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We derive the nonequilibrium conductance matrix for open stationary Chemical Reaction Net-
works (CRNs) described by a deterministic mass action kinetic equation. As an illustration, we de-
termine the nonequilibrium conductance matrix of a CRN made of two pseudo-linear sub-networks,
called chemical modules, in two different ways: First by computing the nonequilibrium conduc-
tances of the modules that are then serially connected. Second by computing the nonequilibrium
conductance of the CRN directly. The two approaches coincide, as expected from our theory of
thermodynamic circuits.

I. INTRODUCTION

Open Chemical Reaction networks (CRNs) are
paradigmatic examples of complex out of equilibrium sys-
tems. Over the last decades, they have attracted a long
standing attention as they combine the theory of graphs
and hyper-graphs [1–3], dynamical systems theory [4, 5]
and thermodynamics [6–8]. CRNs are of various com-
plexity, from pseudo-linear dynamics highly similar to
Markov jump processes [9], to non-linear dynamics with
interacting species (beyond interaction through chemical
reactions only) [10], passing by complex balance dynam-
ics for deficiency zero CRNs [11]. Given their complex-
ity, the circuit decomposition of CRNs is appealing to
simplify the study of each chemical module separately.
Once characterized, each chemical module can be reused
in other CRNs without further studies while the global
investigation of a CRN require to restart from scratch
upon any minor modification of the network. An exist-
ing circuits approach relies on chemical modules modeled
by current-concentration characteristics [12]. In the lat-
ter work, constraints on internal species are dealt indi-
rectly with the help of emergent cycles [13], i.e., a set
of reactions that upon completion do not change the in-
ternal concentrations, but only transfer matter between
chemostats. Moreover, couplings between chemical cur-
rents are not at the core of this theory although they
significantly constrain the efficiency of chemical trans-
duction [14–17].

In the present work, we extend to circuits of chemi-
cal modules our thermodynamic circuit theory [18]. The
description of chemical modules by nonequilibrium con-
ductance matrices combines the simplification of circuit
decomposition with the ability to lift the notion of cou-
pling between reaction currents to the level of matter
currents exchanged with the chemostats. Additionally,
nonequilibrium resistance/conductance matrices provide
a model for chemical transduction within irreversible
thermodynamics that accounts for chemical currents cou-
pling. Therefore, energy conversion (e.g., thermoelectric
[19]) and chemical transduction are essentially studied on
the same footing, illustrating the universality of concepts

in the physics of conversion processes.
The paper is organized as follows: In section II, we de-

rive the nonequilibrium resistance/conductance matrices
at various levels of description of the open CRN. We start
by recalling the theory of chemical kinetics emphasizing
its thermodynamic consistency [13]. Then, given their
prominence in our work, we determine the conservation
laws relating the chemostat currents, i.e., the physical
currents corresponding to matter received by the CRN
from the chemostats. This approach transfers Schnaken-
berg’s decomposition of reaction currents on cycle cur-
rents [1] to higher level where physical currents are de-
composed on fundamental currents [18]. This allows for
an effective description of the stationary CRN that does
not rely on emergent cycles [12, 13]. Instead, we con-
sider conservation laws of physical currents (i.e. from
chemostats). This simple change of viewpoint makes
easier the connection with our theory of thermodynamic
circuits and has greater similarity with the framework
of Markov jump processes. In section III, we illustrate
the calculation of the chemical nonequilibrium conduc-
tance matrix on the two first chemical modules appear-
ing in Ref. [12]. Then, we provide two derivations of
the nonequilibrium conductance matrix of the CRN built
upon their serial association. First, we apply our law
of resistance addition for serial association of thermo-
dynamic devices. Second, we derive the nonequilibrium
conductance matrix directly for the whole network.

II. CHEMICAL NONEQUILIBRIUM
CONDUCTANCE MATRIX

In this section, we fix the notation by recalling the
stochastic thermodynamics of CRNs [13]. Whenever pos-
sible, we make connection with stationary Markov jump
processes as studied in the first section of Ref. [18]. In
the same spirit, we review the description of conserva-
tion laws and conserved quantities existing in closed and
opened CRNs. Finally, we build the nonequilibrium con-
ductance matrix describing the current–force character-
istics of a CRN.



2

A. Chemical kinetics

We describe a chemical reaction network by a set of
chemical species Zα of concentration [Zα], identified by
α ∈ S = {1, 2, ..., |S |} that are transformed by chemical
reactions denoted by the index ρ ∈ R = {1, 2, ..., |R|}.
Each reaction ρ is arbitrarily oriented, is assumed to be
reversible and follows a chemical equation of the form:

∑
α∈S

∇+
α,ρZα

k+
ρ

⇌
k−

ρ

∑
α∈S

∇−
α,ρZα (1)

where ∇+
α,ρ (respectively ∇−

α,ρ) is the number of
molecules α consumed (respectively produced) for a given
forward reaction ρ [8]. The evolution of the concentra-
tions of species α follows the kinetic equation

d[Z]
dt

= ∇j + I (2)

where [Z] is the concentration vector of components
[Zα], ∇ the stoichiometric matrix of components ∇α,ρ =
∇−

α,ρ − ∇+
α,ρ, j the vector of reaction currents and I

the currents exchanged with the chemostats. We remark
that Eq. (2) is a continuity equation for the species con-
centrations analogous to the master equation describing
Markov processes. In this analogy, the species concentra-
tions correspond to state probabilities, the stoichiomet-
ric matrix ∇ to the incidence matrix of the graph of the
Markov jump process, and the reaction currents j to the
edge probability currents. The source term I appears
in the kinetic equation, but not in the master equation.
This term is required to have fixed concentration of the
external species. There is no such term for Markov jump
processes: the reservoirs constrains the transition rates
and not the state occupancy directly. Another difference
is that the master equation ruling the time evolution of
the state probability for Markov jump processes is lin-
ear, while the kinetic equation ruling the time evolution
of the concentrations can be non linear.

