
ar
X

iv
:2

41
2.

15
03

6v
2 

 [
co

nd
-m

at
.s

ta
t-

m
ec

h]
  2

7 
Ju

n 
20

25

Thermodynamic Circuits: Association of thermoelectric converters in stationary
non-equilibrium

Paul Raux,1, 2 Christophe Goupil,2 and Gatien Verley1
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Following up on the recently published circuit theory for thermodynamic devices, we consider
networks of Thermo-Electric Converters (TECs) in stationary non-equilibrium. Assuming constant
thermoelectric properties, the integration over a finite thickness of the linear local response of the
thermoelectric material yields the non-linear current-force characteristics. We show how to derive a
choice of nonequilibrium conductance matrix summarizing the current-force characteristics for every
available sets of currents and forces. This problem has infinitely many solutions if one considers
only thermodynamic constraints. Each solution differs, among others, by the coupling between the
currents. Then, we determine the current-force characteristics of the serial (respectively parallel)
association of two TECs using the laws of resistance (respectively conductance) matrix addition. For
TECs in series, we find current-dependent boundary conditions for each sub-device. Since currents
derive from composite potentials, we also associate the derivability and continuity of these potentials
at the interfaces with conditions on thermoelectric coefficients. For TECs in parallel, we discuss the
possibility of loop currents that are forbidden for the serial association.

INTRODUCTION

Investigations on the connection of thermodynamic de-
vices in networks started in the first half of the last cen-
tury [1, 2] and experienced later a strong development,
mainly in biology and bioenergetics [3, 4]. In particular,
the work of O. Kedem and R. S. Caplan made it possible
to describe coupled transport phenomena across biologi-
cal membranes under nonequilibrium conditions [5]. His-
torically, these questions of coupled transport in biology
were quickly associated with those of the chemical reac-
tions that govern biochemistry [6]. Beyond the field of
biology, a current-force approach emerges at the core of
irreversible thermodynamics [7–10]. Thermoelectric con-
version is a paradigmatic application of this framework
in the weakly irreversible limit [11]. Indeed, in 1948,
Callen proposed a concise model for describing TEC re-
quiring only three parameters called thermoelectric coef-
ficients [12]. This phenomenological model, called Con-
stant Property Model, allowed for an analytical study of
the energy and matter transport and their coupling. At
the mesoscopic scale, these parameters remain constant
irrespective of thermodynamic forces. This modeling ap-
proach was extended in 1959 for thermoelectric material
of macroscopic thickness by A. Ioffe to incorporate ex-
plicit dissipative contribution and entropy balances with
thermostats [13]. Nowadays, the characteristic equations
derived by Ioffe still prevail to design efficient TEC, either
dithermic engines producing electric power or, in reverse
operating mode, to pump heat against thermal gradient
at the expense of electric work [14–16].

This manuscript includes two main parts with different
purposes [17]: First, we focus on defining the notion of
nonequilibrium conductance matrix for a TEC without
assuming any underlying microscopic dynamics [18, 19].
Second, we build on these results to study the association

of TECs made with different (or identical) materials.

In the first part, we demonstrate that the non-linear
current-force characteristics obtained by A. Ioffe can be
cast in matrix form. To do so, we derive the character-
istic equations based on composite potentials (thermal
and electric) and exhibit a choice of compatible conduc-
tance matrix: The corresponding freedom arises from the
choice of currents coupling [20], similar to the figure of
merit in the linear regime [5]. Alternatively, a micro-
scopic dynamics would prescribe the current coupling far
from equilibrium, as it does in the linear regime. Such
a microscopic dynamics can predict as well the current
fluctuations that are only bounded by the thermodynam-
ically consistent modeling based on nonequilibrium con-
ductance matrices [20, 21]. In any case, our modeling
allows arbitrary degrees of coupling, improving upon the
notion of strong coupling (i.e., proportional currents with
the same proportionality factor for all forces) while re-
maining at the level of irreversible thermodynamics. In
addition, in the context of energy conversion, it is rele-
vant to express the conductance matrix for the currents
inter-converted. Those are different from the conserved
currents at the core of our circuit theory. Therefore, we
express the conductance matrix in different bases of cur-
rents, emphasizing the subtle convective and conductive
nature of energy transport.

The second part of this article focuses on the associa-
tion of two TECs based on the modeling introduced in
the first part. We determine the effective descriptions
for the serial and the parallel association of two TECs
by applying respectively the law of resistance matrix ad-
dition and the law of conductance matrix addition [22].
Consequently, for a given coupling of charge and energy
currents, i.e., for a given choice of conductance/resistance
matrices, we expect to obtain a unique conductance ma-
trix for the composite device, and hence the coupling
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between the currents. We show in particular that under
fixed temperature difference, the voltage-current charac-
teristics of the serial association of two TECs (with linear
voltage-current characteristics) is nonlinear. This non
linearity is due to the current dependent boundary con-
ditions (intermediate conditions between Dirichlet and
Neumann). This situation is typical and also occurs, for
example, when modeling the force-velocity response of
muscles in animal locomotion [23]. Finally, we show that
the material property mismatch leads to interface heat
exchange due to the Peltier effect: temperature and elec-
tric potentials are continuous by assumption, whereas the
composite potentials introduced in the first part are dis-
continuous in case of mismatch. This interface problem
led in particular to the concept of relative current [24, 25]
which highlights the challenge of optimally coupling ther-
modynamic converters of materials with different trans-
port parameters [24, 26]. This point is central in that
it directly questions impedance adaptation in the case of
nodal structures associating coupled forces and currents
of different natures.

The first part of this article is organized as follows:
Section IA provides an original derivation of the current-
force characteristics of a TEC (Ioffe’s equations) start-
ing from the local flux-force relation. It showcases
how a global-scale framework in thermoelectricity unveils
space-invariant quantities, such as the so-called F func-
tions, which characterize the free fraction of energy in
the CPM. Section IB focuses on the possible forms of
the nonequilibrium conductance matrix. First, we de-
scribe its general internal structure: We show that the
conductance matrix at the level of fundamental currents
(linearly independent) can be read as a sub-block of the
conductance matrix at the level of physical currents (lin-
early dependent currents due to conservation laws). Sec-
ond, we define and relate external (i.e., exchanged with
reservoirs) and internal (i.e., crossing the device) physi-
cal currents. Third, we relate those currents to the fun-
damental ones. This section illustrates the selection of
fundamental currents and forces on the concrete case of
TEC [22]. Interestingly, it also extends our understand-
ing of conservation laws, enabling the linear combina-
tion of physical currents with non-integer (0 or 1) values.
Restarting directly from Ioffe’s equations, section IC pro-
vides a conductance matrix for fundamental currents and
the corresponding one for physical currents, either inter-
nal or external.

The second part of this article is organized as fol-
lows: In section IIA, we derive the nonequilibrium con-
ductance matrix describing the serial association of two
TECs by applying the law of resistance matrix addi-
tion [22]. In section II B, we considers the parallel associ-
ation of two TEC in Dirichlet boundary conditions (pins
of both TECs at the same fixed potentials). We show
that in general, the mismatch between the thermoelec-
tric coefficients yields in this case internal currents even
in open circuits configurations (no external currents from
the reservoirs).

I. NONEQUILIBRIUM CONDUCTANCE
MATRIX FOR A TEC

A. Current-force characteristics of the CPM

In this section, we start from the local (and linear) de-
scription of a TEC in terms of a flux-force characteristics
defined by the Onsager matrix and its associated ther-
moelectric coefficients. Using the conservation of matter
and energy fluxes across a surface A of an homogeneous
thermoelectric material of finite thickness ∆x, we obtain
the global current-force characteristic. As compared to
Ref. [14], our derivation emphasizes that both charge and
energy currents derive from potential functions that we
identify. We also shed light on the role of a space inde-
pendent quantity that we denote F . Finally, we rephrase
Domenicalli’s equation as a necessary condition for the
conservation of energy.

