11 + L22

◆

. (45)
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Therefore

� = '/'⇤
=

✓

1 + "
L22 � L11

L11 + L22

◆

. (46)

By Eq. (16) the macroscopic e�ciency along this eigen-

vectors reads

⌘̄ = �1 +O(⇣2). (47)

G. Critical time

The critical time is defined as the scaled time at which

an inflection point appears in the p.d.f. of the e�ciency.

Fig. 1 provides a color plot of the critical time.

FIG. 1: Color plot of ⌧c as a function of the tight coupling

parameter ⇣ and of the macroscopic e�ciency ⌘̄, for ✏ = +,

in log-log scale. Inset: maximal e�ciency as a function of the

coupling parameter, in natural scale.