Assuming mass action law, the reaction fluxes read

jρ ≡ k+
ρ [Z]∇

+
ρ − k−

ρ [Z]∇
−
ρ (3)

where we denote k±
ρ the kinetic rates and ∇±

ρ the ρ’s col-
umn of matrix ∇±. We use the notation xy =

∏
α xyα

α .
The kinetic rates are chosen according to the local de-
tailed balance [9]:

RT log
k+

ρ

k−
ρ

= −(∇T µ0(T ))ρ (4)

where ∇T is the transpose of the stoechiometric matrix,
µ0 the column vector of standard chemical potential for
species in S , T the temperature of the isothermal CRN
and R the perfect gaz constant. With words, local de-
tailed balance relates dynamics to thermodynamics, i.e.
kinetic rates to standard chemical potentials. It does

so in order to ensure dynamically consistent equilibrium
or stationary nonequilibrium states. We define the force
conjugated to the reaction currents jρ as

fρ ≡ RT log
k+

ρ [Z]∇
+
ρ

k−
ρ [Z]∇−

ρ

= −(∇T µ)ρ = −∆ρG (5)

where the vector µ gathers the chemical potential of the
species in S and ∆ρG is the Gibbs free energy change
caused by reaction ρ. The component α of the chemical
potential vector µ reads [9]

µα = µ0
α + RT log[Zα]. (6)

By definition, chemostats set to constant values the con-
centrations of external species denoted [Yα], with α ∈ Sy
the subset of chemostated species. The concentrations of
internal species denoted [Xα] are free, i.e., species with
α ∈ Sx are not exchanged with any chemostat. The total
set of species is the disjoint union of these two sets

S = Sx ∪ Sy. (7)

Accordingly, the concentration vector and the stoichio-
metric matrix writes respectively

[Z] =
(

[X]
[Y ]

)
, ∇ =

[
∇x
∇y

]
. (8)

The rate equation rewrites as

d[Z]
dt

=
(

d[X]
dt
0

)
=
[
∇x
∇y

]
j +

(
0
i

)
, (9)

where we use d[Y ]
dt = 0 for external species. Hence, the

splitting between external and internal species of Eq. (9)
leads to a definition of the currents received by the open
CRN from the chemostats

i = −∇yj, (10)

and a kinetic equation for internal species with no source
term

d[X]
dt

= ∇xj (11)

since internal species are not exchanged with the envi-
ronment, i.e. I = (0, i)T by definition. In this work, i
is the vector of chemostat currents as its components are
matter currents only, as compared to Ref. [18] in which
they are physical currents of any extensive quantity ex-
changed with a reservoir.

B. Conservation laws

Let’s determine the conservation laws relating physical
currents. We assume that the stoichiometric matrix ∇
has a non zero cokernel, i.e., it exists L such that

L∇ = 0. (12)
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Then, each row of matrix L is a left eigenvector of the
stoichiometric matrix with null eigenvalue. We denote by
|Lcl| the number of rows of matrix L, label them with
λ ∈ {1, 2, . . . , |Lcl|}. The subscript cl stands for "close"
as will become clear later on. Since we consider open
CRNs, we can split L block wise by columns (splitting
between the internal and external species)

L =
[
ℓx ℓy

]
, (13)

as the first lines of ∇ are for the internal species, and
the final ones for external species. Multiplying the rate
equation Eq. (9) by L yields:

dM

dt
= ℓyi, (14)

where we have defined the moiety vector

M ≡ ℓx[X]. (15)

A way to interpret Eq. (14) is to consider the closed CRN
case. Indeed, in this case i = 0 and Eq. (14) reveals
that M gathers the conserved quantities of the dynam-
ics. L is thus the matrix whose lines are the conser-
vation laws of the CRN if it was closed. This explains
why L is usually called the matrix of conservation laws
in the literature. For open CRNs, a conserved quan-
tity Mλ remains conserved after opening the network if
(ℓyi)λ = 0. But, for an open CRN, i ̸= 0 by definition.
Then, Mλ is a conserved quantity of the dynamics only
if ∀α ∈ Sy, (ℓy)λα = 0 (case u) or if (ℓyi)λ = 0 with λth
line of ℓy having at least one non zero component. Note
that without any assumptions on the chemostat currents,
(ℓyi)λ ̸= 0 (case b). The corresponding moeities are thus
in general no longer conserved quantities of the dynam-
ics. According to these two cases, we split linewise the
matrix L and the vector M as