1. Local Onsager flux-force relation

Let’s start by physically motivating each term in the
linear characteristic equations of (an effectively one di-
mensional) thermoelectric material of infinitesimal thick-
ness ∆x. In such material, the heat flux JQ (W.m−2) and
the electrical flux JC (C.s−1.m−2) are coupled by the lo-
cal flux-force relation:(

JQ
JC

)
= L

(
−dT

dx

−dV
dx

)
, (1)

where the thermodynamic forces are respectively the
temperature and the electric potential gradients. The
temperature T = T (x) and the electric potential V =
V (x) are assumed to be constant in any transverse plane
of the material with constant x value. The response ma-
trix appearing in Eq. (1) is

L =

[
α2σTT + κJ ασTT

ασT σT

]
, (2)

where κJ is the thermal conductivity under zero electri-
cal current and σT the isothermal electrical conductiv-
ity. Indeed, we recover Fourier’s law JQ = −κJ

dT
dx as-

sociated to conductive heat flux (respectively Ohm’s law
JC = −σT

dV
dx ) by taking α → 0 in the first (respectively

second) row of Eq. (1). The Seebeck coefficient α couples
heat and charge fluxes and is defined by

α = −
dV
dx
dT
dx

∣∣∣∣∣
JC=0

. (3)

Dimension analysis accounts for the off-diagonal terms
in L that must involve α by definition. The first term
α2σTT in the first diagonal component of L arises from
convective heat flux. Finally, we remark that the matrix
L is not symmetric: Onsager’s reciprocity relation does
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not hold because the force vector (−dT
dx ,−dV

dx ) and flux
vector (JQ, JC) are not conjugated thermodynamic vari-
ables. Onsager’s reciprocity relations hold in a basis of
conjugated thermodynamic variables: here it is the force
vector

(
d
dx

1
T ,− 1

T
dV
dx

)
that is conjugated to the current

vector (JQ, JC).
In the following, we integrate the local flux-force re-

lation over a finite thickness of thermoelectric material.
To prepare for this integration, it is convenient to intro-
duce the conserved fluxes (JE , JC) of energy and charge
conjugated to the thermodynamic forces

(
d
dx

1
T ,− d

dx
V
T

)
.

The energy flux JE is defined according to the first law
of thermodynamics by

JE = JQ + V (x)JC (4)

where V (x)JC is the flux of electric power crossing the
surface A (in plane of constant x) and oriented toward
growing x. From the conservation of energy and charge,
we remark that the heat flux JQ = JE − V (x)JC is x
dependent. This is precisely this difference between the
heat fluxes across the surface A at x = 0 and at x = ∆x
that allows thermoelectric power generation. In the new
basis of flux (JE , JC) and forces

(
d
dx

1
T ,− d

dx
V
T

)
, the local

flux-force relation becomes(
JE
JC

)
= L

(
d
dx

1
T

− d
dx

V
T

)
, (5)

involving the response matrix

L =

[
κJT

2 + TσT (αT + V )
2

TσT (αT + V )
TσT (αT + V ) TσT

]
. (6)

This matrix follows from first using in Eqs. (1–2) the
following change of variables(

−dT
dx

−dV
dx

)
=

[
0 T 2

V T T

](
d
dx

(
1
T

)
− d

dx

(
V
T

)) , (7)

and second by using Eq. (4) to switch from the vector
of heat and charge fluxes to the vector of energy and
charge fluxes. In the following, we call Eqs. (5–6) the
local flux-force relation for the conserved fluxes. Since
we use variables that are conjugated when considering an
entropy balance, the matrix L is symmetric and verifies
Onsager’s reciprocity relations. It is also x dependent via
the local temperature T and electric potential V .

2. Current-force relation from integrated fluxes

In this section, we switch from the local level, with
fluxes crossing an infinitesimal slice of thermoelectric ma-
terial, to the global level, with currents defined as space
integrated fluxes over A and crossing a finite thickness
∆x of thermoelectric material. This integration step pro-
duces a non-linear current-force relation from a linear
force-flux relation. When integrating the local flux-force

relation, we use Dirichlet boundary conditions for the
TEC:

T (0) = Tl, V (0) = Vl, (8)

T (∆x) = Tr, V (∆x) = Vr. (9)

Without loss of generality, we assume Tl > Tr. By con-
vention, all flux and currents are algebraic and positive
when flowing toward the growing x direction. We start by
showing that both matter and energy fluxes derive from
a potential. Using this property, the global current-force
relation is then obtained by integrating the differential
equations for those potentials on the finite thickness of
thermoelectric material.
Electric current We start by determining the electric

current as a function of the temperature and voltage dif-
ferences, respectively ∆T = Tr − Tl and ∆V = Vr − Vl,
between the right and left planes of the TEC. According
to Eqs. (1–2) and for homogeneous materials (constant
α), the flux JC of electric charges derives from a potential
φ(x) as

JC = −σT
dφ

dx
, (10)

where

φ = αT + V. (11)

In the stationary state, this flux is divergence-less to en-
sure charge conservation

dJC
dx

= −σT
d2φ

dx2
= 0. (12)

From this last equation,

dφ

dx
=

d

dx
(αT + V ) = const, (13)

and φ is an affine function of x with coefficients yet to
be determined. For our effectively one dimensional TEC
under the boundary conditions of Eqs. (8–9), see Fig. 1,
the solution of Eq. (12) reads

φ(x) = (φr − φl)
x

∆x
+ φl (14)

where we have denoted φχ = αTχ + Vχ with χ = l, r.
Then, the electric current across the surface A follows

from the expression of the electric flux (10) combined
with Eq.(14) as

IC ≡ JCA =
φl − φr

R
(15)

where we have denoted R = ∆x/(σTA) the isothermal
electric resistance. Remarkably, the expression of IC
given in Eq. (15) takes the form of Ohm’s law general-
ized to the composite potential φ which encapsulates the
coupling between energy and charge transport. We can
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Vr

Vl

V V (x)

0 1
x/∆x

0

(∆V − αRI2
C

2K )/∆x

(∆V +
αRI2

C

2K )/∆x

d
V
/d
x

dV

dx
(x)

Tr

Tl

T

T (x)

0
(∆T +

RI2
C

2K )/∆x

(∆T − RI2
C

2K )/∆x

d
T
/d
x

dT

dx
(x)

FIG. 1. Electric potential and temperature profiles (Top
panel) and gradients (Bottom panel) along the x axis of the
thermoelectric material under the fixed boundary conditions
of Eqs. (8–9). The left vertical axis is for electric potential
V profile (respectively gradients) in blue solid line. The right
vertical axis is for temperature profile (respectively gradients)
in black dashed line.

finally express φ in term of the thermoelectric coefficients
and the potentials of the reservoirs as

φ(x) = (α∆T +∆V )
x

∆x
+ αTl + Vl. (16)

Then, the first current-force characteristics providing the
electric current as function of temperature and voltage
differences at the boundaries of the TEC is linear and
reads

IC = − 1

R
(α∆T +∆V ) . (17)

We emphasize that in generator convention a positive
power is generated by the TEC and absorbed by the load
when IC∆V > 0 (for ∆V and IC aligned in generator
convention and anti-aligned in load convention).

Energy current We continue with the determination
of the energy current as a (non-linear) function of ∆T
and ∆V . According to Eqs. (1–2), the heat flux writes

JQ = αTJC − κJ
dT

dx
(18)

that, when combined with Eq. (4) and the definition of
φ in Eq. (11), leads to the energy flux

JE = φJC − κJ
dT

dx
. (19)

Let’s show that JE derives from a potential. Indeed,
combining Eq. (10) and Eq. (19) yields

JE = −κJ
dΦ

dx
, (20)

where

Φ = T +
σT

2κJ
φ2. (21)

The potential function Φ depends on x through T and φ.
Energy conservation is thus ensured if and only if

dJE
dx

= 0 = −κJ
d2Φ

dx2
. (22)

This last equation is readily solved as

Φ(x) = (Φr − Φl)
x

∆x
+Φl (23)

where we have denoted Φχ = Tχ +
φ2

χ

2KR with χ = l, r.
We denote K = κJA/∆x the thermal conductivity under
zero electric current for the TEC of finite thickness ∆x.
Then, the energy current across the surface A follows

from the expression of the energy flux Eq. (20) combined
with Eq. (23) as

IE ≡ JEA = K (Φl − Φr) . (24)

Once again, we remark that the expression of IE given
in Eq. (24) takes the form of Fourier’s law generalized
to the composite potential Φ which also encapsulates the
coupling between charge and energy transport. We can
finally express Φ in term of the thermoelectric coefficients
and the potentials of the reservoirs as

Φ(x) =

(
∆T − F

K
IC

)
x

∆x
+ Tl +

(αTl + Vl)
2

2KR
(25)

where we introduce

F =
φl + φr

2
= αT̄ + V̄ , (26)

with the mean temperature T̄ = (Tl + Tr)/2 and electric
potential V̄ = (Vl+Vr)/2. Then, the second current-force
characteristics providing the energy current as function
of temperature and voltage differences at the boundaries
of the TEC reads

