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Abstract
Dynamical ensembles have been introduced to study constrained stochastic processes. In
the microcanonical ensemble, the value of a dynamical observable is constrained to a given
value. In the canonical ensemble a bias is introduced in the process to move the mean value
of this observable. The equivalence between the two ensembles means that calculations
in one or the other ensemble lead to the same result. In this paper, we study the physical
conditions associated with ensemble equivalence and the consequences of non-equivalence.
For continuous time Markov jump processes, we show that ergodicity guarantees ensemble
equivalence. For non-ergodic systemsor systemswith emergent ergodicity breaking,we adapt
a method developed for equilibrium ensembles to compute asymptotic probabilities while
caring about the initial condition. We illustrate our results on the infinite range Ising model
by characterizing the fluctuations of magnetization and activity. We discuss the emergence
of non-ergodicity by showing that the initial condition can only be forgotten after a time that
scales exponentially with the number of spins.

Keywords Large deviations theory · Equivalence of ensembles · Non-ergodicity · Ising
model

1 Introduction

Ensemble equivalence offers a convenient way of computing equilibrium potentials (entropy,
free energy, grand potential, etc.) by choosing the ensemble in which calculations are eas-
ier. Then, a Legendre transformation provides the appropriated potential according to the
environmental constraints on the system (isolated, thermostatted, chemostated, etc.) [10].
Ensemble equivalence holds in many cases, but it breaks down for systems with long range
interactions between system constituents [3,7,11] or in the presence of a phase transition
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treated at the mean field level [15,19]. The equivalence of equilibrium ensembles has been
studied in detail [3,6,7,11,54], including in the framework of large deviation theory [50,52].

More recently, different dynamical ensembles have been used by many authors to study
stochastic processes [9,13,14,23,31,36,40,47,55] and the question of their equivalence has
been an active field of research. Equilibrium and dynamical ensembles differ qualitatively in
nature: the first one is made of states and the second of succession of states (either continuous
or discrete) called trajectories. Then, the probabilities on the ensembles are also different,
a state probability for the former and a probability of trajectories for the latter. Dynamical
ensembles must be used when the considered variables are time-integrated observables (like
work, irreversible heat exchanges or activity) because their statistics can only be computed
using trajectory probabilities. Based on a choice of dynamical observable and of a stochastic
process defining bare trajectory probabilities, one can define two dynamical ensembles: the
microcanonical and the canonical ensembles. Within the first ensemble, the trajectories are
filtrated on the value of the chosen dynamical observable. Within the second ensemble, the
probability of trajectories are exponentially biased. This canonical ensemble is also called
the s-ensemble [25], the driven, biased or tilted ensemble [31] or Esscher transform [20].
The last ensemble has been used to study glass transition [5,12,24,25,29,32,33,39,48] or as
a numerical tool to evaluate rare events probabilities [21,43]. As indicated by their names,
the way one introduces dynamical ensembles is in clear analogy with the way ensembles are
defined in equilibrium statistical physics.

When two ensembles are equivalent, the mean value of the dynamical observable is the
same in the two ensembles. Like for equilibrium ensembles, it is more convenient to make
calculations (or simulations) within the canonical ensemble motivating the determination of
the conditions for ensemble equivalence. Large deviation theory allows to conclude on this
point from the convexity of the large deviation function (LDF) or from the differentiability of
the cumulant generating function (CGF) [13,14]. Whenever ensembles are equivalent, LDF
and CGF encode the same information and are related by Legendre transformation.

In this paper, we aim in the first place at exploring the physical constraints associated with
equivalence of microcanonical and canonical dynamical ensembles. In the second place,
when ensemble equivalence does not hold, we provide a method to compute non-convex
LDFs from the (moment) generating functions.

