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Thermodynamic circuits: Association of devices in stationary nonequilibrium
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For a circuit made of thermodynamic devices in stationary nonequilibrium, we determine the mean currents
(of energy, matter, charge, etc.) exchanged with external reservoirs driving the circuit out of equilibrium. Starting
from the conductance matrix describing the nonlinear current-force characteristics of each device, we obtain the
conductance matrix of the composite device. This generalizes the rule of resistance addition (serial association)
or conductance addition (parallel association) in stationary out-of-equilibrium thermodynamics and for multiple
coupled potentials and currents of different natures. Our work emphasizes the pivotal role of conservation laws
when creating circuits of complex devices. Finally, two examples illustrate among others the determination of
the conservation laws for the serial and parallel associations of thermodynamic devices.
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I. INTRODUCTION

Dividing a problem into several pieces often simplifies its
resolution. Combining this approach with a graphical repre-
sentation produces circuits with components of lower com-
plexity. The circuit’s connections conveniently summarize
the conservation of physical quantities (energy, momentum,
charge, chemical species, etc.) circulating through the com-
ponents. Different kinds of circuits or graphs exist: bond
graphs in engineering science [1], Feynman diagrams in par-
ticle physics [2], electric circuits in electrokinetic [3,4], or
hypergraphs of chemical reactions in chemistry [5,6]. Electric
power and signal processing represent the paramount applica-
tion of circuit theory, although only one conserved quantity is
usually considered. In this case of a single (or multiple but de-
coupled) potential(s), the problem has long since been solved.
The case of coupled potentials and general boundary condi-
tions has drawn many works [7–11]. Neumann (fixed current)
or Dirichlet (fixed potential) conditions are often assumed but
less often mixed boundary conditions where both currents
and potentials achieve nonprescribed stationary values. For
those, real integrated balances at the boundaries are central
in determining the stationary state. A nonlinear theory deal-
ing with mixed boundary conditions and several conserved
quantities coupled through complex circuits is appealing. A
step in this direction was recently taken in Ref. [12] for chem-
ical reaction networks: Elementary reactions are gathered in
submodules with an effective description involving only the
species exchanged with the reservoirs or other modules. Then
the current-concentration characteristics for those species are
sufficient to determine the working point of the circuit associ-
ating all modules and the stationary currents exchanged with
its environment. However, eliminating all internal degrees of
freedom and going beyond multivariable functions connecting
currents and forces within global characteristics call for more
operational and systematic methods valid for any thermo-
dynamic system. This series of articles on thermodynamic
circuits describes some achievements in this direction.

The foundation of a circuit theory for thermodynamic
devices is now possible by relying on first, the convenient
use of conservation laws to reduce the number of physical
currents to a fundamental set [13,14]; second on the introduc-
tion of nonequilibrium conductance matrices to characterize
thermodynamic devices and their current-force relations ac-
curately. The conductance matrices are the multidimensional
generalization of the scalar current-force characteristic of
dipoles (e.g., current-voltage for an electric dipole). As such,
they extend to vectors the concept of resistance defined as
the scalar ratio between a force and a current. Conduc-
tance matrices generalize to nonequilibrium stationary states
Onsager’s response matrices of linear irreversible thermo-
dynamics [15–17]. It is possible to compute them when
microscopic modeling is available, as recalled in Sec. II of the
present work. It is also possible to obtain them by integrating
a local response, although some freedom remains beyond the
linear case, as we argue in the second article of this series.
In any case, choosing nonequilibrium conductance matrix is
a matter of device modeling to describe mean currents and
provide lower bounds for second cumulants [18]. Such a
modelization will become fully operational when a method
of direct measurement of nonequilibrium conductances is
available. In Secs. III and IV, we present our general theory
for the association of thermodynamic devices in stationary
nonequilibrium. We aim to provide the nonequilibrium con-
ductance matrix of a composite thermodynamic system using
its two subsystems’ and their conservation laws. The serial
association is studied in Sec. III. First, we state the problem
of mixed boundary conditions. We explain how current con-
servation at the interface allows, in principle, the integration
of the internal degrees of freedom, i.e., the local potentials at
the connection. Second, we generalize the law of resistance
addition to a law of resistance matrix addition. Conservation
laws within each subsystem are used to match the matrix
dimension of the conductances to the one of the composite
device. The parallel association is studied in Sec. IV. We
generalize directly the law of conductance addition. Since the
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connected devices remain in Dirichlet boundary conditions,
there is no need to determine internal degrees of freedom here.
First, we obtain the conductance matrix at the level of physical
currents (linearly dependent through conservation laws) and
forces. Second, we determine the conservation laws for the
parallel association of the two subdevices. From those, the
conductance matrix at the fundamental currents level can be
computed on any desired basis. We illustrate our results on
two examples chosen to apply to the most general cases of
serial and parallel associations.

The other articles of this series present various applications
of our main results. The paradigmatic case of thermoelectric
converters (TEC) is considered in “Thermodynamic Circuits
II.” There, we develop our nonlinear framework for thermo-
electricity using the concept of nonequilibrium conductance
and study the various optima of a TEC. In “Thermodynamic
Circuits III,” we consider the serial and parallel association
of two different TECs and observe the consequences of the
mixed boundary conditions on the thermoelectric conversion
in the serial case. In “Thermodynamic Circuits IV,” we apply
our framework to the association of chemical reaction net-
works described using deterministic dynamics. We introduce
the nonequilibrium conductance matrix of the subnetworks
and determine the one of the composite network.