L =
[
ℓu

ℓb

]
, M =

[
Mu

M b

]
. (16)

The matrix ℓu gathers the |L u| conservation laws such
that the components of Mu remain conserved whatever
the current incoming from the reservoir: Opening the
CRN always preserves the conservation laws ℓu that are
said "unbroken". By definition ℓu

y = 0 and the unbroken
conservation laws take the form

ℓu =
[
ℓu

x ℓu
y
]

=
[
ℓu

x 0
]

. (17)

On the contrary, ℓb gathers the |L b| conservation laws
that can be associated to conserved quantities only
when taking into account the matter exchanged with the
chemostats. In this case, a particular combination of
the currents incoming from the reservoirs is required to
get a constant moiety. If not, the moiety is not con-
served and opening the CRN has “broken” the conser-
vation law. Applying now the broken conservation laws
ℓb =

[
ℓb

x ℓb
y
]

=
[
ℓb

x ℓ
]

on Eq. (9), we obtain

dM b

dt
= ℓi (18)

We shorten the notation of ℓb
y by ℓ, for consistency with

Ref. [18]. Indeed, when assuming that any species has
reached its stationary concentration (as done in the fol-
lowing sections)

ℓi = 0. (19)

Then, ℓ stands for the conservation law matrix for phys-
ical currents flowing from the reservoirs. In the case of
CRNs, one can check that the |L | = |L b| = |Lcl|−|L u|
rows of matrix ℓ are indeed the conservation laws that
relate linearly the chemostat currents at stationary state.
Hence, we have exhibited in this section the block form
of matrix

L =
[
ℓu

x 0
ℓb

x ℓ

]
, (20)

in which appears the submatrix ℓ of conservation laws
for chemostat currents at the core of our theory of ther-
modynamic circuits. We provide in the next section a
direct way of getting the conservation law matrix ℓ from
the stoechimoetric and cycle matrices.

C. Cycles and selection matrix

1. Cycles

From now on, we assume that the open CRN has
reached a nonequilibrium stationary state. Then,
Eq. (11) reduces to

∇xj = 0 (21)

and the reaction currents are linearly dependent: the
lines of ∇x contains the coefficients of a vanishing lin-
ear combination of reaction currents. Hence, it exists
sequences of reactions, called cycles, that let the concen-
trations of internal species unchanged. We thus have

j = CJ , (22)

where C is the cycle matrix whose |C | columns are basis
vectors of ker(∇x) such that ∇xj = ∇xCJ = 0. We
denote as usual the cycle currents J : it is the vector of
independent currents among the reaction currents in j.
As already emphasized in Ref. [18, 19], C is also analogous
to a selection matrices.

Now that we have the linearly independent cycle cur-
rents at hand, we can provide a direct computation of the
matrix ℓ for the conservation laws constraining chemo-
stat currents. Indeed, Eqs. (10, 19, 22) lead to

ℓi = −ℓ∇yj = −ℓ∇yCJ = 0. (23)

Since the currents J are linearly independent, the above
equation imposes

ℓϕ = 0 with ϕ ≡ ∇yC (24)
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the matrix of physical exchanges whose columns provide
the matter exchanged with chemostats during each cy-
cle. In words, the rows of matrix ℓ are the row vectors
of current conservation laws. They belong to the cok-
ernel of ϕ. These row vectors indicate the exact pro-
portion of chemostat currents that when imposed to the
system does not change the internal species concentra-
tions. Our approach of thermodynamic circuits based on
current conservation laws is an alternative to the method
relying on emergent cycles [12, 13]. The vectors associ-
ated to such emergent cycles belong to the kernel of the
stochiometric sub-matrix for internal species, but are not
in the kernel of the stochiometric sub-matrix for external
species. Said differently, emergent cycle are vectors (in
the space of reactions) that indicate a set of reactions
that upon completion do not change the internal concen-
trations but do change the external ones. In the end,
conservation laws for chemostat currents and emergent
cycles are two different ways of keeping internal species
fixed while transfering species between chemostats : the
former focuses on the chemostat currents and the latter
on cycles of reactions that only transfer species from one
chemostat to another.

2. Selection matrix

Like reaction currents are linear combination of inde-
pendent cycle currents, we obtain below physical (chemo-
stat) currents as linear combinations of the fondamental
currents. The conservation laws write ℓi = 0 and the
physical currents are linearly dependent as expected. We
can select a subset of linearly independent currents as

i = SI (25)

where S is the selection matrix whose columns are basis
vector of ker(ℓ). We denote as usual I the fundamental
currents: it is the vector of independent currents among
the physical currents in i. By definition, the matrix S has
linearly independent columns and admits a left pseudo
inverse S+. The fundamental current vector then write
I = S+i. We emphasize that the fundamental currents
are chosen as linearly independent currents among the
chemostat currents. Depending on the CRN, we might
have identical cycle and fundamental currents J = I, in
which case S = −∇yC. However, this is not generally
the case as we show in appendix A.