We identify that ergodicity and additivity are crucial for the ensemble equivalence. Ergod-
icity guaranties that the system can switch from any state to another in a reasonable time
enabling to concatenate pieces of trajectories. Thanks to additivity, the probability of the
dynamical observable on a trajectorymade of twopieces is connected to aweighted average of
the pieces probabilities (based on their duration) constraining the dynamical observable prob-
ability to ensure ensemble equivalence. In Sect. 2, we review results on ensemble equivalence
and show for Markov jump processes that ergodicity implies the equivalence of dynamical
ensembles for any additive observable. The contraposition says that non-ergodicity is required
(but may not be sufficient) to break ensemble equivalence, and thus to obtain non-convex
LDF. In Sect. 3, we illustrate our results with a simple non-ergodic system and derive the
non-convex LDF for the system activity. For this system, non-ergodicity is imposed by con-
struction because the transition rate matrix is reducible. Non-ergodicity impacts the LDF
since the latter may change according to the probability of the initial state. Based on our
understanding of this simple model, we look at the magnetization and activity of an infinite
range Isingmodel forwhich ergodicity is broken in the thermodynamic limit.We showhow to
compute the non-convex LDF from the propagator of the generating function for the chosen
observable(s) by adapting a method developed by Touchette in Ref. [51,53] for equilibrium
ensembles. Applying this method to the Ising model, we notice that the non equivalence of
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equilibrium ensembles is tightly connected to the non equivalence of dynamical ensembles.
Since non-ergodicity of the Ising model is an emergent feature, the order of the thermo-
dynamic and long time limits determines which of the convex or non-convex LDF is more
appropriated. In Sect. 4, we prove that the time to relax from the initial condition grows
exponentially with the number of spins. In practice, this means that for times shorter than
this relaxation time the system is not ergodic and one must use the non-convex LDF. For
longer times of observation, the system is ergodic and one must use the convex LDF. Such
arguments are conventional in the framework of equilibrium ensembles [6,41]: we adapt
them for dynamical ensembles and illustrate them precisely using the Ising model.

2 Microcanonical and Canonical Dynamical Ensembles

In this section, we review for time-homogeneous jump processes some results on dynamical
ensemble equivalence, see Refs. [13,14] and references therein for more general Markov
processes.

2.1 Definitions: Stochastic Processes and Dynamical Ensembles

The Markov jump process Xt takes values in the finite state space Ω at all time t ∈ [0, T ].
The probability that Xt = x ∈ Ω at time t , denoted p(x, t), is the solution of the time-
homogeneous master equation

∂

∂t
p(x, t) =

∑

y

K (x, y)p(y, t) (1)

where K is theMarkov operatorwith off-diagonal components K (x, y) giving the probability
per unit time of the transition from y to x and diagonal components equal to minus the total
escape rates from each state. TheMarkov jump process is said to be irreducible if for any pair
of states x �= y it exists a path that connects x to y (and y to x), i.e. every transitions along
the path have non-vanishing transition rates. On the opposite, the process is reducible when
at least two subsets of states in Ω cannot be connected. Then, the process is non-ergodic. As
a consequence, the ensemble average does not produce the same result as the time average
since the process cannot explore the whole state space.

Alternatively, one may use the path-integral formalism to characterize the process Xt .
In this case, we denote by P[x] the path probability, where [x] is the short notation for a
realization of the process Xt over the time interval [0, T ].

We aim at computing the statistics of a dynamical observable O. The mean value of this
observable O follows from

〈O〉 =
∫

D[x]P[x]O[x], (2)

where
∫ D[x] denotes the sum over all possible paths. For simplicity, we consider an observ-

able of the form

O ≡ 1

T

∫ T

0
f (Xt )dt + 1

T

∑

0≤t≤T :ΔXt �=0

g(Xt+ , Xt−) (3)

where f (x) and g(x, y) are arbitrary functions and the discrete sum is on the time t at which
the system changes of state, i.e. ΔXt ≡ Xt+ − Xt− �= 0. The f dependent part enables to
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study the time average of a state function, and the g dependent part the time average of jump
quantities, like currents. For example, choosing f (x) = 0 and g(x, y) = 1 will lead to the
global activity of the system, i.e. the number of jumps per unit time in the trajectory.

Themicrocanonical ensemble is defined by filtering the trajectory ensemble with a condi-
tion on an observable, e.g.O = owhere o is a possible value of the stochastic variableO such
that its probability density function verifies PT (O = o) > 0. We write the path probability
of these trajectories

Po[x] = P[x,O = o]
PT (OT = o)

, (4)

where Po[x] is the conditional probability of the path [x] given that for this path O = o.
The corresponding joint probability is denoted P[x,O = o]. In the microcanonical path
ensemble, the observable O does not fluctuate and always achieves the same value for all
trajectories in the ensemble.