IE = −K∆T + FIC . (27)

Interestingly, F can be expressed in terms of the charge
current by using Eq. (17)

F = φl −
RIC
2

, (28)

F = φr +
RIC
2

, (29)

implying that Eq. (27) is indeed a non linear characteris-
tic equation. As previously mentioned, in the absence
of any purely conductive term, that is when K = 0,
the matter and energy currents are strictly proportional.
Hence, the parameter F indeed characterizes the free
fraction of transported energy.
Eqs. (17) and (27) constitute the integrated current-

force characteristics of a TEC where the forces are the
temperature and electric potential differences.
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3. Temperature and electric potential profile

The temperature inside the TEC is the solution of
Domenicalli’s equation [14] arising from the conservation
of the total energy flux dJE/dx = 0 and Eqs. (10,19)

d2T

dx2
= − J2

C

κJσT
. (30)

The above equation combined with the relations between
the second derivatives of T and V following from Eq. (13)
gives the differential equation for the electric potential

d2V

dx2
=

αJ2
C

κJσT
. (31)

For our TEC under the boundary conditions of Eqs. (8–
9), the temperature and electric potential read

T = Tl +
x

∆x

[
∆T − RI2C

2K

( x

∆x
− 1
)]

, (32)

V = Vl +
x

∆x

[
∆V +

αRI2C
2K

( x

∆x
− 1
)]

. (33)

Let’s remarks that, from the temperature gradient

dT

dx
=

1

∆x

[
∆T − RI2C

2K

(
2x

∆x
− 1

)]
(34)

and Eqs. (11,19), we find

IE = −K∆T +

[
αT + V +

RIC
2

(
2x

∆x
− 1

)]
IC . (35)

From energy conservation, we have exhibited that

F (x) ≡ φ(x) +
RIC
2

(
2x

∆x
− 1

)
= const. (36)

is a non trivial invariant with respect to the position x
within the thermoelectric material. The expressions of F
found in Eqs.(28–29) are simply boundary values of the
invariant F (x) on the left and on the right sides.

B. Levels of description

In Ref. [22], we used different levels of description of
thermodynamic devices in view of connecting them. The
fundamental level provides a non redundant basis of cur-
rents and forces [27]. The level of physical currents and
forces, although linearly related, is also of interest: First,
it determines all the exchanges with the system’s environ-
ment; second, it helps to change of basis of fundamental
currents.

In section IB 1, we exhibit a useful form of the selection
matrix that relates physical and fundamental currents.
This leads us to a specific structure of the nonequilib-
rium conductance matrix at the level of physical cur-
rents. In section IB 2, we identify two sets of currents

for the description of a TEC: the internal currents cross-
ing the thermoelectric device and the external currents
exchanged with the environment. In section IB 3, we
provide two examples of selection matrices allowing to
switch from internal (respectively external) physical cur-
rents and forces to internal (respectively external) fun-
damental currents and forces.

1. Structure of the conductance matrices

Following the notation of Ref. [22], we denote i the vec-
tor of physical currents and ℓ the matrix whose lines are
the |L | linearly independent conservation laws relating
the |P| currents in i. This writes in matrix form

ℓi = 0. (37)

Note that if ℓ is not full row rank, it should be reduced to
a full row rank matrix by removing appropriated raws.
The rank-nullity theorem states that the dimension of
the kernel of ℓ is dim(ker(ℓ)) = |P| − |L | = |I | that is
the number of linearly independent currents (i.e., funda-
mental currents). Eq. (37) thus means that

i = SI with ℓS = 0, (38)

where we have introduced the selection matrix S whose
columns constitute a basis of ker(ℓ) and the fundamen-
tal currents vector I with |I | components. We show in
Appendix A that the selection matrix can be written as:

S =

[
1|I |
T

]
, (39)

with 1|I | the identity matrix of dimension |I | and T a
matrix that only depends on ℓ. The above form of selec-
tion matrix requires that the order of the components of
i is chosen such that

i =

(
I
id

)
. (40)

The vector id of the last |L | components of i are lin-
ear functions of I. Since the Entropy Production Rate
(EPR) σ is independent of the level of description, ther-
modynamics consistency ensures that

σ = aT i = AT I, (41)

i.e., the EPR is a function of the physical force a and
its conjugated current i, or similarly of the fundamental
force A and current I. Using Eq.(38) in Eq. (41) yields

AT = aTS. (42)

Then, for a current-force relations reading

i = ga, (physical level) (43)

I = GA, (fundamental level), (44)
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FIG. 2. The TEC is connected to two thermostats at temper-
ature Tl and Tr with ∆T = Tr − Tl < 0 and to two metallic
leads at electric potentials Vl and Vr with ∆V = Vr − Vl > 0.
At each black dots, the Kirchoff current law can be applied.

the nonequilibrium conductance matrices g and G, at
respectively the physical and fundamental levels, satisfy

g = SGST =

[
G GT T

TG TGT T

]
. (45)

This follows from inserting Eqs. (42) and (44) in Eq. (38).
Therefore, to identify the fundamental conductance ma-
trix knowing the physical conductance matrix in a con-
veniently chosen basis, it suffices here to read the upper
left diagonal sub-matrix of dimension |I |.

2. Physical currents and forces: external, internal

Our sign convention for currents is summarized on
Fig. 2: Physical currents are positive when received by
the thermoelectric material in the interval [0,∆x]. Phys-
ical currents entering from the reservoir on the χ = l, r
side (either left or right) are: the (electric) charge cur-
rent iCχ, the heat current iQχ and the energy current
iEχ. The electric and energy currents incoming from the
left are opposite to those incoming from the right:

iEl = IE = −iEr (46)

iCl = IC = −iCr. (47)

We remark that one can switch of sign convention by
considering capitalized currents which are by definition
counted as positive when flowing from left to right (in the
growing x direction). The heat current incoming from the
χ side writes

iQχ = iEχ − VχiCχ. (48)

Energy conservation of Eq. (46) implies that the work
current received by the TEC is

iW ≡ −iQl − iQr = −IC∆V. (49)

The conservation laws of physical currents introduced
above can be considered at the interface between the sys-
tem and its environment (grey dashed line in Fig. 2) or

across a plane of constant x ∈ [0,∆x]. To distinguish
them, we call the former external physical currents de-
noted

iTe ≡
(
iQl VliCl iCl iQr VriCr iCr

)
, (50)

and the latter the internal physical currents denoted

iTi =
(
iEl iCl iEr iCr

)
. (51)

Accordingly, the subscripts “e” for external and “i” for
internal will be used on conjugated and fundamental vari-
ables as well. In practice, external currents are useful to
make balance with the surrounding leading for instance
to the received work above. The internal currents are
convenient for the serial association of TECs that we will
study in section IIA. Whatever the chosen basis (internal
or external), one can always define electric current, heat
current, electric power across any transverse plane of the
thermoelectric material, etc. The conservation laws for
internal currents (electric charge and energy conserva-
tion) write

ℓiii = 0, with ℓi =

[
1 0 1 0
0 1 0 1

]
, (52)

and those for external currents writes

ℓeie = 0, with ℓe =

1 1 0 1 1 0
0 0 1 0 0 1
0 1 −Vl 0 0 0
0 0 0 0 1 −Vr

 . (53)

Conservation of electric charge and energy is comple-
mented by two additional conservation laws that take
into account the proportionality between the electric
works Vχiχ and the electric currents iχ on each χ = l, r
side. Finally, we switch between internal and external
currents using

ii = Pie, ie = Mii, (54)

where

P =

1 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 1 0
0 0 0 0 0 1

 , M =


1 −Vl 0 0
0 Vl 0 0
0 1 0 0
0 0 1 −V r
0 0 0 V r
0 0 0 1

 .

(55)
We notice that PM = 14, but MP ̸= 16 even though
ie = MPie is verified for the vector of external currents
of Eq. (50). We also emphasize that, although P has
linearly independent lines and M has linearly indepen-
dent columns, one should not use their respectively right
and left Moore-Penrose pseudo-inverse. This is clear for
matrix M that involves the electric potential which cre-
ates problems of physical dimensions when using pseudo-
inverses. More importantly, and contrarily to what would
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come from using pseudo-inverse, matrices P and M pro-
vides the appropriated forces conjugated to physical cur-
rents in the EPR. Indeed, thermodynamic consistency
requires that σ is independent of the set of variables used
to express it

σ = aT
e ie = aT

i ii. (56)

In the stationary state, the EPR is

σ = −
∑
χ=l,r

iQχ

Tχ
= −

∑
χ=l,r

iEχ − VχiCχ

Tχ
. (57)

This leads to the physical forces conjugated to internal
currents

aT
i =

(
− 1

Tl

Vl

Tl
− 1

Tr

Vr

Tr

)
. (58)

Using the first relation of Eq. (54) in Eq. (56) leads to
the physical force conjugated to external currents

aT
e = aT

i P , (59)

reading explicitly

aT
e =

(
− 1

Tl
− 1

Tl

Vl

Tl
− 1

Tr
− 1

Tr

Vr

Tr

)
. (60)

Now using the second relation of Eq. (54) in Eq. (56), we
obtain a second relation for the forces:

aT
i = aT

e M (61)

which recovers Eq. (58) ensuring the consistency between
the description of the TEC using internal or external cur-
rents.