II. NONEQUILIBRIUM CONDUCTANCE MATRIX
FOR MARKOV PROCESSES

This section gives a self-contained derivation of the
nonequilibrium conductance matrix for an autonomous device
modeled by a Markov jump process driven out of equilib-
rium by competing external reservoirs. This summarizes some
results of Ref. [18]. The concept of the nonequilibrium con-
ductance matrix is not restricted to but is most precisely
defined within this framework.

Let us consider a system with a finite set V of states
generically denoted by x, y, . . . in V . The cardinal of sets is
generically denoted with | . . . |; hence, |V | is the number of
states. The system’s dynamics is a Markov jump process on
V . The transition rate from state y to state x via a channel
ν is denoted k(xy,ν). Then k(xy,ν)dt is the probability of this
transition to occur during dt given that the system is initially
in state y. Graphically, the states are represented as vertices
and transitions as edges of a connected graph. Several chan-
nels mean that two vertices can be connected by more than
one edge. We denote by E the set of all edges and by e ∈ E
a specific edge e = (xy, ν). The stationary probability vector
pst is the right null eigenvector of the Markov matrix k with
off-diagonal components (k)xy = ∑

ν k(xy,ν).

A. Decomposition of stationary currents and forces

In this section, we write the entropy production rate (EPR)
σ as the sum, over all conjugated pairs, of the current-force
products. This can be done at several levels of description
from microscopic to macroscopic variables, providing on the
way the relations enabling to switch from one level of descrip-
tion to another [13,14,19].

1. Microscopic level

In the stationary state, the edge force fe along edge e =
(xy, ν) is the logarithm of the ratio of forward-backward tran-
sition probabilities

f(xy,ν) ≡ ln
k(xy,ν) pst

y

k(yx,ν) pst
x

. (1)

The edge probability current along edge e = (xy, ν) is the
difference of forward-backward transition probabilities

j(xy,ν) ≡ k(xy,ν) pst
y − k(yx,ν) pst

x . (2)

Given the conservation of probability currents at each vertex
of the transition graph, it is unsurprising that those currents
are linearly dependent (Kirchhoff currents law at each vertex).
Let us define the incidence matrix D, with |V | rows and |E |
columns, by its components

Dx,e =
⎧⎨
⎩

+1 if x is the target state of edge e,
−1 if x is the source state of edge e,
0 otherwise.

(3)

By construction, the conservation of probability currents
writes D j = 0 where j is the vector of components je. The
matrix C whose columns are a basis of the kernel of D is
called the matrix of fundamental cycles [19]. Its |C | columns
provide a basis for the vector space of cycles, where C is a
set of integers labeling fundamental cycles. Among all edge
probability currents, one can select linearly independent cur-
rents J, called cycle currents, such that

j = CJ. (4)

This uses the Kirchoff currents law to deal with a reduced set
of currents only. We remark that D j = DCJ = 0 is satisfied
since DC = 0. Furthermore, we define the cycle force by the
sum of the forces on the edges belonging to the considered
cycle. Then, the vector of cycle forces reads

FT = f TC, (5)

where superscript T indicates transposition and f is the vector
of components fe. This choice of cycle forces guarantees the
unicity of the entropy production rate expressed using edge or
cycle variables

σ = f T j = f TCJ = FT J. (6)

Let us emphasize that the choice of fundamental cycle is not
unique, leading to many ways of expressing the EPR. In any
case, the use of probability currents conservation is central for
focusing on independent currents and is associated with the
Euler formula of graph theory [19]

|E | = |V | − 1 + |C |. (7)

Indeed, Kirchhoff currents law at |V | − 1 vertices is enough
to guarantee probability currents conservation at all vertices
of the graph. Then the number of independent currents among
the |E | edge currents is |C | as expected.

2. Macroscopic level

The above reasoning applies equally at the macroscopic
level. Indeed, the physical currents exchanged with each reser-
voir are linearly dependent due to various conservation laws,
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just as probability currents are conserved at each vertex via
Kirchhoff currents law. Let us first define the physical currents
as

ip =
∑
c∈C

φpcJc ⇒ i = φJ. (8)

where p ∈ P the set of integers labeling physical currents.
We denote by Jc the cth component of the cycle current vector
J and φpc the amount of pth physical quantity received by the
system when performing cycle c. The local potentials vector a
of component ap associated with the pth reservoir are related
to cycle forces by

FT = aT φ, (9)

so that the EPR remains the same whether expressed using
edges, cycles, or physical currents and their conjugated forces:

σ = FT J = aT φJ = aT i. (10)

Due to the conservation of physical quantities (such as en-
ergy and matter), physical currents ip are linearly dependent.
We denote the set of conservation laws L = {�1, �2, . . . }.
Each element in this set is a row vector �k with components
equal to 0 or 1. The conservation law vectors �k are linearly
independent and satisfy by definition ∀k, �ki = 0. We denote
� the matrix whose kth line is �k . Now we can choose a
maximal subset I ⊂ P of physical currents that are linearly
independent. These currents appear in the so-called vector
of fundamental currents denoted I from which any physical
currents can be recovered from

i = SI, (11)

where the selection matrix S has |I | independent columns
belonging to the kernel of �, i.e., �S = 0. From the
columns independence, a unique Moore-Penrose inverse
S+ ≡ [ST S]−1ST exists and leads to

S+i = I. (12)

Hence, choosing a selection matrix S is equivalent to choosing
fundamental currents. The fundamental forces conjugated to
fundamental currents are defined by

AT = aT S, (13)

where again the EPR is the same at the physical and funda-
mental levels

σ = aT i = aT SI = AT I. (14)

The choice of fundamental currents and forces is not unique in
general, leading to many ways of expressing the EPR. In any
case, conservation laws are central to focus on a set of fun-
damental currents. The number of physical currents verifies

|P| = |L | + |I |, (15)

which is the macroscopic equivalent of the Euler formula at
the microscopic level. In Table I, we summarize the various
notations for the currents and forces used in this section.