The canonical ensemble is defined by fixing the mean value of the observable O only.
The path probability for this ensemble can be computed via tilting (or biasing) the process
as follows:

Pγ [x] = eT γOP[x]〈
eT γO〉 . (5)

This path probability is normalized by construction.

2.2 Path Ensemble Equivalence

To discuss the dynamical ensemble equivalence, one needs to define when two path proba-
bilities P and Q are asymptotically equivalent. They do when [14]

lim
T→+∞

1

T
ln

P[x]
Q[x] = 0 (6)

almost everywherewith respect to P . Thismeans that P and Q are equal up to sub-exponential
terms in T for almost all paths. As a consequence, the mean value at large time of any
observable will be the same if computed with any one of the two equivalent path ensembles.

Assuming a large deviation principle for O [52], the LDF function I (o) provides the rate
of decay of the probability density function PT (O = o) in the limit T → +∞ such that

PT (O = o) 

T→+∞ e−T I (o) (7)

A LDF indicates the rate at which the probability density function of a time extensive observ-
able concentrates on its most likely value when time goes by.

Based on large deviation principle, Chetrite and Touchette have shown that the convexity
of I (o) determines whether the microcanonical and canonical path ensembles are equiva-
lent [14], in such a case Po and Pγ satisfy Eq. (6). They distinguished three cases:

Equivalence If I (o) is a strictly convex function at o, then there exists a unique γ ∈ R

such that Po and Pγ are equivalent.
Non-equivalence If I (o) is a non-convex function at o, then there are no γ ∈ R such
that Po and Pγ are equivalent.
Partial equivalence If I (o) is a convex function but not strictly convex function at o,
then numerous values of o correspond to the same γ : It may correspond to linear parts
in a convex function or to set of points at which the slope is the same.
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The convexity of the LDF I (o) is connected to the differentiability of the CGF φ(γ ) that
is defined as

φ(γ ) ≡ lim
T→+∞

1

T
ln
〈
eT γO〉. (8)

The CGF is the highest eigenvalue of the titled matrix K γ of elements [35]

Kγ (x, y) ≡
{
K (x, y)eγ g(x,y) if x �= y
K (x, x) + γ f (x) if x = y

. (9)

The CGF is also the Legendre–Fenchel transformation of the LDF

φ(γ ) = max
o

(γ o − I (o)). (10)

Conversely, we define the cLDF I ∗∗(o) as the Legendre–Fenchel transformation of the CGF

I ∗∗(o) ≡ max
γ

(γ o − φ(γ )) = γ (o)o − φ(γ (o)), (11)

with γ (o) the value of γ realizing the maximum. The Gärtner–Ellis theorem states that if
φ(γ ) is a differentiable function then I (o) = I ∗∗(o). The properties of the Legendre–Fenchel
transformation implies that I ∗∗(o) is a convex function. The strict convexity of the LDF and
the differentiability of the CGF are then dual conditions. When the CGF is not differentiable,
we can compute the LDF from the CGF in case of partial equivalence. In case of non-
equivalence, it is not possible since we only obtain the convex hull of the LDF. Hence, we
consider convexity (strict or not) as the criterion to determine whether ensemble equivalence
holds, having in mind that we shall be able to compute the LDF from the CGF when it holds.
For this reason, we merge equivalence and partial equivalence together.1

In Ref. [14], the authors conjectured a connection between non-equivalences and non-
ergodicity.We support this idea in the following by confirming that non-ergodicity is required
to observe a non-equivalence of ensemble, but it is not a sufficient condition.

2.3 Proof of Ensemble Equivalence for Ergodic Processes

The proof of ensemble equivalence amounts to determine the convexity of a LDF function.
In this section, we show how the LDF for observable O can be determined from the convex
LDF of more general observables, and how the convexity property may be inherited in the
process.