3. Fundamental currents and forces: external, internal

In the previous section, we have identified the physical
currents and conjugated forces (internal and external).
In this section, we provide some possible fundamental
currents and forces by choosing selection matrices in the
kernel of the matrix of conservation laws. For the sim-
ple TEC considered here, we could proceed directly by
inspection of the EPR. Indeed one can use the conserva-
tion laws directly in this EPR to produce a linear com-
bination of fundamental currents only, with each linear
coefficient being the conjugated force. However, we aim
here at illustrating the general method that is convenient
in more complex situations.

Let’s start by choosing some fundamental currents
and forces among external physical currents. There
are |Pe| = 6 linearly dependent external currents and
|Le| = 4 associated conservation laws. We can thus
choose |Ie| = |Pe| − |Le| = 2 linearly independent cur-
rents by removing |Le| = 4 currents from ie (one per
conservation law). For instance, we can choose for fun-
damental currents

Ie =

(
iQl

VliCl

)
. (62)

The selection matrix associated to this choice is:

Se =

[
12

Te

]
, with Te =

 0 1/Vl

−1 ∆V /Vl

0 −Vr/Vl

0 −1/Vl

 . (63)

One can check that ℓeSe = 0. The thermodynamic forces
conjugated to the fundamental currents of Eq. (62) fol-
lows from Eq. (42)

Ae =

( 1
Tr

− 1
Tl

− 1
Tr

∆V
Vl

)
. (64)

Let’s continue with choosing some fundamental cur-
rents and forces among internal physical currents. There
are |Pi| = 4 linearly dependent internal currents and
|Li| = 2 associated conservation laws. As above, we
choose |Ii| = |Pi| − |Li| = 2 linearly independent cur-
rents by removing |Li| = 2 currents from ii (one per
conservation law). For instance, we can choose for fun-
damental currents

Ii =

(
iEl

iCl

)
=

(
IE
IC

)
. (65)

The selection matrix associated to this choice is:

Si =

[
12

−12

]
. (66)

We notice that Si has the structure given in Eq. (39)
with Ti = −12. Here again, one can check that ℓiSi = 0.
The thermodynamic forces conjugated to the fundamen-
tal currents of Eq. (65) follows

Ai =

( 1
Tr

− 1
Tl

Vl

Tl
− Vr

Tr

)
≡
(
AE

AC

)
, (67)

where we have introduced for later convenience the fun-
damental force AE (respectively AC) conjugated to en-
ergy (respectively electric) current. By construction, the
EPR of the TEC is

σ = aT
e ie = AT

e Ie = aT
i ii = AT

i Ii. (68)

C. Conductance matrices for physical and
fundamental variables

In this section, restarting from Ioffe’s current-force
characteristics for a CPM, we introduce the conductance
matrix of a TEC at fundamental level. We then go on
with the derivation of the conductance matrix at all level
of description. In particular, we show how to derive the
conductance matrix at fundamental scale coupling heat
and electric current.
According to Eqs. (17–27), the current-force character-

istic of the TEC can be arranged in matrix form as

Ii =

(
IE
IC

)
= − 1

R

[
αF +KR F

α 1

](
∆T
∆V

)
. (69)
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where appears a non-symmetric matrix synonymous of
non-conjugated currents and forces. We recover a sym-
metric matrix by switching to conjugated forces via(

∆T
∆V

)
= −TrTl

T̄

[
T̄ 0
V̄ 1

]
Ai (70)

yielding the current-force relation

Ii = GiAi (71)

with

Gi =
TlTr

RT̄

[
F 2 +KRT̄ F

F 1

]
. (72)

This conductance matrix is symmetric and positive def-
inite, as required for a TEC arbitrarily far from equilib-
rium. It is also force dependent, here via the T̄ and V̄
appearing in F . The conductance matrixGi provides not
only the non-linear current-force characteristics, but also
constitutes a modelling choice of the coupling between
energy and electric currents. As such, it represents an
extension of the constant property model for thermoelec-
tric [25, 28] although no microscopic modeling has been
required.

In Appendix B, we show that the above conductance
matrix is in principle not unique. For given mean cur-
rents and conjugated forces, making a choice of conduc-
tance matrix amounts to constrain the currents covari-
ance [20, 21, 29]. However, the conductance of Eq. (72) is
the simplest: any other form involves the supplementary
definition of a bivariate function of fundamental forces.

We end this section by providing the conductance ma-
trix at the physical level (external and internal) from the
one at the fundamental level. First, we apply Eq. (45)
using the selection matrix of Eq. (66) leading to the con-
ductance for internal physical currents

gi = SiGiS
T
i =

[
Gi −Gi

−Gi Gi

]
, for ii = giai. (73)

As expected this matrix is symmetric, although it is now
semi-definite positive only. Second, we use Eqs. (54) and
(61) to write

ie = Mii = Mgiai = MgiM
Tae (74)

from which we read the conductance ge = MgiM
T for

external physical currents. We give this conductance ma-
trix in Table I since it can be used conveniently to ex-
tract the conductance matrix at the fundamental level
for any choice of fundamental currents. To do so, one
simply select g’s components for the lines and columns
associated to the chosen currents and forces. We remark
that conjugated forces must still be determined using the
appropriate selection matrix for chosen currents. For in-
stance, one has the following current-force relation at the
fundamental level(

iQl

iCl

)
=

[
g11 g13
g31 g33

]( 1
Tr

− 1
Tl

−∆V
Tr

)
. (75)

We use table I to read directly the conductance matrix[
g11 g13
g31 g33

]
=

TlTr

RT̄

[
KRT̄ + (F − Vl)

2 F − Vl

F − Vl 1

]
. (76)

The degree of coupling ξ ∈ [−1, 1] between the heat and
charge currents entering from the left of the TEC, respec-
tively iQl and iCl, follows

ξ =
g13√
g11g33

=
F − Vl√

KRT̄ + (F − Vl)2
. (77)

It generalizes far from equilibrium the notion of degree
of coupling that has a fundamental role in conversion
processes [5, 20, 30].

II. ASSOCIATION OF TECS IN STATIONARY
NON-EQUILIBRIUM

Based on the description of TEC established in the
first part, we study in this section the serial and parallel
association of two TECs. Superscripts (m) for m = 1, 2
are added to any physical variable or parameter of the
first part to indicate which TEC it characterises in this
second part.

A. Serial association

Fig. 3 illustrates the serial association of TECs 1 and 2
leading to TEC 3. It defines the boundary conditions for
TEC 3 and emphasizes the conservation of energy and
electric currents at the interface of TECs 1 and 2:

I
(1)
E = I

(2)
E = IE , (78)

I
(1)
C = I

(2)
C = IC , (79)

where I
(m)
E and I

(m)
C are defined as in Eqs. (46–47) as the

currents (positive when) entering into device m = 1, 2
from the left. Given charge and energy conservation, we
drop the superscript (m) for these currents to shorten no-
tation. Since dissipation only occurs inside the elements
no dissipation occurs at the interface between TECs 1
and 2 which implies the following potential continuity
equations:

T (1)
r = T

(2)
l ≡ T, (80)

V (1)
r = V

(2)
l ≡ V, (81)

where we have introduced T the local temperature and V
the electric potential at the interface to shorten notation.
It is also convenient to remove superscripts for the outter

boundary condition of TEC 3 by denoting Tl = T
(1)
l =

T
(3)
l and Tr = T

(2)
r = T

(3)
r , and similarly for the electric

potential.
We start by the determination of T and V in section

IIA 1. Then, we get the equivalent conductance matrix



9

ge =
TlTr

RT̄


(F − Vl)

2 +KRT̄ Vl(F − Vl) F − Vl −
(
(F − Vl)(F − Vr) +KRT̄

)
Vr(Vl − F ) Vl − F

Vl(F − Vl) V 2
l Vl Vl(Vr − F ) −VlVr −Vl

F − Vl Vl 1 Vr − F −Vr −1
−
(
(F − Vl)(F − Vr) +KRT̄

)
Vl(Vr − F ) Vr − F (F − Vr)

2 +KRT̄ Vr(F − Vr) F − Vr

Vr(Vl − F ) −VlVr −Vr Vr(F − Vr) V 2
r Vr

Vl − F −Vl −1 F − Vr Vr 1

 .