TABLE I. Notation for the currents and forces at different levels
of description, from the microscopic level of edges and cycles to
the macroscopic level of physical currents exchanged with the en-
vironment and the reduced set of fundamental currents. Lowercase
letters are for the full set of variables and uppercase letters are for the
reduced set of variables. We follow here the usual convention that j
are local currents and i are integrated currents. One switches from the
full set to the reduced set of variables using the |V | − 1 Kirchoff’s
current law (Micro) or the |L | conservation laws (Macro).

Full set Reduced set

Micro Edge current j Cycle current J
Edge force f Cycle force F
Vector dimension |E | Vector dimension |C |

Macro Physical current i Fundamental current I
Local potential a Fundamental force A
Vector dimension |P| Vector dimension |I |

B. Nonlinear conductance matrices

The relations between currents (or between forces) ob-
tained in the previous section lead to a nonlinear conductance
(or resistance) matrix at any level of description. We start at
the microscopic level by defining a trivial relation between
edge forces and currents through an edge resistance matrix.
This matrix is chosen diagonal, hence all current correlations
are neglected at this level. Then, we propagate this resistance
matrix to higher levels of description up to the macroscopic
level of fundamental currents and forces.

First, we define the edge resistance along e by

re ≡ fe

je
> 0, (16)

so that the edge force is given by f = r j. The cycle resistance
matrix defined by

R = CT rC (17)

relates cycle currents and forces since

F = CT f = CT r j = (CT rC)J = RJ. (18)

From Eqs. (16) and (17), the matrix R is a square symmetric
matrix that is positive definite in agreement with the positivity
of the EPR. Hence, there is an inverse matrix called cycle
conductance matrix R−1 such that

J = R−1F. (19)

Proceeding similarly at the level of physical currents and
forces leads to the physical conductance matrix

g = φR−1φT , (20)

since

i = φJ = φR−1F = (φR−1φT )a = ga, (21)

and to the fundamental conductance matrix,

G = S+gS+T , (22)

since

I = S+i = S+ga = (S+gS+T )A = GA. (23)
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FIG. 1. Top: Separated devices 1 and 2 with their various pins in
the set P (m)

l and P (m)
r . Bottom: Merged device 3 made of 1 and 2,

with equal local potentials a on the wires connecting 1 and 2. Devices
1 and 2 are in mixed boundary conditions due to the pins in light grey
(internal pins of device 3). The external pins in black are in Dirichlet
conditions since the local potential on these pins is set by external
reservoirs.

We end this section stressing that the nonequilibrium con-
ductance matrix is a function of the macroscopic forces G =
G(A), explaining the nonlinearity of the current-force relation.
Although introduced above in the framework of Markov jump
processes, nonequilibrium conductance matrices exist beyond
this framework: They can be employed to model a system
directly without relying on microscopic dynamics.

III. SERIAL ASSOCIATION
OF THERMODYNAMIC DEVICES

We now consider generic thermodynamic devices of given
conductance matrix and conservation laws. In order to dif-
ferentiate the devices in our thermodynamic circuit, we label
them with an integer: A superscript (m) is added to variables
(local potentials, currents, conductance matrices, etc.) to spec-
ify to which device they correspond. Boxes with several pins
represent devices as in Fig. 1. A pin is a part of a device
through which a current of a physical quantity can flow (e.g.,
thermal or electric contact). The pins of device m are labeled
with integers belonging to the sets P (m). The pins on the left
of device m belong to P (m)

l , those on the right to P (m)
r , such

that P (m) = P (m)
l ∪ P (m)

r and P (m)
l ∩ P (m)

r = ∅. Without
loss of generality, we connect the right pins of device 1 to the
left pins of device 2 to create device 3 as in Fig. 1. We use the
same absolute labeling for the connected pins P (1)

r = P (2)
l

that we call internal pins from the viewpoint of device 3. We
proceed now with determining the conductance matrix at the
fundamental level for the aforementioned serial association of
devices. We start with the conductance matrices and conserva-
tion laws of each device. The serial association creates mixed
boundary conditions on the connected side. In the first part be-
low, we explain the method to determine the working point of
the composite device. The currents conservation at the inter-
face between the devices provides a set of equations leading to
the stationary values of the local potentials on the connections.
Then, those internal degrees of freedom are functions of the
external local potentials imposed by reservoirs. In the second

part, we provide the rule of resistance addition of the nonequi-
librium conductance matrices for the serial association of two
devices. Connecting more devices follows from a sequence of
pairwise connections.