D. Entropy production and thermodynamic forces

In this section, we determine the thermodynamic forces
conjugated to reaction, cycle, chemostat and fundamen-
tal currents for a stationary open CRN. This is done by
ensuring thermodynamic consistency, i.e., identical En-
tropy Production Rate (EPR) at all levels of description
of the CRN [1]. We start from the EPR σ at the level of

reaction forces and currents given (up to the temperature
factor) by

Tσ = fT j (reaction level). (26)

We switch to the cycle level by inserting the definition
of the cycle currents Eq. (22) in the EPR Eq. (26). The
EPR then reads

Tσ = F T J (cycle level) (27)

where we have introduced the cycle affinity

F T = fT C. (28)

Another decomposition of the EPR follows from inserting
the definition of the reaction affinity Eq. (5) in Eq. (26).
Using in addition that the rate equation in stationary
state yields I = −∇j , we obtain

Tσ = µT I (29)

in agreement with fT = −µT ∇ of Eq. (5). This EPR
further simplifies by noting that IT =

(
0 i
)

and by
using the internal/external splitting of µT =

(
µT

x aT
)

as

Tσ = aT i (physical level). (30)

where a = µy is the vector of chemical potentials for
external species. We can finally use the redundancy of
the chemostat currents to write the EPR as

Tσ = AT I (fundamental level) (31)

where we have identified the fundamental force vector

A = ST a (32)

conjugated to the fundamental current vector I. This
ends the identification of the four relevant current-force
decompositions preserving the EPR.

E. Non equilibrium conductance matrix

We now turn to the determination of the current-force
characteristics based at each level of description on a
nonequilibrium conductance matrix. We first define the
reaction resistance matrix by the diagonal matrix

r = diag(r1, . . . , r|R|) with rρ = fρ

jρ
. (33)

The thermodynamic force at the level of reactions writes
as a function of reaction currents

f = rj. (34)

Then, the cycle currents and forces are related by

F = RJ , with R ≡ CT rC (cycle level) (35)
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since

F = CT f = CT rj =
(

CT rC
)

J (36)

where we use Eqs. (22,28). The matrix R is symmetric
and positive semi definite by non-negativity of the EPR.
Assuming an inverse matrix exists, we call R−1 the cycle
conductance matrix. It relates the cycle currents to its
conjugated affinities as

J = R−1F . (37)

Another conductance matrix exists relating stationary
currents I and chemical potential via

I = Gµ, with G ≡ ∇r−1∇T , (38)

since

I = −∇j = −∇r−1f = (∇r−1∇T )µ. (39)

In a similar way, we obtain the conductance matrices
at the level of physical forces and currents

i = ga, with g ≡ ϕR−1ϕT . (40)
(physical level)

To do so, we start from Eq. (10) and use Eqs. (22,37,28)
to get

i = −∇yCR−1CT f . (41)

The last step involves the reaction affinity of Eq. (5) in
vector notation

f = −∇T
x µx − ∇T

y a ⇒ CT f = −CT ∇T
y a (42)

since ∇xC = 0 by definition. We notice that the nonequi-
librium conducance matrix at the physical level takes the
same expression as for Markov jump processes [17, 18]
once the relevant physical matrix ϕ has been identified.
We remark that the physical conductance matrix writes
explicitly g = ∇yCC+r−1 (CC+)T ∇T

y , in which CC+ is
a projector and not the identity since C+ is a left inverse
only.

Finally, the conductance for fundamental currents and
forces writes

I = GA, with G ≡ S+gST + (fundamental level).
(43)

Indeed, assuming that G exists such that I = GA and
using Eqs. (25,32) yields

i = SI = SGST a, ⇒ g = SGST . (44)

that can be inverted to get the fundamental conductance
matrix of Eq. (43) since S+ is a left inverse. This con-
cludes our derivation of the nonequilibrium conductance
matrix associated to a CRN at any level of description. In
the end, an analogy with Markov jump processes comes
out clearly thanks to the identification of the matrix of
physical exchanges ϕ on one side and, on another side,
considering that the cycle matrix C must be in the ker-
nel of ∇x the stochiometric submatrix for internal species
only.

III. ILLUSTRATION

We now derive the non equilibrium conductance ma-
trix for the CRNs of Fig. 1. Then, building on these
matrices, we apply our theory of thermodynamic circuits
[18] to obtain the non equilibrium conductance matrix of
the serial association of the two CRNs. To conclude this
illustration, we verify that the derivation of the non equi-
librium conductance matrix from the full network gives
the same result.

This section is organized as follows: we start by de-
scribing the modules by providing their stoichiomet-
ric matrices and their sub-matrices for internal/external
species. Then, we determine the currents and their con-
jugated forces at all levels of description by exploiting cy-
cles and conservation laws. The modules having pseudo
first order dynamics, the stationary concentrations can
be computed exactly, either by using the Kirchoff the-
orem as in appendix B of Ref. [12] or through purely
linear algebraic steps as in Ref. [20]. Using those, the
resistance matrix at the reaction level follows. We prop-
agate it to get the conductance matrices at all levels of
description. Finally, using the law of resistance matrix
addition derived in [18], we determine the conductance
matrix for the serial association of modules 1 and 2. We
compare our result with the direct computation of the
conductance matrix at fundamental level.