TABLE I. Conductance matrix for physical currents and forces given in Eqs. (50) and (60).

TEC 3

TEC 1 TEC 2

FIG. 3. Sketch of TEC 3 obtained as the serial association of TEC 1 and 2. TEC 1 is connected to a thermostat at temperature
Tl on its left and to the thermal pin of TEC 2 at temperature T on its right. Similarly, it is connected to a metallic lead on its
left which set electrical potential to Vl and to the electric pin of TEC 2 at voltage V on its right. The situation for TEC 2 is
the left-right symmetric. TEC 3 is connected to two thermostats at temperatures Tl and Tr with ∆T (3) = Tr − Tl < 0 and to
two metallic leads at electrical potentials Vl and Vr with ∆V (3) = Vl − Vr > 0. The sum of currents (incoming arrows) at each
black bullet is zero.

describing the current-force characteristics of TEC 3 in
section IIA 2 where we use the law of resistance matrix
addition [22]. Discussion follows in section IIA 3: We
compare this approach with an effective model (intro-
duced in Appendix C 3) with current dependent thermo-
electric coefficients and leading to the same current-force
characteristics. Finally, we discuss the physics of the se-
rial association of two TECs where Peltier effect due to
differences in Seebeck coefficients appears clearly.

1. Internal degrees of freedom: local potentials at the
interface

Determination of T Combining the energy currents
Eq. (27) with the conservation of energy at the interface
Eq. (78), we obtain

(
K(1) +K(2)

)
T−
(
K(1)Tl +K(2)Tr

)
=
(
F (1) − F (2)

)
IC

(82)
Using the definition of F (m) for m = 1, 2 introduced in
Eq. (26), we simplify F (1) − F (2) as

F (1) − F (2) = α(1)T̄ (1) − α(2)T̄ (2) −∆V (3). (83)

with the average temperature and the average electric
potential of TEC m reading respectively

T̄ (m) = (T
(m)
l + T (m)

r )/2, (84)

V̄ (m) = (V
(m)
l + V (m)

r )/2. (85)

Then, using the local potential continuity at the interface
and the expression of the electric current Eq. (17), we
express ∆V (3) as

∆V (3) = −
2∑

m=1

(
R(m)IC + α(m)∆T (m)

)
. (86)

Inserting this last equation in Eq. (83) yields

F (1) − F (2) = −δαT +
R(1) +R(2)

2
IC (87)

where δα = α(2) − α(1). Finally, by inserting this last
relation in Eq. (82) and solving for T yields

T =
K(1)Tl +K(2)Tr +

R(1)+R(2)

2 I2C
K(1) +K(2) + δαIC

. (88)
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Requiring T > 0 leads to two inequalities according to
the sign of δα:

IC > −K(1) +K(2)

δα
if δα > 0, (89)

IC < −K(1) +K(2)

δα
if δα < 0. (90)

Determination of V The interface electric potential
V follows from using Eq. (17) in Eq. (79) since ∆V (1) =
V − Vl and ∆V (2) = Vr − V , leading to

V = R∥

(
Vl

R(1)
+

Vr

R(2)
+

α(2)∆T (2)

R(2)
− α(1)∆T (1)

R(1)

)
(91)

where R∥ = R(1)R(2)/(R(1) + R(2)). We emphasize that

it depends on IC via T in ∆T (1) = T − Tl and ∆T (2) =
Tr − T .
Eqs. (88) and (91) show that devices 1 and 2 have local

potential differences at their boundaries that depends on
the electric current even though device 3 is in Dirichlet
boundary conditions.

2. Equivalent resistance matrix

In Appendix C 1 we illustrate the general approach of
Ref. [22] to exhibit the conservation laws of TEC 3 re-
sulting from the serial association of TECs 1 and 2. As
expected, we recover the conservation of electric and en-
ergy currents. Given the similarity between the devices,
the law of resistance matrix addition applies rather triv-
ially for the serial association of TECs 1 and 2, see Ap-
pendix C 2:

R(3) = R(1) +R(2), (92)

associated to the following force-current characteristics( 1
Tr

− 1
Tl

Vl

Tl
− Vr

Tr

)
= R(3)

(
IE
IC

)
. (93)

The matrix R(3) reads explicitly in terms of the proper-
ties of two TECs

R(3) =

2∑
m=1

 1

K(m)T
(m)
l T

(m)
r

− F (m)

K(m)T
(m)
l T

(m)
r

− F (m)

K(m)T
(m)
l T

(m)
r

K(m)R(m)T̄ (m)+F (m)2

K(m)T
(m)
l T

(m)
r

 .

(94)
It is positive definite, since each R(m) is positive definite
for m = 1, 2.

3. Discussion

Equivalence between resistance matrices As discussed
in Appendix B, infinitely many resistance matrices are
associated to the same force–current characterics [here

Eqs. (93–94)]. To illustrate this point, we provide in Ap-
pendix C 3 the resistance matrix of an effective model
with identical characteristic equations. If one focuses
only on the mean currents, the representative of the resis-
tance matrices of the main text or appendix are equiva-
lent. However, the degree of coupling between energy and
electric currents depends on this choice of representative
with important consequences. For instance, the degree
of coupling constrains the conversion or transduction ef-
ficiency [20, 31]. In the same idea, the nonequilibrium
conductance or resistance matrix bounds the quadratic
fluctuations of currents as shown in Ref. [21]. There-
fore, when modeling subsystems with conductance or re-
sistance matrices, we expect that only our theory of ther-
modynamic circuits predicts the degree of coupling or
provides a bound for currents quadratic fluctuations re-
sulting from the equivalent resistance (or conductance)
matrix. In other words, there is more in conductance
matrices than in a current-force characteristics: they in-
cludes subtle details associated to current fluctuations
that only the microscopic dynamics can describe in full
details.
Homogeneous TEC In the limit in which TEC 1 and

2 are identical, i.e., for homogeneous thermoelectric co-
efficients α(1) = α(2) = α,K(1) = K(2) = K and R(1) =
R(2) = R and for TECs of same thickness ∆x(1) = ∆x(2),
we expect to find the characteristic equation of a single
TEC of double thickness and thermoelectric coefficients

K(3) = K/2, R(3) = 2R, α(3) = α. (95)

This is indeed the result of the serial association of a
thermal or an electric resistor. The effective model of
Appendix C 3 has such thermoelectric coefficients in the
homogeneous case. From the equivalence of the two mod-
els, the characteristic equations obtained from the law of
resistance matrix addition (section IIA 2) is compatible
with this result.
Non linear voltage-current characteristics Fig. 4

shows the temperature differences and voltages applied
to the devices 1, 2 and 3. From the effective model for
TEC 3, we can express the voltage-current characteristics

∆V (3) = −α(3)∆T (3) −R(3)IC (96)

in which α(3) and R(3) are functions of the electric current
IC [see Eqs.(C25) and (C27)], except in the homogeneous
case. Hence, the voltage-current characteristics of TEC 3
is in general non linear under fixed temperature difference
∆T (3). Since a single TEC has constant thermoelectric
coefficient, it has a linear voltage-current characteristics
under fixed temperature difference ∆T (m) for m = 1, 2.
Under fixed ∆T (m), a single TEC is thus analogous to
a Thévenin voltage source (ideal voltage source serially
connected to a resistor). The serial association of two
Thévenin voltage sources would lead to a linear equiv-
alent voltage-current characteristics in the abscence of
coupling with energy. We thus interpret the emergeant
non linearity as the result of the coupling between energy
and charge currents.
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FIG. 4. Temperatures and voltages differences at the boundary of each TEC as function of the electric current IC at fixed
∆T (3) < 0. TEC 1 and 2 are in serial association resulting in TEC 3. (Left panel) Temperature differences: ∆T (1) (blue solid

line), ∆T (2) (red solid line) and ∆T (3) (black solid line). (Right panel) Voltage differences: ∆V (1) (blue solid line), ∆V (2)

(red solid line) and ∆V (3) (black solid line). For both panels, parameters are: K(1) = 1,K(2) = 2, R(1) = 1, R(2) = 2, α(1) =

1, α(2) = 1.2, Tl = 20, Tr = 10 and Vl = 10. We use an ad hoc unit system: Tr/10 = 1 set the temperature unit, Boltzmann

constant kB = 1 defines the energy unit, thermal conductivity defines the time unit kB/K
(1) = 1, Seebeck coefficient and

electric resistance of TEC 1 define the unit of electric current via α(1)Tr/10R
(1) = 1 meaning that α(1)Tr/10 is a suitable unit

of electric voltage and R(1) of electric resistance.