A. Determination of internal degrees of freedom

The temperature, pressure, chemical potential, or any in-
tensive variable at pin p ∈ P (m) is the pth components a(m)

p

of the local potential vector a(m). Another device or a reser-
voir of the conjugated extensive quantity (e.g., heat, volume,
chemical species, etc.) sets the local potential at each pin. As
in Sec. II, the physical currents vector i(m) has a positive pth
component i(m)

p when a positive amount of the corresponding
extensive quantity is received by device m through pin p. We
decompose the vectors of physical currents and local poten-
tials into two subvectors as

i(m) =
(

i(m)
l

i(m)
r

)
, and a(m) =

(
a(m)

l
a(m)

r

)
. (24)

The subvector with index χ = l, r includes only the compo-
nents on the χ side. By definition, we have

i(3) =
(

i(1)
l

i(2)
r

)
, and a(3) =

(
a(1)

l
a(2)

r

)
. (25)

We exclude transient or periodic behavior. Our thermody-
namic circuit has reached a nonequilibrium stationary state:
For given a(m), device m has constant mean currents i(m) that
are nonlinear functions of a(m). The stationary EPR for device
m reads σ (m) = a(m)T i(m). Assuming no dissipation at the in-
terface, the EPR of device 3 is σ (3) = σ (1) + σ (2), leading to

σ (3) = a(1)T
l i(1)

l + a(1)T
r i(1)

r + a(2)T
l i(2)

l + a(2)T
r i(2)

r . (26)

This is compatible with

σ (3) = a(3)T i(3) = a(1)T
l i(1)

l + a(2)T
r i(2)

r , (27)

only if the local potentials on the connection pins are identi-
cal a(1)

r = a(2)
l ≡ a and given the current conservation at the

interface

i(1)
r + i(2)

l = 0. (28)

Equation (28) is a nonlinear system of |P (1)
r | = |P (2)

l | equa-
tions that must be solved to determine the internal local
potentials. This provides a as a function of the external poten-
tials a(1)

l and a(2)
r eliminating all internal degrees of freedom.

B. Equivalent conductance matrix at the fundamental level

Given the local potential a on the internal pins, devices 1
and 2 are driven out of equilibrium by local potentials

a(1) =
(

a(1)
l
a

)
, and a(2) =

(
a

a(2)
r

)
. (29)

Those are associated to fundamental forces following from
Eq. (13),

A(1) = S(1)T a(1), and A(2) = S(2)T a(2). (30)

for some choice of selection matrix S(m) associated to
conservation laws �(m) for m = 1, 2. Those forces lead to
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fundamental currents

I(1) = G(1)A(1), and I(2) = G(2)A(2) (31)

and to numerical values of the nonequilibrium conductance
matrices G(m) for m = 1, 2. We can now determine the rule of
resistance addition for the inverses of those matrices. We do
so by expressing the EPR of device 3 as

σ (3) = A(3)T I(3) = A(1)T I(1) + A(2)T I(2). (32)

For nonsingular conductance matrices, this yields

I(3)T G(3)−1
I(3) =

∑
m=1,2

I(m)T G(m)−1
I(m). (33)

Whenever the fundamental currents of devices 1 and 2 follow
from those of device 3, i.e., I(m) = �(m,3)I(3) for m = 1, 2, the
nonequilibrium conductance matrix for device 3 reads

G(3)−1 =
2∑

m=1

�(m,3)T G(m)−1
�(m,3). (34)

When the conductance matrices are nonsingular, the above
equation generalizes the rule of resistance addition for the
serial connection of thermodynamic devices. An explicit for-
mula for matrix �(m,3) is provided in the next section when
the devices’ connection allows to integrate out the internal
degrees of freedom. For more general connections, the system
of Eq. (28) leading to the local potential on the connection
pins is underdetermined: Some local potentials are floating.

C. Relation between fundamental currents

As shown on Fig. 2, each conservation law �
(m)
k of devices

m = 1, 2 can be represented as a tree graph, i.e., a graph
connecting pins without making loops. More precisely, we
represent each conservation law by a black square connected
to several pins by lines associated with currents. With our
convention of positive incoming currents, the sum of currents
reaching each black square is zero. We emphasize that lines
reaching a square represent current conservations only: Cou-
pling between currents of different nature and being involved
in different conservation laws are possible. As on Fig. 2, we
assume that after connecting devices 1 and 2, the conservation
laws of device 3 are also tree graphs. If this was not the case,
then some potential would remain undetermined. For instance,
let us consider the unique conservation law of device 1 on
Fig. 2. If we connect the pins 8 and 9 of device 2 to pins 3
and 4 of device 1, then two external reservoirs at pin 1 and
2 are insufficient to set the three fundamental forces driving
device 1 out of equilibrium. This trivial example illustrates the
problem arising when making loops on the connection of de-
vices. In the presence of loops, the underdetermination of the
system can be overcome by adding a reservoir as an external
reference. This problem is similar to that of a floating mass
in electrokinetics. Excluding connections creating loops, let
us now determine the matrix �(m,3) relating the fundamental
currents of device m to those of device 3. We proceed in two
steps. First, we look for π(m,3) satisfying i(m) = π(m,3)i(3) since
we have

�(m,3) = S(m)+π(m,3)S(3), (35)

when using Eqs. (11) and (12). Second, we determine the
conservation laws of device 3 leading to the selection matrix
S(3) required to get �(m,3) from π(m,3).

First step: Let us relate physical currents of device m and
3. Since the physical currents vector decomposes into left
and right subvectors, the matrix of conservation laws has two
submatrices

�(m)i(m) = [
�

(m)
l |�(m)

r

](i(m)
l

i(m)
r

)
= 0. (36)

Using Eq. (28) for the current conservation at the interface
yields

�
(1)
l i(1)

l + �(1)
r i(1)

r = 0, (37)

−�
(2)
l i(1)

r + �(2)
r i(2)

r = 0. (38)

Introducing the matrices

Li ≡
[−�(1)

r

�
(2)
l

]
, Le ≡

[
�

(1)
l 0
0 �(2)

r

]
, (39)

Eqs. (37) and (38) write

Lii(1)
r = Lei(3). (40)