A. Stoichiometry and reaction currents

The stoichiometric matrices describing the reactions
for modules 1 and 2 read

∇(1) =
[

∇(1)
x

∇(1)
y

]
=


−1 1 0
1 −1 −1
0 0 1

−1 0 −1
0 1 0

 , (45)

∇(2) =
[

∇(2)
x

∇(2)
y

]
=



−1 0 1 0 0
1 −1 0 −1 0
0 1 −1 0 1
0 0 0 1 −1
0 0 0 −1 0
0 0 0 0 1

−1 0 0 0 0
0 0 1 0 0


. (46)

The columns (reaction number ρ) are ordered respec-
tively as

R(1) = {1, 2, 3}, R(2) = {4, 5, 6, 7, 8}. (47)

The rows (species labels Zα) are respectively ordered as

S (1) = {Ea, EaS, EaS2, S, Na}, (48)
S (2) = {Eb, EbF, EbW, E∗

b , Na, Nb, F, W}. (49)
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FIG. 1. CRN decomposed into chemical modules 1 and 2 as
proposed in Ref. [12]. The modules are associated in series.
Module 1 has 2 external species S, Na and 3 internal species
Ea, EaS, EaS2. Module 2 has 4 external species Na, F, W, Nb

and 4 internal species Eb, EbF, E∗
b , EbW. The serial associa-

tion is implemented by ensuring the conservation of the re-
action currents j2 = j7 and the equality of the stationary
concentration of Na computed in modules 1 and 2.

FIG. 2. Effective description of modules 1, 2 and 3. In mod-
ules 2 and 3, a coupling exists between currents j6 and j8,
although it does not appear on this graphical representation
of conservation laws.

The internal and external species are

S
(1)
x ={Ea, EaS, EaS2}, S

(2)
x ={Eb, EbF, EbW, E∗

b },

S
(1)
y ={S, Na}, S

(2)
y ={Na, Nb, F, W}. (50)

The horizontal line in the stoichiometric matrices sepa-
rates them into two submatrices: the upper block ∇(m)

x
and the lower block ∇(m)

y for m = 1, 2. In the next two
sections, we express the stationary currents at all levels
of description in terms of the reaction currents

j(1) =

j1
j2
j3

 =

 k+
1 S [Ea] − k−

1 [EaS]
k+

2 [EaS] − k−
2 Na [Ea]

k+
3 S [EaS] − k−

3 [EaS2]

 , (51)

j(2) =


j4
j5
j6
j7
j8

 =


k+

4 F [Eb] − k−
4 [EbF ]

k+
5 [EbF ] − k−

5 [EbW ]
k+

6 [EbW ] − k−
6 W [Eb]

k+
7 Na [EbF ] − k−

7 [E∗
b ]

k+
8 [E∗

b ] − k−
8 Nb [EbW ]

 , (52)

where the concentrations of external species are denoted
without square brackets to emphasize that they are pa-
rameters for the effective rate constants.

B. From reaction to cycle currents

As aforementioned, the reaction currents are linearly
dependent: A basis of linearly independent cycle currents
can thus be chosen. Looking for a basis of the kernel of
∇(m)

x for m = 1, 2, we choose the following cycle matrices

C(1) =

1
1
0

 , C(2) =


0 1

−1 1
0 1
1 0
1 0

 . (53)

Applying Eq. (21) to both modules yields the following
relation between their reaction currents:

j1 = j2, j3 = 0, (54)
j4 = j6, j5 = j6 − j8, j7 = j8. (55)

We remark that equation j3 = 0 is due to our assump-
tion of stationary state: a non zero current would lead
to an accumulation of EaS2 in the system. We notice
also that these relations between reaction currents are
an instance of Kirchhoff’s current law applied to each
species of the CRN. Then, since the cycle matrices are
pseudo-invertible (C(1) is a vector and C(2) has linearly
independent columns), we can invert Eq. (22) for both
modules and obtain the following cycle currents

J (1) = C(1)+j(1) = j1, (56)

J (2) = C(2)+j(2) =
(

j8
j6

)
, (57)
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compatible with j(m) = C(m)J (m) by using the con-
straints of Eqs. (54–55).

From the cycle matrices and the stochiometric subma-
trix for external species, we find the matrices of physical
exchanges

ϕ(1) =
(

−1
1

)
, ϕ(2) =

−1 0
1 0
0 −1
0 1

 , (58)

whose lines are associated to external species as ordered
in Eq. (50).

C. From physical to fundamental currents

The left null eigenvectors of ∇(m) for m = 1, 2 consti-
tute the rows of matrices

L(1) =
[

1 1 1 0 0
−2 −1 0 1 1

]
=
[

ℓ
(1)u
x 0

ℓ
(1)b
x ℓ(1)

]
, (59)

L(2) =

 1 1 1 1 0 0 0 0
−1 −1 −1 0 1 1 0 0
−1 0 0 0 0 0 1 1

 =

 ℓ
(2)u
x 0

ℓ
(2)b
x ℓ(2)

 .