Whenever a stochastic variable depends on a set of other stochastic variables, one can
determine the LDF of the former from the LDF of the latter. This operation is called a
contraction. For instance, the observableO of Eq. (3) is a function of the empirical occupation
ratio R and the jump rate C

O = O(R,C) =
∑

x

f (x)R(x) +
∑

x,y

C(x, y)g(x, y). (12)

The occupation ratio is defined as the relative time spent in each state, say x here

R(x) ≡ 1

T

∫ T

0
δ(Xt = x)dt, (13)

1 The alternative viewpoint is to consider the non-differentiability of the CGF as the criterion for determining
ensemble equivalence (merging together partial equivalence and non-equivalence).
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where δ is an indicator function being 1 if the condition is satisfied and 0 otherwise. The
jump rate C(x, y) counts the number of transitions between two states (from y to x) per unit
time

C(x, y) ≡ 1

T

∑

0≤t≤T :ΔXt �=0

δ(Xt+ = x)δ(Xt− = y). (14)

The occupation ratios and the jump rates have a joint probability for R = r and C = c that
satisfies a large deviation principle

PT (R = r,C = c) 

T→+∞ e−T I (r,c), (15)

defining the large deviation function I (r, c), also called the level 2.5 LDF [2,4,38]. Then,
the contraction

I (o) = min
r,c s.t. O(r,c)=o

I (r, c) (16)

leads to the LDF for the observable O. In general terms, a contraction corresponds to the
minimization of a multivariate LDF under a condition encoding how the stochastic variables
are related [52].

Since ensemble equivalence for a stochastic variable relies on the convexity of the cor-
responding LDF, it is crucial to determine (i) whether the LDF I (r, c) is convex and (ii)
whether the convexity can be inherited upon contraction. The following theorem appearing
in Ref. [8] provides an answer to point (ii) when the new variable is additive:

Theorem (Contraction) Let h(x, z) be a convex function and U (z) an additive function, i.e.
a function verifying

U (αz1 + (1 − α)z2) = αU (z1) + (1 − α)U (z2), (17)

then
d( y) = min

x∈C, z∈C y
h(x, z) with C convex, and C y = {z |U (z) = y} (18)

is a convex function.

Proof We consider (x∗
1, z

∗( y1)) the couple of variables realizing theminimum in Eq. (18) for
y1, and similarly (x∗

2, z
∗( y2)) for y2. The convexity of C implies that αx∗

1 + (1− α)x∗
2 ∈ C

when α ∈ [0, 1]. Moreover, the additivity of U implies that αz∗( y1) + (1 − α)z∗( y2) ∈
Cα y1+(1−α) y2 . Hence, we have

d(α y1 + (1 − α) y2) = min
x∈C, z∈Cα y1+(1−α) y2

h(x, z)

≤ h(αx∗
1 + (1 − α)x∗

2, αz
∗( y1) + (1 − α)z∗( y2)),

≤ αh(x∗
1, z

∗( y1)) + (1 − α)h(x∗
2, z

∗( y2)),
≤ αd( y1) + (1 − α)d( y2),

whereweget the third line by using the convexity of h, and the fourth line using our knowledge
of the minimizers of Eq. (18) for both y1 and y2. �

We now address point (i) about the convexity of the LDF I (r, c). This level 2.5 LDF is
explicitly known for ergodic Markov jump processes in continuous-time [2,4,38]

I (r, c) =
∑

x,y �=x

(
r(y)K (x, y) − c(x, y) + c(x, y) ln

c(x, y)

r(y)K (x, y)

)
. (19)
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It is convex since it writes as the sum of a linear part
∑

x,y �=x [r(y)K (x, y) −c(x, y)] and a
Kullback–Leibler divergence between c and K r

D(c ||K r) ≡
∑

x,y �=x

c(x, y) ln
c(x, y)

K (x, y)r(y)
. (20)

This Kullback–Leibler divergence is convex as a consequence of the log-sum inequality (or
Jensen’s inequality) [16]. Using the previous theorem with z = (r, c), the convexity of the
level 2.5 LDF and the additivity of O for both the occupation ratio and the jump rate, we
conclude that the contracted LDF I (o) is also convex: The ensemble equivalence holds for
ergodicMarkov jump processes. In particular, the ensemble equivalence holds for irreducible
finite size Markov jump processes since they are always ergodic.