Interestingly, the matrix Li is full column rank. In graph-
theoretical language, Li is the incidence matrix of a tree graph
whose vertices are the conservation laws and whose edges
are the connection pins. We recall that an incidence matrix
has lines associated with the graph’s vertices and columns
associated with edges connecting vertices. Each column con-
tains zeros, but for the source vertex of the edge, that is
−1, and for the target vertex, that is +1. The columns of an
incidence matrix are linearly independent when the graph it
represents has no cycle. In our case, the matrix Li summarizes
the connection between conservation laws of device 1 and
2 via the internal pins in P (1)

r = P (2)
l . Let us consider the

uth and vth conservation laws of respectively devices 1 and
2 connected via the internal pin p. Then the pth column of
Li is made of zeros except at the lines of the connected con-
servation laws, i.e., when (−�(1)

r )up = −1 and (�(2)
l )vp = +1,

hence corresponding to the source and target of the connection
via pin p. This shows that Li is an incidence matrix that
has independent columns from our assumption of pairwise
connection of conservation laws producing tree graphs only
(no loops). Therefore, we can define

π ≡ L+
i Le (41)

and write

i(1)
r = πi(3) = −i(2)

l . (42)

We conclude this first step by introducing the matrices pro-
viding the physical current vector of device m = 1, 2 from the
one of device 3:

π(1,3) ≡
[
1 0

π

]
and π(2,3) ≡

[ −π

0 1

]
, (43)

since i(1)
l = [1 0]i(3) and i(2)

r = [0 1]i(3) from Eq. (25).
Second step: Let us determine the matrix of conservation

laws of device 3 from which the selection matrix S(3) arises
since its columns define a basis of ker (�(3) ). The number of
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FIG. 2. Example of the serial connection of two devices. For
device m = 1 the pins are divided into P (1)

l = {1, 2} and P (1)
r =

{3, 4}. For device m = 2 the pins are divided into P (2)
l = {3, 4} and

P (2)
r = {5, 6, 7, 8, 9}.

conservation laws |L (3)| is constrained by our assumption on
the devices’ connection. Indeed, there is a total of |L (1)| +
|L (2)| conservation laws for the disconnected devices. Each
internal pin connects two conservation laws reducing this total
by one and leading to

|L (3)| = |L (1)| + |L (2)| − |P (1)
r |. (44)

On the other side, we denote by v the matrix satisfying

vLi = 0. (45)

The line vectors of v provide a basis of L′
is cokernel. The rank-

nullity theorem applied to LT
i states that

dim
(
ker LT

i

) + rk (LT
i ) = |L (1)| + |L (2)|. (46)

Since Li has independent columns, we have

rk (LT
i ) = rk (Li ) = |P (1)

r |. (47)

Therefore, |L (3)| of Eq. (44) coincides with the number of
lines of matrix v. We conclude that all the conservation laws
of device 3 follow from left multiplying Eq. (40) by matrix
v: The matrix of conservation laws reads �(3) = vLe and has
the correct number of lines. A basis of its kernel leads to S(3),
with a choice of fundamental forces and currents that is free
in our theory. This ends our demonstration that it is possible
to write the physical and fundamental currents of device m =
1, 2 using those of device 3 according to Eq. (35) providing
�(m,3) via Eq. (43) and the chosen matrix S(3).

D. Illustration of the serial association

We now illustrate the construction of an equivalent
nonequilibrium conductance for the devices of Fig. 2. The
first and second devices have four and seven pins, one and
three conservation laws leading to three and four fundamen-
tal currents, respectively. Their connection via i(1)

r = (i3, i4)T

produces a third device with seven pins, two conservation
laws, and five fundamental currents. Hence, none of the con-
ductance matrices are of the same dimension: This illustrates
the most general serial association of devices. We assume
that the local potentials at the interface have already been
determined and that the conductance matrix G(m) for m = 1, 2
are known for fundamental currents I(1) = (i2, i3, i4)T and
I(2) = (i5, i6, i7, i9)T associated to

S(1) =

⎡
⎢⎢⎣

−1 −1 −1
1 0 0
0 1 0
0 0 1

⎤
⎥⎥⎦,

S(2) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 −1 0 0
0 0 −1 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1
0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (48)

Equation (11) leads to physical currents i(1) = (i1, . . . , i4)T

and i(2) = (i3, . . . , i9)T as expected given the matrices

�(1) = [
1 1 1 1

]
,

�(2) =
⎡
⎣ 1 0 1 1 0 0 0

0 1 0 0 1 0 0
0 0 0 0 0 1 1

⎤
⎦, (49)

for the conservation laws �(m)i(m) = 0 depicted on Fig. 2.
Vertical bars emphasize the bloc decomposition of Eq. (36).
Applying Eq. (40) to our example, we find

Le =

1 2 5 6 7 8 9⎡
⎢⎢⎣

1 1 0 0 0 0 0
0 0 1 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 1

⎤
⎥⎥⎦,

Li =

3 4⎡
⎢⎢⎣

−1 −1
1 0
0 1
0 0

⎤
⎥⎥⎦, (50)

where we indicate the pin index at the top of each column.
As expected, the matrix Li is full column rank with pseudo
inverse

L+
i = 1

3

(−1 2 −1 0
−1 −1 2 0

)
. (51)

Matrices π(m,3) for m = 1, 2 of Eq. (43) read

π(1,3) =

⎡
⎢⎢⎢⎣

1 0 0 0 0 0 0
0 1 0 0 0 0 0

− 1
3 − 1

3
2
3

2
3 − 1

3 0 0

− 1
3 − 1

3 − 1
3 − 1

3
2
3 0 0

⎤
⎥⎥⎥⎦, (52)