To investigate this coupling, we open device 3 to take a
look at the boundary conditions applied to devices 1 and
2 within the serial association. The left panel of Fig. 4
shows the temperature differences on device m = 1, 2, 3
as a function of IC . By assumption, ∆T (3) is constant.
To accomodate this constraint, the temperature differ-
ences applied to devices 1 and 2 are non linear functions
of IC . The right panel of Fig. 4 shows that the voltage-
current characteristics of devices m = 1, 2, 3 are all non
linear functions of IC , as aforementioned for devices 3.
For devices 1 and 2, the non-linearity of ∆V (1) and ∆V (2)

are due to the IC dependent ∆T (1) and ∆T (2). Devices
1 and 2 are thus no longer analogous to Thévenin voltage
sources.

Therefore, the interplay between the energy/charge
coupling and non ideal boundary conditions, leads to
complex characteristics equations for TECs 1, 2 and 3.
These more complex behaviors, due in the end to inho-
mogenous thermoelectric coefficients, also appear in the
spatial profiles of the potentials (temperature, electric
potential, composite potentials), as we investigate below.

Peltier effect at the interface We show on Fig. 5 the
spacial profiles of the potentials T , V , φ and Φ for TEC
1 and 2 in serial association. We consider three different
sets of parameters as described below.

In the case of an homogeneous system (column A), the
serial association of the two TEC is invisible: TEC 3 be-
haves as it were a single device as studied in section I. The
profiles of the composite potentials are linear as expected
from Eqs. (14–23). The similarity between the quadratic

profiles for T (x) and V (x) comes from φ = αT +V lead-
ing to an affine relation between their gradients (with
linear coefficient −α) due to Eq. (10) and the conserva-
tion of electric current deriving from φ. We can usefully
comment the expression linking energy, heat and electric
currents

IQ(x) = IE − V (x)IC =

(
−K

dΦ

dx
+

V

R

dφ

dx
IC

)
∆x.

(97)

Although not plotted, we can immediately see that the
profile of IQ(x) is simply given by an affine function
of V (x). This naturally leads to the result dIQ =
−dV (x)IC , which translates the conversion of heat into
work on a local scale. Note that any non-derivability
or discontinuity in V (x) immediately results in a mod-
ification of the system’s heat balance and heat-to-work
conversion.
The situation of non-derivability of the potentials ap-

pears in the case (column B) where the thermal and elec-
trical conductivities differ between TEC 1 and 2, while
maintaining the same Seebeck coefficient. In this case, we
observe a slope break without discontinuity between the
φ and Φ potentials. Indeed, each slope corresponds to the
current conductivity ratio that switches value at the in-
terface. Given the conservation of electric (resp. energy)
current the slope break of φ (resp. Φ) increases with
the discrepancy of the electric (resp. thermal) conduc-
tivity. This slope breaks also modifies the balance given
by Eq. (97) as aforementioned. Finally, the temperature



12

20

40

60

T
A

m = 1

m = 2

homogeneous

B C

−40

−20

0

20

V

20

30

40

50

ϕ

0 ∆x(1) ∆x(1) + ∆x(2)

x

0

200

400

600

800

Φ

0 ∆x(1) ∆x(1) + ∆x(2)

x
0 ∆x(1) ∆x(1) + ∆x(2)

x

FIG. 5. Potential profiles T , V , φ and Φ along the x direction for TEC 1 (blue line), TEC 2 (orange line) and for a TEC with

homogenous thermoelectric coefficients R(1) +R(2),K(1)K(2)/(K(1) +K(2)) (green dashed line). Those TECs are respectively

of length ∆x(1), ∆x(2) and ∆x(1) +∆x(2). Boundary conditions are shown in Fig. 3. The legend in the upper left panel applies
to all panels. The first line of graphs corresponds to the temperature T (x), the second to the electric potential V (x), the third
to the composite potential φ(x) and the fourth to the composite potential Φ(x). In each column, the set of thermoelectric
coefficients for both TECs are fixed to particular values. Column A corresponds to TEC 1 and 2 with equal thermoelectric
coefficients: K(1) = K(2) = 1, R(1) = R(2) = 1, α(1) = α(2) = 1. Column B corresponds to the weaker condition ensuring
composite potential continuity with K(1) = 1,K(2) = 2, R(1) = 2, R(2) = 1, α(1) = α(2) = 1. Column C corresponds to TEC
1 and 2 with different thermoelectric coefficients K(1) = 1,K(2) = 2, R(1) = 2, R(2) = 1, α(1) = 1, α(2) = 1.2. We also fix the
boundary conditions Tl = 20, Tr = 10, Vr = 10, IC = 5. Same unit system as in Fig. 4.

and electric potential profiles still share great similarity
for the same reason as in the homogeneous case, although
now they are quadratic in each TEC separately.

In the case (column C) where there is in addition a
difference between the values of the Seebeck coefficients
between TEC 1 and 2, the consequence is much greater.
Knowing that the Seebeck coefficient is a measure of en-

tropy per carrier SN = eα with e the charge per carrier, it
follows that any change in the value of the Seebeck coeffi-
cient translates into a modification of the energy balance
(since heat current depends on the entropy per carrier).
This situation is well known in thermoelectricity, as it is
nothing less than the manifestation of the Peltier effect
at the interface between TEC 1 and 2. In this case, the
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Peltier contribution to the total heat current IQ = AJQ
undergoes a discontinuity δαTIC . As a result, the energy
and electric currents do not derive any more from the po-
tentials φ and Φ that are discontinuous at the interface,
such that

φ
(2)
l − φ(1)

r = δαT, (98)

Φ
(2)
l − Φ(1)

r =
φ
(1)
r

2

2

(
1

K(2)R(2)
− 1

K(1)R(1)

)

+
δαT

(
δαT + φ

(1)
r

)
2K(1)R(1)

. (99)

On Fig. 5, these discontinuities are positive, resulting in
an increase in the values of the φ and Φ potentials at the
interface, while their slopes remain identical to those in
the previous case. We recover the potential continuity if,
and only if, δα = 0 and K(1)R(1) = K(2)R(2).

We conclude from the above analysis that the serial
association of two TECs satisfying separately the CPM
opens a variety of internal degrees of freedom (e.g., po-
tential profiles, current dependent thermoelectric coef-
ficients) that introduce sophisticated behaviors not ob-
served in the CPM, while keeping the degree of complex-
ity reasonably low. This analysis also confirms that the
serial association of two identical TECs is totally equiv-
alent to a unique TEC of double length, as expected.

B. Parallel association

We now turn to the study of the parallel association
of two TECs. The equivalent current-force characteris-
tics described by the equivalent conductance matrix is
obtained in section II B 1 from the law of conductance
matrix addition. We discuss the physics of the paral-
lel association in section II B 2. The conservation laws
for the device resulting from the parallel association are
studied in Appendix D.

The parallel association of two TECs is represented on
Fig. 6. Following the pin ensemble definitions given in
Ref. [22] for the parallel association, the pins of devices
1, 2 and 3 are

P(1) = {E1, C1, E2, C2}, (100)

P(2) = {E3, C3, E4, C4}, (101)

P(3) = {{E1, E3}, {C1, C3}, {E2, E4}, {C2, C4}}, (102)

where En (resp. Cn) is the index of the pin number n
associated to energy transport (resp. charge transport).
We recall that the pins in P(3) are called lumped pins.
Each pin P in P(3) gathers the pins in P(1) and P(2)

that are at the same local potential. This means that the
local potentials at all pins of TEC 1 and 2 are functions
of the potential on the lumped pins of TEC 3 as

a
(m)
i = π

(m,3)
∥ a

(3)
i , (103)

for m = 1, 2. The local potentials a
(m)
i are defined in

Eq. (58) when adding superscript (m) to Tχ and Vχ for

χ = l, r. The matrices π
(m,3)
∥ = 14 encode the topology

of the parallel association of TEC 1 and 2. Given the
symmetry of the association considered here they happen
to be identical and equal to identity: TEC 1, 2 and 3 see
the same potentials on their left and on their right.