Alternatively, one can prove heuristically the ensemble equivalence using the differentia-
bility of the CGF, that is the dual condition with respect to the LDF convexity. To determine
the CGF differentiability, one considers the CGF as the highest eigenvalue of the titled matrix
K γ defined in Eq.(65). From Perron–Fröbenius theorem for irreducible finite size matrices
like K γ , the highest (real) eigenvalue is unique: Its multiplicity is always one independently
of the value of the counting field and no crossing between the two highest eigenvalues can
occur. Moreover, the components of the tilted matrix are differentiable yielding that the CGF
is itself differentiable. By duality, the LDF is strictly convex.

From this analysis, we conclude that the non-equivalence between the microcanonical
and canonical ensembles based on observables like O may only happen when the Markov
operator is reducible or of infinite dimension [17,18]. Then, the LDF of the variable O may
not be convex.

We emphasize that we made no assumption on the definition of dynamical rates, hence
the system may be in or out of equilibrium. We used simple graph Markov processes, but the
discussion can be transposed to include multiple transition channels.

3 Explicit LDF Calculation for Non-ergodic Systems

In this section, we adapt the method developed in Ref. [53] for equilibrium ensembles to
compute non-convex LDFs from their corresponding generating functions. First, we explain
how to compute a non-convex LDF from the propagator of the generating function for a
non-ergodic system chosen for its simplicity and for its similarity with the mean field Ising
model. We then apply the method to the infinite range Ising model for which non-ergodicity
emerges in the thermodynamic limit.

3.1 A Four State Model with Non-convex LDF of Activity

Let’s consider a four state system made of two subsystems with two states (1, 2) and (3, 4).
This four state system evolves according to the master equation of Eq. (1) with Markov
operator

K =

⎛

⎜⎜⎝

−1 1 0 0
1 −1 0 0
0 0 −2 2
0 0 2 −2

⎞

⎟⎟⎠ , (21)

that is reducible yielding a non-ergodic process.
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Fig. 1 a Four eigenvalues of the biased operator (24) (solid line) and corresponding CGF (cross). b Partial
LDFs (solid lines) corresponding to the Legendre transformation of the two highest eigenvalues, cLDF (cross)
and LDF (squares)

We aim at computing the system activity assuming that one cannot distinguish in which
subsystem a transition occurs. The activity rate A is the total number of jumps per unit
time: It is given by Eq. (3) when f (x) = 0 and g(x, y) = 1 for all (x, y). By definition of
the Markov operator of Eq. (21), the activity probability distribution of each subsystem is a
Poisson distribution ofmean value T for the subsystem (1, 2) and 2T for the subsystem (3, 4),
because there is 1 and 2 jumps per unit time in each subsystem respectively. The probability
distribution of the total number of jumps is the sum of Poisson distributions weighted by the
initial probability pi(x) to start in state x . The probability of having aT jumps after a time
T is

PT (A = a) = [pi(1) + pi(2)] (T )aT e−T

(aT )! + [pi(3) + pi(4)] (2T )aT e−2T

(aT )! (22)

For T large enough, PT (A = a) will be bimodal, and the LDF reads

I (a) = − lim
T→+∞

1

T
ln PT (A = a) =

{
a ln a − a + 1 if a < 1/ ln 2

a ln
a

2
− a + 2 if a ≥ 1/ ln 2

, (23)

where we have used Stirling formula and chosen the minimum of the two LDF corresponding
to each Poisson distribution. The above LDF of activity is shown in Fig. 1b. It is crucial to
note that the initial condition plays a fundamental role here: if the system never starts in states
1 or 2, i.e. pi(1) = pi(2) = 0, the LDF will include the branch corresponding to the second
line of Eq. (23) only. The non-ergodicity impacts the long time statistics of the dynamical
observables through the choice of initial conditions.