π(2,3) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
3

1
3 − 2

3 − 2
3

1
3 0 0

1
3

1
3

1
3

1
3 − 2

3 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (53)

Next, the choice of selection matrix S(3) determines the fun-
damental basis in which G(3) is given. The column vectors of
S(3) realize a basis of ker(�(3) ). Let us first determine �(3) by
finding the left null eigenvectors of Li that we gather in the
lines of matrix

v =
[

1 1 1 0
0 0 0 1

]
. (54)
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Then, the matrix of conservation laws arises from

�(3) = vLe =
[

1 1 1 1 1 0 0
0 0 0 0 0 1 1

]
. (55)

The vector of physical currents i(3) = (i1, i2, i5, i6, i7, i8, i9)T

is obtained from the product of the selection matrix

S(3) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 −1 −1 −1 0
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 −1
0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(56)

with the vector of fundamental currents I(3) =
(i2, i5, i6, i7, i9)T . Finally, the matrices �(m,3) for m = 1, 2
and then G(3) follow from Eqs. (34) and (35) with the left
pseudoinverses of S(m) in Eq. (48), the π(m,3) matrices of
Eqs. (52) and (53) and the selection matrix of Eq. (56).

IV. PARALLEL ASSOCIATION
OF THERMODYNAMIC DEVICES

Given their conductances and conservation laws, we con-
tinue with the determination of the conductance matrix at
the physical and fundamental levels for a composite device
made of two subdevices in parallel association. Two devices
are connected in parallel if at least a first reservoir imposes
a local potential on a first set of pins [including pin(s) of
device 1 and 2] and a second reservoir does the same for a
second set of pins [including other pin(s) of device 1 and 2].
Then, a physical current flows from one reservoir to another
across the two devices in parallel. If this is not the case, then
the two sets of pins are not connected in parallel, although
this situation may also be of some interest. The framework
of this section can deal with all these situations. In elec-
trokinetics, the parallel connection of two dipoles produces
another dipole, not a tripole. Indeed, a scalar resistance (or
conductance) describes only dipoles. Our framework is more
general since conductance matrices describe multipoles.

As for the serial connection, the set of pins of device m
is P (m). For m = 1, 2, these sets include integers generically
denoted p. Contrarily to serial connection, the set P (1) and
P (2) are disjoint: Their intersection does not give the con-
nected pins anymore. This allows to determine m from the
value of p ∈ P (1) ∪ P (2). Still contrarily to serial connec-
tion, the elements of P (3) are sets of integers generically
denoted P. We call P the lumped pins: They correspond to
pins connected to the same reservoir to impose an identi-
cal local potential, i.e., ∀ p ∈ P, a(m)

p = a(3)
P . From now on,

we drop the device’s superscript on components of vectors:
The pin index (p or P) with its letter case is sufficient to
determine the considered device m ∈ {1, 2, 3}. We remark
that ∀ p ∈ P (1) ∪ P (2), ∃!P ∈ P (3)|p ∈ P. In other words,
the intersection of any two lumped pins is empty. The union
of lumped pins gives the complete set of pins⋃

P∈P (3)

P = P (1) ∪ P (2). (57)

Since device 3 remains in Dirichlet boundary conditions, there
is no need to determine the working point of the devices, as
we did for serial connection. We can compute directly the
nonequilibrium conductance matrix of device 3 from those
of devices 1 and 2 in our parallel setting. We do so at the
level of physical currents and local potentials. We need to
determine the selection matrix for device 3 to provide the
nonequilibrium conductance matrix at the fundamental level.
Finally, we illustrate the results of this section by connecting
in parallel devices 1 and 2 of the previous section.

A. Equivalent conductance matrix at the physical level

This section provides the equivalent conductance matrix
for the parallel connection of two devices. As for a serial
connection, the EPR of device 3 reads:

σ (3) =
2∑

m=1

a(m)T i(m) =
2∑

m=1

a(m)T g(m)a(m). (58)

By definition of a parallel connection, the local potentials
within lumped pins take the same value. This means that the
local potentials at all pins of devices 1 and 2 are functions of
those on the lumped pin of device 3, according to

a(m) = π
(m,3)
‖ a(3), (59)

where π
(m,3)
‖ is a rectangular matrix of dimension |P (m)| ×

|P (3)| defining how pins are lumped together in the parallel
connection(

π
(m,3)
‖

)
p,P

=
{

1 if p ∈ P for P ∈ P (3),

0 otherwise.
(60)

Using Eq. (59) in Eq. (58) yields

σ (3) = a(3)T

(
2∑

m=1

π
(m,3)T
‖ g(m)π

(m,3)
‖

)
a(3). (61)

Given that the EPR of device 3 must read

σ (3) = a(3)T g(3)a(3), (62)

we identify the conductance matrix at the level of physical
currents and local potentials

g(3) =
2∑

m=1

π
(m,3)T
‖ g(m)π

(m,3)
‖ . (63)

The conductance matrix at the level of fundamental currents
and forces arises from choosing a selection matrix associated
with the conservation laws of device 3 that we determine in
the next section.