1. Equivalent conductance matrix

We now turn to the determination of the conductance
matrix for TEC 3. We have shown that the conductance
matrix at physical level for the internal currents of a sin-
gle TEC (here for m = 1, 2) reads

g
(m)
i =

[
G

(m)
i −G

(m)
i

−G
(m)
i G

(m)
i

]
(104)

where G
(m)
i is the conductance matrix recalled in

Eq. (72). Now, using the law of conductance matrix ad-
dition derived in Ref. [22], the conductance matrix for
device 3 reads

g(3) =

2∑
m=1

π
(m,3)T
∥ g(m)π

(m,3)
∥ (105)

that simplifies into

g(3) =

[
G(1) +G(2) −G(1) −G(2)

−G(1) −G(2) G(1) +G(2)

]
. (106)

The conductance matrix G(3) for a set of linearly inde-
pendent currents of devices 3, reads

G(3) = S(3)+g(3)S(3)+T (107)

where S(3) is the selection matrix that selects a set of in-
dependent currents among the redundant currents flow-
ing through the pins in P(3), see Section IB 3.

2. Discussion

Insofar as the parallel configuration preserves the
Dirichlet conditions for each of the two devices, the elec-
tric linear behaviors are also preserved by simple applica-
tion of the superposition theorem. It is therefore natural
that TEC 3 should also behave in a perfectly linear fash-
ion. No impedance matching problem arise here as there
is no potential continuity issues. But this observation
does not exhaust the subject. Indeed, the parallel con-
figuration requires that the two electric parts of the two
devices be connected in parallel. In this case, a loop cur-
rent flows between the two electric parts of the TECs,
unless they each have the same voltage across their ter-
minals. It’s easy to see that the respective currents are
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TEC 3

TEC 1

TEC 2

FIG. 6. Sketch of TEC 3 obtained as the parallel association of TEC 1 and 2. TEC 1, 2 and 3 are connected to two thermostats
at temperatures Tl and Tr with ∆T (3) = Tr − Tl < 0 and to two metallic leads at electrical potentials Vl and Vr with
∆V (3) = Vl − Vr > 0. .

given by:

iC1 = − (α(2) − α(1))∆T (3)

R(1) +R(2)
+

R(2)i{C1,C3}

R(1) +R(2)
, (108)

iC3
=

R(1)i{C1,C3}

R(1) +R(2)
+

(α(2) − α(1))∆T (3)

R(1) +R(2)
. (109)

We can see that even when the current i{C1,C3} is zero,
an electric current flows through both devices, generating
residual internal dissipation. From these two equations
it is clear that one of the devices will act as an electrical
generator, feeding the other acting as a receptor. Once
again, it is the presence of Seebeck coefficient difference
between TECs 1 and 2 that leads to an unconventional
situation. However, it’s important to note that this time
it’s not a signature of the Peltier effect, but simply a pure
Joule dissipation, unlike in the previous serial case.

III. CONCLUSION

Starting from Ioffe’s integrated current-force charac-
teristics of TEC, we summarized the energy/matter
current-force characteristics by introducing a conduc-
tance matrix relating the currents to their conjugated
forces in the entropy production rate. This matrix is
not unique since it corresponds to a choice of model for
the coupling between matter and energy. Moreover, we
gave an algebraic procedure to change the current ba-
sis using the conservation laws of the TEC. We have
shown that two equivalent sets of currents are available

for describing a TEC: the internal currents (energy and
matter), and the external currents that can be easily de-
termined by measuring the currents (heat and matter)
entering the boundaries of the TEC. We determined the
non-equilibrium conductance matrix for each current set.
We found that nonequilibrium conductance matrices are
in general force-dependent and apply far from equilib-
rium.

Then, we applied our theory of thermodynamic circuits
to the serial and parallel associations of TECs. The law
of resistance/conductance matrix addition takes, in this
case, a simple form because of the symmetry of the asso-
ciations and the small number of pins. It thus paves the
way for a systematic study of thermoelectric networks
since our toolbox is not limited to binary associations of
TECs but can also be applied to more complex networks.

Our study unveiled, in particular, that the serial asso-
ciation of two TECs described by the CPM follows an ef-
fective model akin to the CPM but with electric current-
dependent thermoelectric coefficients, see Appendix C 3.
This emerges from non-ideal boundary conditions, i.e.,
from the electric current dependency of the local poten-
tials at their interface. The law of resistance addition
(serial association) gives the same (nonlinear) current-
force characteristics for TEC 3 as the one of the effective
model. However, the coupling between the currents is
only predicted by the law of resistance addition. It is
not in other approaches, preventing us from validating
this part of our circuit theory on such thermodynamic
models of TECs. In this regard, further investigations
with stochastic modeling are required. We achieve a step
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in this direction in Ref. [32] dealing with chemical re-
action networks. Finally, we studied the role of the in-
homogeneity of thermoelectric coefficients by comparing
the spatial profiles of temperature, electric potentials and
the two composite potentials from which derive electric
and energy currents. The mismatch between thermoelec-
tric coefficients significantly modify these profiles rising
question of impedance adaptation beyond the scalar case.

In any case, it would be interesting to investigate the
link between the non-equilibrium conductance matrix of
a TEC and the fluctuations of its currents in light of the
results on Markov jump processes derived in Ref. [20].
In this work, the authors show that the non-equilibrium
conductance matrix gives the best lower bound on the
current covariance. Our circuit theory would then allow
us to determine the best lower bound on the current co-
variances of a composite TEC, given the bounds on the
current covariances of the two subdevices.
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Appendix A: Structure of the selection matrix

In this appendix, we justify the form of the selection
matrix given in Eq. (39). The matrix of conservation
law ℓ is of dimension |L | × |P| and rank(ℓ) = |L |. It
describes the |L | linear relations between the physical
currents that we write ℓi = 0. Given the rank of ℓ,
we can chose the order of i’s components such that the
|L | last columns of matrix ℓ, denoted ℓd, are linearly
independent. The remaining |I | first columns of ℓ are
denoted ℓI . Then, we take the |I | first components of i
as our choice of fundamental currents such that

i =

(
I
id

)
and ℓ =

(
ℓI ℓd

)
. (A1)

The last |L | components of i, denoted id, are the depen-
dent currents that can be obtained as linear combination
of the components of I. Then, the square matrix ℓd has
rank equal to its dimension |L | and hence is invertible.
By construction, the selection matrix relating physical
and fundamental currents by i = SI writes

S =

[
1

T

]
, (A2)

where 1 is the identity matrix of dimension |I | and the
matrix T remains to be determined using

0 = ℓS = ℓI + ℓdT = 0 ⇒ T = −ℓ−1
d ℓI . (A3)

This justifies the form of selection matrix given in
Eq. (39).

Appendix B: Non unicity of the conductance
matrices

Exhibiting a conductance matrix from the current-
force relation cannot be done uniquely without relying
on a microscopic model. We illustrate this fact for our
model of TEC, starting from the non equilibrium conduc-
tance matrix of Eq. (72). Let’s assume that there exists

a symmetric matrix G
′

i ̸= Gi such that

G
′

i =
TlTr

RT̄

[
a b
b c

]
, (B1)

with the same current-force characteristics

Ii = GiAi = G
′

iAi. (B2)

This relation writes[
KRT̄ + F 2 F

F 1

](
AE

AC

)
=

[
a b
b c

](
AE

AC

)
. (B3)

Each line of this equation can be solved for b as func-
tion of a and c. Enforcing the equality of the resulting b
constrains a and c by

AE

AC

(
KRT̄ + F 2 − a

)
=

AC

AE
(1− c) . (B4)

As a consequence, G
′

i writes

G
′

i = Gi +
TlTr

RT̄

−(AC

AE

)2
AC

AE

AC

AE
−1

 (1− c), (B5)

showing that the nonequilibrium conductance matrix Gi

is not unique when providing the current-force relation
only, with no information on the currents fluctuations.
Any value of c in the above equation produces a conduc-
tance matrix compatible with this current-force relation.
We emphasize that c is in principle a function of AE

and AC . Close-to-equilibrium, the non-equilibrium con-
ductance coincides by definition with Onsager’s response
matrix: the knowledge of the currents covariance close
to an equilibrium states allows to define the conductance
matrix uniquely. The fact that a non-equilibrium con-
ductance matrix includes more information on the model
than the current-force relation is argued in Ref. [20].
A non-equilibrium conductance matrix can arise (with
a unique definition) from a microscopic modeling. An-
other approach is to consider it as an alternative way of
defining a model, with the idea that the additional infor-
mation present in the matrix constrains the quadratic
fluctuations of currents whatever the considered non-
equilibrium stationary state.