For the four state model, it is straightforward to determine the probability density function
of activity, but for other systems or observables this task may be more challenging: one must
often compute the CGF instead. Let’s derive the result of Eq. (23) in this way using the
propagator for the generating function of the activity defined by G(xf , xi, γ ) = 〈

eT γ A
〉
xf ,xi

,
where the subscripts xi and xf denote respectively the initial and final states of the trajectories
appearing in the average. Using standard approach [52,56], the propagator is obtained from
the biased operator

K γ =

⎛

⎜⎜⎝

−1 eγ 0 0
eγ −1 0 0
0 0 −2 2eγ

0 0 2eγ −2

⎞

⎟⎟⎠ (24)
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as the components of its matrix exponential
[
exp(T K γ )

]
(xf , xi) = G(xf , xi, γ ). Using

eigenvalues and eigenvectors decomposition of K γ , we make explicit the matrix exponential

exp
[
T K γ

] = eT (−1+eγ )

⎛

⎜⎜⎝

1/2
1/2
0
0

⎞

⎟⎟⎠ · (1 1 0 0
) + e2T (−1+eγ )

⎛

⎜⎜⎝

0
0
1/2
1/2

⎞

⎟⎟⎠ · (0 0 1 1
)

+e−T (1+eγ )

⎛

⎜⎜⎝

1/2
−1/2
0
0

⎞

⎟⎟⎠ · (1 −1 0 0
) + e−2T (1+eγ )

⎛

⎜⎜⎝

0
0
1/2

−1/2

⎞

⎟⎟⎠ · (0 0 1 −1
)
.

(25)

The orthogonal basis of eigenvectors has normalized right eigenvectors, and the scalar prod-
ucts of the left and right eigenvectors associated to the same eigenvalue are all equal to 1. We
notice that the eigenvectors separate in two sets whose supports are disjoint and correspond
to each subsystem respectively. Then, the activity LDF is recovered from this propagator by
first summing over the initial and final states

〈
eT γ A〉 =

∑

xf ,xi

G(xf , xi, γ )pi(xi), (26)

second, applying an inverse Laplace transformation, and finally by taking the limit T → ∞.
For ergodic systems, this procedure leads to the same LDF whatever the order of these
operations. On the contrary, the order matters for non-ergodic systems.

For our 4 state model, the generating function writes
〈
eT γ A〉 = [pi(1) + pi(2)]eT (−1+eγ ) + [pi(3) + pi(4)]e2T (−1+eγ ), (27)

because the terms in e−T (1+eγ ) and e−2T (1+eγ ) disappear when summing on xi and xf . The
inverse Laplace transform yields the probability density function of activity given in Eq. (22).
However, first computing the long time limit of the generating function leads to the CGF

φ(γ ) = lim
T→+∞

1

T
ln
∑

xf ,xi

G(xf , xi, γ )pi(xi) =
{
eγ − 1 if γ < 0,
2(eγ − 1) if γ ≥ 0

, (28)

as long as pi(x) > 0 for all x . Noticing that the limit T → +∞ enables to use a saddle-
point method to approximate the inverse Laplace transformation into a Legendre–Fenchel
transformation, the asymptotic probability of activity follows from its corresponding cLDF

I ∗∗(a) = max
γ

[
aγ − φ(γ )

] =

⎧
⎪⎨

⎪⎩

a ln a − a + 1 if a < 1
0 if a ∈ [1, 2]
a ln

a

2
− a + 2 if a > 2

, (29)

that is not the one of Eq. (23). The above cLDF is convex because a Legendre–Fenchel
transformation only yields convex functions by definition, while the LDF of Eq. (23) is not
convex.

Alternatively, one may obtain the LDF by taking the long time limit on the propagator of
the generating function of Eq. (25), and not on the generating function itself, yielding

φxi(γ ) = lim
T→+∞

1

T
lnG(xf , xi, γ ) =

{
(eγ − 1) if xi = 1, 2
2(eγ − 1) if xi = 3, 4

. (30)
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The Legendre–Fenchel conjugate of these two branches associated to different initial
states are precisely the two branches of the LDF in Eq. (23):

Ixi(a) = max
γ

[
aγ − φxi(γ )

] =
{
a ln a − a + 1 if xi = 1, 2

a ln
a

2
− a + 2 if xi = 3, 4

(31)

The summation over initial and final conditions is now carried out using an asymptotic
approximation, which can be written heuristically as

e−T I (a) 

∑

xi

pi(xi)e
−T Ixi (a) 
 exp

(
−T min

xi
Ixi(a)