B. Conservation laws

Let us determine the conservation laws for device 3 made
of devices 1 and 2 in parallel. We know the conservation laws
l (m) for m = 1, 2 for the two subdevices. We call them internal
conservation laws from the point of view of device 3. In
addition, the parallel connection imposes “new” conservation
laws between the pins of the subdevices and the lumped pins
of device 3. We call these new conservation laws external, and
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we write them as follows:

i(3) = [
π

(1,3)T
‖ π

(2,3)T
‖

](i(1)

i(2)

)
. (64)

We gather all the conservation laws in the following relation:

L
(

i(1)

i(2)

)
=

(
0

i(3)

)
, (65)

where

L =

⎡
⎢⎣ l (1) 0

0 l (2)

π
(1,3)T
‖ π

(2,3)T
‖

⎤
⎥⎦. (66)

For later convenience, we number the pins with consecutive
positive integers when their associated currents belong to the
same conservation laws. We show below that the cokernel of
L has dimension |L (3)|. This provides a way to determine the
conservation laws of device 3 by a simple eigenvalue problem.
More precisely, each null left eigenvector of L has its last
|P (3)| components giving a conservation law vector �

(3)
k . As

a first step of our proof, we study the structure of matrix L.
Then, in a second step, we use this structure to determine the
conservation laws l (3) of device 3. The next section provides
an example that usefully illustrates this proof. It can thus be
read in parallel.

First, the matrix L has |L (1)| + |L (2)| + |P (3)| rows and
|P (1)| + |P (2)| columns. It describes the parallel association
of devices 1 and 2. Each column of matrix L, labeled by p,
includes exactly two components equal to +1 while all other
components are null: The first |L (1)| + |L (2)| lines of column
p includes just one +1 component because the pin current ip

cannot appear in more than one conservation law. Similarly,
the last |P (3)| components of column p include another +1,
given that the lumped pins P are disjoint sets whose union
includes all pins of device 1 and 2. With such columns, the
matrix L is an incidence matrix of an undirected graph. The
graph vertices are the conservation laws (both internal and
external), and the edges are the pins of devices 1 and 2 (before
associating the device in parallel). The graph associated with
matrix L indicates how internal and external conservation
laws are connected through the lumping of the pins. Finally,
for an open system, the internal conservation laws for energy
and matter cannot be connected by external conservation laws.
Hence, the graph associated with the incidence matrix L has
two disconnected components at least. Therefore, given the
structure described above, it can be reduced to a block di-
agonal form by lines permutations only, with one block for
each disconnected component in the graph associated with
L. We remark that the lines permutation uses the freedom in
labeling the internal and external conservation laws. We also
remark that we do not need column permutations thanks to our
numbering convention for pins: Physical currents appearing in
the same conservation law are associated with pins numbered
with consecutive integers. We denote by L̃ the obtained block
diagonal matrix such that

L̃ =
⊕

C

L̃C, (67)

where each block matrix L̃C is the incidence matrix for the
connected component C of the graph of conservation laws.
Since the incidence matrix of a connected graph admits a
single left null vector [20], the dimension of coker(L) =
coker(L̃) is equal to the number of connected components in
the graph. By construction, this number is equal to the number
of conservation laws |L (3)| for device 3.

In a second step, let us obtain the conservation laws for
device 3 such that l (3)i(3) = 0. The lines reordering leading
to the block diagonal incidence matrix of Eq. (67) implies
reordering the currents components on the right-hand side of
Eq. (65). Since the order of lines in each block diagonal part
L̃C is arbitrary, we take by convention that the first |L (1)

C | lines
are for the internal conservation law of device 1 appearing in
C. The following |L (2)

C | lines are those of device 2 appearing
in C. The last |P (3)

C | lines are the external conservation laws,
with one line per lumped pin appearing in the connected graph
described by L̃C. With this convention, each matrix L̃C is
very close in definition to matrix L as defined in Eq. (66),
except that it describes just the connected component C. Then,
Eq. (65) reads blockwise

L̃C ĩC =
(

0
ĩ
(3)
C

)
, (68)

where ĩC is the vector of physical currents going through the
subdevices pins belonging to the connected component C,
similarly ĩ

(3)
C is the vector of physical currents going through

the lumped pins of the same connected component. The later
column vector has dimension |P (3)

C |, while 0 is the null
column vector of dimension |L (1)

C | + |L (2)
C |. Since we used

line permutations only, we remark that the columns’ order
in matrix L̃ is identical to that of L. Then, the order of the
physical currents is preserved, and we have the identity

(
i(1)

i(2)

)
=

⎛
⎜⎝ĩC1

ĩC2
...

⎞
⎟⎠. (69)

The tilde vectors ĩCi extract different subsets of physical cur-
rents still appearing in the same order. Given that the matrix
LC are incidence matrices of a connected undirected graph, the
row vector uC in coker(L̃C) writes

uC = (−1 . . . − 1 1 . . . 1
)

(70)

with the first |L (1)
C | + |L (2)

C | components equal to −1 and the
last |P (3)

C | components equal to 1. Using uCL̃C = 0 we find

uCL̃C ĩC = 0 = (−1 . . . − 1 1 . . . 1
)( 0

ĩ
(3)
C

)
. (71)

We have found one conservation law per connected compo-
nent C: the sum of all currents entering device 3 by the lumped
pins of the connected component C is null. In block diagonal
form, this gives the matrix of conservation law,

�(3) =
⊕

C

�(3)
C , (72)

where �(3)
C are row vectors with |P (3)

C | components equal to 1.
In the next section, we illustrate this block diagonal decompo-
sition of the matrix of conservation laws for device 3. Beyond
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FIG. 3. Left: Parallel connection of devices 1 and 2. The set of
pins {1, 2, 5} are connected to the same reservoir (of the appropriate
physical quantity) that imposes the identical local potential a(3)

{1,2,5}
on these pins. Similarly, the local potentials for the sets {4, 6} and
{9, 10, 11} are a(3)

{4,6} and a(3)
{9,10,11}, respectively. Right: Device 3 re-

sulting from the parallel connection of devices 1 and 2 with its two
conservation laws.

this decomposition, we conclude that looking directly at the
last |P (3)| of the vectors in the cokernel of matrix L directly
produces the conservation laws of device 3. This systematic
approach is thus useful for large circuits with many currents
and conservation laws.