Appendix C: Serial association

In this Appendix, we apply the general method of
Ref. [22] to obtain the conservation laws for TEC 3 in
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section C 1 and to justify the equivalent resistance ma-
trix of Eq.(92) from the law of resistance matrix addition
in section C 2. We obtain the same characteristic equa-
tions by a direct approach in section C 3.

1. Conservation laws

Let’s consider the internal physical currents as given
in Eq. (51), but specified for TEC m = 1, 2, 3 :

i(m) =

(
i
(m)
l

i
(m)
r

)
with i(m)

χ =

(
i
(m)
Eχ

i
(m)
Cχ

)
for χ = l, r.

(C1)
Conservation laws in matrix form write for m = 1, 2

ℓ(m)i(m) = 0, (C2)

with

ℓ(m) =
[
12 12

]
, (C3)

where 12 is the 2× 2 identity matrix. We expect identi-
cal conservation laws for TEC 3 given its similarity with
TEC 1 and 2. As an illustration, we recover below this
trivial result by using the method of Ref. [22].

Conservation of energy and charge at the interface
leads to

Lei
(3) = Lii

(1)
r (C4)

where we define

Le =

[
12 02

02 12

]
, Li =

[
−12

12

]
, (C5)

with 02 the 2 × 2 null matrix. The conservation laws
for TEC 3 are obtained by multiplying Eq. (C4) on the
left by v, the matrix whose lines are the basis vector of
coker(Li) such that vLi = 0. This matrix v reads here

v =
[
12 12

]
. (C6)

Matrix of conservation laws for TEC 3 is as anticipated

ℓ(3) = vLe =
[
12 12

]
. (C7)

2. Conductance matrix dimension matching

For each devices m = 1, 2, 3, the vector of linearly de-
pendent currents i(m) follows from the vector of indepen-
dent currents I(m) as

i(m) = S(m)I(m) (C8)

where S(m) is a selection matrix whose column vec-
tors are chosen as basis vectors of ker(ℓ(m)) such that

ℓ(m)S(m) = 0. For all m = 1, 2, 3, we choose the follow-
ing vector of linearly independent currents

I(m) =

(
i
(m)
El

i
(m)
Cl

)
=

(
IE
IC

)
(C9)

which is associated to the following choice of selection
matrix and its associated pseudoinverse

S(m) =

[
12

−12

]
and S(m)+ =

1

2

[
12 −12

]
. (C10)

Eqs. (72–72) written for device m = 1, 2 can be inverted

A(m) = R(m)I(m) (C11)

with

R(m) =
1

K(m)T
(m)
l T

(m)
r[

1 −F (m)

−F (m) K(m)R(m)T̄ (m) + F (m)2

]
.(C12)

and

A(m) =

(
A

(m)
E

A
(m)
C

)
=

 1

T
(m)
r

− 1

T
(m)
l

V
(m)
l

T
(m)
l

− V (m)
r

T
(m)
r

 (C13)

where A
(m)
E (resp. A

(m)
C ) is the affinity conjugated to

the energy (resp. charge) current in the EPR. Following
Ref. [22] to determine G(3), we start solving Eq. (C4) for

i
(1)
r which yields

i(1)r =
1

2

[
−12 12

]
i(3) (C14)

where we used the left pseudo-inverse of Li since its
columns are linearly independent. This last relation can
thus be used to express i(m) for m = 1, 2 in term of i(3)

as

i(m) = π(m,3)i(3), (C15)

where

π(1,3) =

[
12 02

− 1
212

1
212

]
, π(2,3) =

[
1
212 − 1

212

02 12

]
. (C16)

Now the law of resistance addition reads

R(3) =

2∑
m=1

Π(m,3)TR(m)Π(m,3) (C17)

where

Π(m,3) ≡ S(m)+π(m,3)S(3) = 12. (C18)

We thus obtain the result stated in the main text

R(3) = R(1) +R(2). (C19)
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3. Effective model

We show here that TEC 3 can be modelled by an ef-
fective model akin to the CPM, but with IC dependant
thermoelectric coefficients. Let’s consider the following
averages and differences of thermoelectric coefficients for
TEC 1 and 2

ᾱ =
α(1) + α(2)

2
, δα = α(2) − α(1), (C20)

K̄ =
K(1) +K(2)

2
, δK = K(2) −K(1), (C21)

R̄ =
R(1) +R(2)

2
, δR = R(2) −R(1), (C22)

which, combined with Eqs. (17,27), yields

IE =
I
(1)
E + I

(2)
E

2
= −K(3)∆T (3) + F (3)IC , (C23)

IC =
I
(1)
C + I

(2)
C

2
= −α(3)∆T (3) +∆V (3)

R(3)
, (C24)

with the following thermoelectric coefficients for TEC 3

α(3) = ᾱ− δα
2(2K̄ + δαIC)

, (C25)

K(3) =
K̄

2
− δKδα

4(2K̄ + δαIC)
, (C26)

R(3) = 2R̄+ δα
δαT̄

(3) − R̄IC
2K̄ + δαIC

, (C27)

F (3) =
F (1) + F (2)

2
− δK(δαT̄

(3) − R̄IC)

2(2K̄ + δαIC)
. (C28)

Since we consider an imposed ∆T (3) value, we see that
all these four parameters now depend on the value of the
electric current IC . According to Eq. (72), the current–
force characteristics of TEC 3 can thus be described by
the resistance matrix R(3)′ which reads

R(3)′ =
1

K(3)TlTr

[
1 −F (3)

−F (3) K(3)R(3)T̄ (3) + F (3)2

]
(C29)

for the force and current basis of Eq. (93). Clearly,
this last matrix does not coincides with matrix R(3) ob-
tained by the law of resistance addition. However, since
R(3)′I = R(3)I by construction, these two matrices be-
long to the same class of resistance matrix. This can be
stated with an equivalent of Eq. (B5), but for resistance
matrices:

R(3)′ = R(3) +
(
R

(3)′

22 −R
(3)
22

)−( IC
IE

)2
IC
IE

IC
IE

1

 , (C30)

with

R
(3)′

22 −R
(3)
22 =

1

K(3)

[
F (1)2 + F (2)2

2TlTr
− 1

T

(
F (1)2

Tl
+

F (2)2

Tr

)

+
F (1)F (2)

TlTr

]
+

R(3)

2

(
A

(2)
E −A

(1)
E

)
,

(C31)

and T the temperature at the interface given in Eq. (88).

Appendix D: Parallel association: conservation laws

We determine ℓ(3) in the case of a parallel associa-
tion following the method of Ref. [22]. Eq. (C3) provides
the conservation of internal currents for TEC 1 and 2,
i.e., their conservation laws before parallel association.
The external conservation laws, i.e. the conservation laws
arising from the parallel association of TEC 1 and 2 to
create TEC 3, are

i(3) =
[
π

(1,3)T
∥ π

(2,3)T
∥

](
i(1)

i(2)

)
, (D1)

where π(m,3) = 14 for m = 1, 2 and

i(3) =


i{E1, E3}
i{C1, C3}
i{E2, E4}
i{C2, C4}

 ,

(
i(1)

i(2)

)
=



iE1
iC1
iE2
iC2
iE3
iC3
iE4
iC4


. (D2)

We combine all the conservation laws into

L

(
i(1)

i(2)

)
=


0
0
0
0
i(3)

 , (D3)

with

L =

 ℓ(1) 0
0 ℓ(2)

π
(1,3)T
∥ π

(2,3)T
∥

 =



1 0 1 0 0 0 0 0
0 1 0 1 0 0 0 0
0 0 0 0 1 0 1 0
0 0 0 0 0 1 0 1
1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1


.

(D4)
A left null basis of L reads

u =

[
−1 0 −1 0 1 0 1 0
0 −1 0 −1 0 1 0 1

]
. (D5)
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We have shown in Ref. [22] that the last |P(3)| = 4
columns of u gives the matrix of conservation laws for
TEC 3, here

ℓ(3) =

[
1 0 1 0
0 1 0 1

]
. (D6)

Indeed, left multiplying Eq. (D3) by u gives a null vector
on the left hand side, and the right hand side exhibits
the linear dependence between the components of i(3),
i.e. between the physical current of TEC 3. Here again,
TEC 1, 2 and 3 all have the same conservation laws,
which was expected by symmetry.
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