(60)

We separate the unbroken and broken conservation laws
(respectively internal and external species) by an hori-
zontal (respectively vertical) line. We identify the ma-
trices ℓ(m) of conservation laws for the chemical currents
received from the chemostats

ℓ(1) =
(

1 1
)

, ℓ(2) =
[

1 1 0 0
0 0 1 1

]
. (61)

Those matrices are in the cokernel of the matrices of
physical exchanges given in Eq. (58). The physical cur-
rents follow from Eq. (10) and read for both modules

i(1) = −∇(1)
y j(1) =

(
j1

−j1

)
, (62)

i(2) = −∇(2)
y j(2) =

 j8
−j8
j6

−j6

 . (63)

Their components follow the order of external species in
S

(m)
y of Eq. (50). They are chosen positive when matter

flows from the chemostat to the module as one can check
on Fig. 2. Finally, we can select linearly independent
currents called fundamental currents by choosing a vector
basis for the kernels of the conservation law matrices in
Eq. (61). This leads to selection matrices

S(1) =
(

1
−1

)
, S(2) =

 1 0
−1 0
0 1
0 −1

 . (64)

On can check Eq. (25) with the above selection matrices
for the following fundamental currents

I(1) = j1, I(2) =
(

j8
j6

)
. (65)

In the end, module 1 is described by an effective re-
action converting S into Na and one reaction current j1.
Similarly, module 2 is described by two coupled effective
reactions and two reaction currents j6 and j8. Fig. 2
summarizes this effective description for modules 1 and
2 in serial association [12].

D. Thermodynamic forces

We now turn to the derivation of the conjugated ther-
modynamics forces in terms of the reaction affinities de-
fined in Eq. (5) and which read for modules 1 and 2

f (1) =

f1
f2
f3

 =

 µEa
+ µS − µEaS

µEaS − µNa
− µEa

µEaS + µS − µEaS2

 , (66)

f (2) =


f4
f5
f6
f7
f8

 =


µEb

+ µF − µEbF

µEbF − µEbW

µEbW − µW − µEb

µEbF + µNa − µE∗
b

µE∗
b

− µNb
− µEbW

 . (67)

Using these reaction affinities for modules 1 and 2 in the
definition of cycle forces Eq. (28), we obtain

F (1) = C(1)T
f (1) = f1 + f2 = µS − µNa

, (68)

F (2) = C(2)T
f (2) =

(
f7 + f8 − f5
f4 + f5 + f6

)
=
(

µNa
− µNb

µF − µW

)
.

(69)

Those cycle forces are conjugated to the currents of
Eqs. (56–57). The physical forces are the chemical po-
tential associated to the external species

a(1)T =
(
µS µNa

)
, (70)

a(2)T =
(
µNa

µNb
µF µW

)
. (71)

Finally, the fundamental forces are obtained by applying
the definition of Eq. (32) with the selection matrices of
Eq. (64) and the physical forces of Eqs. (70–71)

A(1)T = a(1)T S(1) = µS − µNa
, (72)

A(2)T = a(2)T S(2) =
(
µNa − µNb

µF − µW

)
. (73)

Note that with this choice of selection matrices, the fun-
damental forces for both modules are equal to the cycle
forces.
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E. Conductance matrices

We compute now the resistance and conductance ma-
trices at all levels for module 1 and 2. First, at the reac-
tions level, the resistance matrices are denoted

r(1) =

r1 0 0
0 r2 0
0 0 r3

 , (74)

r(2) =


r4 0 0 0 0
0 r5 0 0 0
0 0 r6 0 0
0 0 0 r7 0
0 0 0 0 r8

 . (75)

with the rρ obtained from Eqs. (51–52) and (66–67). Us-
ing Eq. (35), the cycle resistance matrices for each mod-
ule read

R(1) = r1 + r2, (76)

R(2) =
[
r5 + r7 + r8 −r5

−r5 r4 + r5 + r6

]
. (77)

As expected, since there is a single cycle current for mod-
ule 1, the cycle resistance is scalar. Module 2 has two
cycles, its resistance matrix is thus a 2 × 2 matrix. Its
diagonal elements displays the resistance addition of the
reaction involved in each cycles. Its off-diagonal elements
characterize the coupling between the transport of chem-
ical species along the cycles pathways. Looking at the
CRN of module 2 on Fig. 1, one expects that reaction
for ρ = 5 couples the two reaction cycles. Using equation
Eq. (40), the conductance matrices at physical level read

g(1) = 1
r1 + r2

U with U =
[

1 −1
−1 1

]
, (78)

g(2) = 1
det R(2)

[
(r4 + r5 + r6) U r5 U

r5 U (r5 + r7 + r8) U

]
.

(79)

Finally, the conductance matrices at fundamental level
are obtained from Eq. (43):

G(1) = 1
r1 + r2

, (80)

G(2) = 1
det R(2)

[
r4 + r5 + r6 r5

r5 r5 + r7 + r8

]
. (81)

In other words the cycle and fundamental resistance ma-
trices are equal for this CRN.

F. Conductance matrix of the full network

We refer to module 3 as the serial association of mod-
ules 1 and 2 via the chemical species Na. Therefore, Na,
which was an external species for modules 1 and 2 when

they were studied separately, is now an internal species
from the point of view of module 3. In this section, we
present two alternative derivations of the non-equilibrium
conductance matrix of module 3. First, we explain how
our law of resistance addition for serially connected ther-
modynamic devices applies to this example. Then, we
apply the procedure developed in this paper to the larger
network of module 3. We obtain the same result from the
two derivations.