C. Illustration of the parallel association

In this section, devices 1 and 2 already introduced for
the serial connection of Fig. 2 are now connected in parallel
according to Fig. 3. The pin ensembles are

P (1) = {1, 2, 3, 4}, (73)

P (2) = {5, 6, 7, 8, 9, 10, 11}, (74)

P (3) = {{1, 2, 5}, {3}, {4, 6}, {7}, {8}, {9, 10, 11}}. (75)

The local potentials on the pins of machine m = 1, 2 are
related to the local potential on the pins of machine 3 by
Eq. (59) with

π
(1,3)
‖ =

⎡
⎢⎢⎣

1 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

⎤
⎥⎥⎦

1
2
3
4

, (76)

π
(2,3)
‖ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

5
6
7
8
9

10
11

, (77)

where the rows of the matrices are numbered on the right with
the pin indices of device m = 1, 2, and the columns with the
pin lumped indices of device 3 ordered as in Eq. (75). The
above matrices lead to the conductance matrix of device 3
using Eq. (63).

The conservation laws of devices 1 and 2 are listed in the
following matrices:

�(1) = [
1 1 1 1

]
,

�(2) =
⎡
⎣1 1 1 0 0 0 0

0 0 0 1 1 0 0
0 0 0 0 0 1 1

⎤
⎦. (78)

The matrix L thus reads in this case

L =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 0 0 0 0 0 0 0
0 0 0 0 1 1 1 0 0 0 0
0 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 0 1 1
1 1 0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (79)

and the associated current vectors are

(
i(1)

i(2)

)
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

i1
i2
i3
i4
i5
i6
i7
i8
i9
i10

i11

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(
0

i(3)

)
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0

i{1,2,5}
i{3}

i{4,6}
i{7}
i{8}

i{9,10,11}

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (80)

After moving the third and fourth lines of L just before the
last two lines, we reach the block diagonal form

L̃ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 0 0 0 0 0 0 0
0 0 0 0 1 1 1 0 0 0 0
1 1 0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(81)
In our case, the graph connecting conservation laws to give
device 3 has two disconnected components since L̃ has two
blocks L̃C1 and L̃C2 on its diagonal. These blocks read

L̃C1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 0 0 0
0 0 0 0 1 1 1
1 1 0 0 1 0 0
0 0 1 0 0 0 0
0 0 0 1 0 1 0
0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

,

L̃C2 =

⎡
⎢⎢⎣

1 1 0 0
0 0 1 1
1 0 0 0
0 1 1 1

⎤
⎥⎥⎦, (82)
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and their associated current vectors are respectively

ĩC1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

i1
i2
i3
i4
i5
i6
i7

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(
0

ĩ
(3)
C1

)
=

⎛
⎜⎜⎜⎜⎜⎜⎝

0
0

i{1,2,5}
i{3}

i{4,6}
i{7}

⎞
⎟⎟⎟⎟⎟⎟⎠

(83)

and

ĩC2 =

⎛
⎜⎜⎝

i8
i9
i10

i11

⎞
⎟⎟⎠,

(
0

ĩ
(3)
C2

)
=

⎛
⎜⎜⎝

0
0

i{8}
i{9,10,11}

⎞
⎟⎟⎠. (84)

One can quickly check that the following vectors are in the
left null spaces of respectively L̃C1 and L̃C2:

uC1 = (−1 −1 1 1 1 1
)
, (85)

uC2 = (−1 −1 1 1
)
. (86)

These two left null vectors finally give the two conservation
laws associated with each connected component as

�
(3)
C1 = (

1 1 1 1
)
, (87)

�
(3)
C2 = (

1 1
)
. (88)

Given the direct sum structure, this can finally be summarized
as

�(3) =
[

1 1 1 1 0 0
0 0 0 0 1 1

]
. (89)

We emphasize that the block diagonal decomposition of ma-
trix L̃ is helpful to understand how this matrix shapes the

conservation law of device 3. However, for practical purposes
one can rely on looking for the left null eigenvector of matrix
L and extract the last |P (3)| components to obtain conserva-
tion laws.

V. CONCLUSION

The connection of thermodynamic devices, converting
physical quantities of any kind, opens many possibilities
that must be further explored. Our theory of thermodynamic
circuits indicates promising directions for a systematic com-
putation of conservation laws and current-force characteristics
beyond the linear case. The nonequilibrium conductance ma-
trix could simplify the numerical resolution of the boundary
problem for the serial association of devices by using a recur-
sive algorithm leading to the local potential on the connection.
Experimental ways of measuring a nonequilibrium conduc-
tance matrix could be investigated as well. Theoretical works
are needed to extend our work to periodic steady states beyond
the stationary case or to deal with the problem of multista-
bility frequently arising in nonlinear systems. For the former
extension, the notion of nonequilibrium conductance must be
generalized from stationary states to periodic steady states
[21–24]. For the latter, because multistability usually emerges
in a large volume limit, one should replace graphs with hyper-
graphs such as those appearing in chemical reaction networks.
Current fluctuations within composite devices are also of great
interest as they are tightly related to conductance matrices that
bound quadratic fluctuations. This indicates that an extension
of the additivity principle of Bodineau and Derrida [25] is
within reach to determine bounds on the currents statistics
of a circuit from those of its subdevices. Finally, inspired
by electronics, impedance adaptation could be generalized
to allow maximal transmission across the circuits of coupled
currents [26].
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