1. Law of resistance matrix addition

In the previous sections, module 1 and 2 are studied
separately, i.e., as if reactions occur into separate reac-
tors. We now turn to the serial association of modules 1
and 2 to give module 3. Upon connection, all reactions
occur in the same reactor with conservation of the chem-
ical current corresponding to exchanges of Na between
the two modules. Moreover, the concentration [Na] at
the “interface” between the modules reaches a unique
nonequilibrium stationary state. In other words, the se-
rial connection implies j1 = j8 and chemical potential
continuity at the module’s “interface” for Na.

On this basis, we can apply our general method to com-
pute the non equilibrium conductance matrix of module
3, see Ref. [18]. As a start, we determine the conserva-
tion laws of module 3 and provide the currents at the
interface between the two modules as a function of the
chemostat currents of module 3. The left/right splitting
of physical currents reads

i(1) =
(

i
(1)
l

i
(1)
r

)
=
(

j1
−j1

)
, (82)

i(2) =
(

i
(2)
l

i
(2)
r

)
=

 j8
−j8
j6

−j6

 , (83)

where i
(2)
r is the vector made with the last three compo-

nents of i(2). By construction, the physical currents from
the chemostats of module 3 are

i(3) =
(

i
(1)
l

i
(2)
r

)
=

 j1
−j8
j6

−j6

 , (84)

since the current leaving module 1 from the right and
entering module 2 on the left are eliminated from our de-
scription after serial connection of the two modules. The
conservation laws of Eq. (61) can be reformulated to sep-
arate interface and chemostat currents for module 3. In
the equation below, we place on the left hand side the in-
terface currents and on the right hand side the chemostat
currents:

Lii
(1)
r = Lei(3), (85)
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with

Li =

−1
1
0

 , Le =

1 0 0 0
0 1 0 0
0 0 1 1

 , (86)

the matrices resulting from this transformation of conser-
vation laws [see Eq. (40) in Ref. [18]]. Eq. (85) allows us
to obtain the conservation laws for module 3: we denote

v =
[
1 1 0
0 0 1

]
(87)

the matrix whose lines are basis vectors of the cokernel
of Li [see Eq. (45) in Ref. [18]]. Left multiplying Eq. (85)
by v produces the conservation laws for physical currents
of module 3

ℓ(3)i(3) = 0, (88)

where

ℓ(3) = vLe =
[
1 1 0 0
0 0 1 1

]
. (89)

It turns out that the conservation law matrices for mod-
ule 2 and 3 are equal. This is expected since a single
pin connection doesn’t decrease the number of external
species. In practice, module 1 puts one pin of module 2
in mixed boundary conditions. A choice of selection ma-
trix associated to the conservation law matrix of Eq. (89)
is thus

S(3) = S(2). (90)

In the same line, the equivalent description of module 3
is very similar to the one of module 2 as shown on Fig. 2.
Going back to Eq. (85), we can solve for i

(1)
r to express

it in terms of i(3) as i
(1)
r = πi(3) = −i

(2)
l with

π = L+
i Le = 1

2
[
−1 1 0 0

]
. (91)

Inserting this last relation in Eqs. (82– 83) yields the fol-
lowing relation between the physical currents of modules
1 and 2 in terms of those of module 3

i(m) = π(m,3)i(3) (92)

for m = 1, 2 and where

π(1,3) =
[

1 0 0 0
− 1

2
1
2 0 0

]
, (93)

π(2,3) =


1
2 − 1

2 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 . (94)

Finally, the relation between the fundamental currents
of module 1 and 2 and those of module 3 is obtained by

using Eq. (25) with the selection matrix of Eq. (90) in
Eq. (92)

i(m) = π(m,3)S(3)I(3). (95)

Then, since the selection matrices for module 1 and 2 are
pseudo-invertible, we finally obtain

I(m) = Π(m,3)I(3) (96)

with Π(m,3) ≡ S(m)+π(m,3)S(3) giving

Π(1,3) =
[
1 0

]
and Π(2,3) =

[
1 0
0 1

]
. (97)

Using the additive structure for resistance matrices [see
Eq. (34) in Ref. [18]]

G(3)−1
=

2∑
m=1

Π(m,3)T
G(m)−1

Π(m,3), (98)

we get the fundamental resistance matrix of module 3

G(3)−1
=
[
r1 + r2 + r5 + r7 + r8 −r5

−r5 r4 + r5 + r6

]
(99)

describing the force-current characteristics. Interestingly
the coupling between the fundamental currents for mod-
ule 3, i.e., the off diagonal elements in G(3)−1, emerges
solely from the chemical reaction coupling the two cycles
of module 2. The intensity of the first diagonal element
is the sum of the resistance of the two cycles involved
in the serial association. The second diagonal coefficient
is equal to the cycle resistance of the cycle that is not
involved in the serial association.

2. Direct derivation

In this section, we provide an alternative derivation
of the conductance matrix of Eq. (99) for module 3. We
compute this matrix directly from the stoichiometric ma-
trix of the entire CRN. This latter reads

∇(3) =
[

∇(3)
x

∇(3)
y

]
=



−1 1 0 0 0 0 0 0
1 −1 −1 0 0 0 0 0
0 0 1 0 0 0 0 0
0 1 0 0 0 0 −1 0
0 0 0 −1 0 1 0 0
0 0 0 1 −1 0 −1 0
0 0 0 0 1 −1 0 1
0 0 0 0 0 0 1 −1

−1 0 −1 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 −1 0 0 0 0
0 0 0 0 0 1 0 0



.

(100)
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In this matrix, the columns are numbered by the reaction
index ρ = 1, . . . , 8. The rows correspond to the chemical
species ordered as in

S (3) = {Ea, EaS, EaS2, Na,

Eb, EbF, EbW, E∗
b , S, Nb, F, W}. (101)

The upper left 3 × 3 submatrix is ∇(1)
x . The lower right

4 × 5 submatrix above the horizontal line is ∇(2)
x . The

lower right 3 × 5 submatrix is ∇(2)
y . The fourth row that

corresponds to Na appears now in the internal species
(upper part) of the stoichiometric matrix. The ninth
row that correspond to S remains in the external species
(lower part). The whole networks admits the two follow-
ing cycles

C(3) =



1 0
1 0
0 0
0 1

−1 1
0 1
1 0
1 0


. (102)

The reaction resistance matrix is the diagonal matrix:

r(3) = diag(r1, r2, r3, r4, r5, r6, r7, r8). (103)

The cycle resistance matrix thus reads

R(3) =
[

r1 + r2 + r5 + r7 + r8 −r5
−r5 r4 + r5 + r6

]
. (104)

To obtain the conservation laws, we look for the cokernel
of the stoichiometric matrix which takes the form

L(3) =

 0 0 0 0 1 1 1 1 0 0 0 0
1 1 1 0 0 0 0 0 0 0 0 0

−2 −1 0 1 −1 −1 −1 0 1 1 0 0
0 0 0 0 −1 0 0 0 0 0 1 1

 .

(105)
The two last line correspond to the broken conservation
laws since they have non zero coefficients for the external
species. The conservation laws for chemostat currents are
recovered as the lower right block in L(3). We emphasize
that we chose for L(3) an appropriate row ordering of the
left null eigenvectors so as to get a matrix of conserva-
tion laws in the form of Eq. (20). Given that matrix of
current conservation law is identical to the one found in
the serial approach, the same choice of selection matrix
can be made leading to the fundamental resistance ma-
trix given in Eq. (99). Therefore, we conclude that, for
the simple CRNs studied in this section, the serial con-
nection of chemical modules leads to the same results as
the direct approach on the full network.

IV. CONCLUSION

In this work, we have defined (for the four levels of
description: reaction, cycle, physical and fundamental)

the nonequilibrium conductance matrix of a CRN in its
(unique) stationary nonequilibrium state. This definition
involves the reaction cycles for internal species, the mat-
ter exchanged with the chemostats for each cycle and the
conservation laws of the CRN leading to a choice of se-
lection matrix associated to a given basis of fundamental
currents and forces. Once these concepts have been iden-
tified in the framework of CRNs, the definition for the
conductance matrix is analogous to the one for Markov
jump processes [17, 18]. This approach leads to a syn-
thetic description of a CRN in terms of its nonequilibrium
conductance matrix and conservation laws for physical
currents, in the spirit of Ref. [18], as compared to the
approach based on emergent cycles of Ref. [12, 13].

The nonequilibrium conductance matrix is uniquely
defined when assuming that the CRN reaches a unique
nonequilibrium stationary state. This is guaranteed for
pseudo-first order kinetics which are linear, although we
remark that the notion of linearity depends on the de-
composition of the CRN into chemical modules. It may
happen that non-linearity reappears upon connection of
linear modules, as it is the case for our illustrative exam-
ple. In this case, the problem of non-uniticity may reap-
pear when solving for the concentration of the species at
the module’s interface. This problem of multiple solu-
tions deserves further investigations, for instance regard-
ing stability criteria. Borrowing from the theory of elec-
tronic circuits will certainly be useful in this direction,
all the more so for emergent phenomena commonly ap-
pearing in non-linear systems. This may help to advance
on the description of nonequilibrium phase transitions
given the crucial lack of nonequilibrium thermodynamic
potentials and associated variational principles.

Appendix A: Relative dimension of cycle and
fundamental forces

The main text examples has cycle and fundamental
vectors that share the same dimension. We show in this
appendix that this is not the case when ker (∇) is not
null. The proof relies on several uses of the rank nullity
theorem for matrices ∇x, ∇ and their transposes. This
theorem states that the number of columns of a matrix
is equal to the rank of the matrix plus the dimension of
its kernel, i.e.,

|R| = rk ∇x + |C |, (A1)
|Sx| = rk ∇T

x + |L u|, (A2)
|R| = rk ∇ + dim(ker ∇), (A3)
|S | = rk ∇T + |Lcl|. (A4)

Since a matrix and its transpose have identical rank, we
obtain

|C | = −|Sx| + |L u| + |R|, (A5)
= |Sy| − |L b| + |Lcl| − |S | + |R|, (A6)
= |Sy| − |L b| + dim(ker ∇). (A7)
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Hence, given that |C | is the number of cycle forces and
|Sy| − |L b| the number of fundamental forces, the two

are different for non-zero dimensions of the stochiometric
matrix’s kernel.
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