)
(32)

explaining why a minimum on the branches of Eq. (31) appears in the final LDF of Eq. (23).
To summarize, from the Legendre–Fenchel conjugate of all the eigenvalues appearing in the
biased operator of Eq. (24), we determined the partial LDFs. The minimum among these
partial LDFs produces the LDF. We illustrate this procedure in Fig. 1. From this figure, we
conclude on the ensemble equivalence for this model: it holds for a ∈ [

0, 1
[⋃ ]

2,+∞[
, but

the equivalence is partial at a = 1, 2 and there is no equivalence for a ∈]1, 2[.
Remark that when the mean activities of each subsystem are the same, the two branches of

the LDFmerge toward a convex shape. Therefore, in this case non-ergodicity is not sufficient
to observe ensemble non-equivalence associated to non-convexity of the LDF.

3.2 General Framework

In the above example, we have seen that one can determine the asymptotic fluctuations of
a physical observable by switching from one dynamical ensemble to another as long as the
LDFs are piecewise convex. In this section, we develop this approach for the more general
framework of Sect. 2. In practice, this amounts to express the inverse Laplace transformation
as a Legendre–Fenchel transformation, using the saddle point method and taking care of the
initial condition appropriately.

By definition, for b ∈ R, the LDF for O writes

I (o) ≡ lim
T→+∞

−1

T
ln
∫ b+i∞

b−i∞
dγ e−T γo

∑

xf ,xi

G(xf , xi, γ )pi(xi), (33)

in term of the initial probability pi(xi) and of the propagator G(xf , xi, γ ) = 〈
eT γO〉

xf ,xi
that

generates the moments of O under given initial and final conditions. The argument of the
logarithm in Eq. (33) is exactly the probability distribution function of O. Since solely the
most probable events contribute to the LDF, we can focus on the initial conditions leading to
the minimal value of the LDF (as seen in Sect. 3.1):

I (o) = min
xf ,xi

lim
T→+∞

−1

T
ln
∫ b+i∞

b−i∞
dγ e−T γoG(xf , xi, γ )pi(xi). (34)

Finally, the complex integral for the inverse Laplace conjugate follows from the saddle point
method:

I (o) = min
xf ,xi

max
γ

(
γ o − lim

T→+∞
1

T
lnG(xf , xi, γ )pi(xi)

)
. (35)
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Alternatively, the convex hull of I (o) is the Legendre–Fenchel conjugate of the CGF for
the observable O, namely

I ∗∗(o) ≡ max
γ

(
γ o − lim

T→+∞
1

T
ln
∑

xf ,xi

G(xf , xi, γ )pi(xi)

)
. (36)

As seen in Sect. 3.1, the propagator G may have an eigendecomposition for which the terms
contributing to the CGF in the limit T → ∞ depend on the initial or final conditions. Hence,
a maximum on xf and xi must appear

I ∗∗(o) = max
γ

(
γ o − max

xf ,xi
lim

T→+∞
1

T
lnG(xf , xi, γ )pi(xi)

)
, (37)

to select the dominant asymptotic behavior in the limit T → ∞. In view of comparing with
Eq. (35), the maximization is modified into a minimization through the commutation with
the minus sign:

I ∗∗(o) = max
γ

min
xf ,xi

(
γ o − lim

T→+∞
1

T
lnG(xf , xi, γ )pi(xi)

)
. (38)

In the end, the difference between the LDF I (o) and its convex hull I ∗∗(o) comes from the
non commutation of maxγ and minxf ,xi as a consequence of the dependence on the initial
conditions, i.e. of the non-ergodicity. Of course, if the LDF were convex, the ordering of
these extremization would not matter.

The eigendecomposition of the propagator G involves the eigenvalues of a biased matrix
[such as Eq. (65)]. For non-ergodic systems or when the state space is infinite, the assumption
of the Perron–Frobenius theorem does not hold and several eigenvalues may cross each other.
To compute exactly the LDF, one needs all the branches corresponding to each eigenvalue
that becomes the highest eigenvalue for at least one γ . Only those branches matters, and
other eigenvalues will not contribute, so as can be understood from the following argument:
Let’s take two eigenvalues φ1(γ ) and φ2(γ ) such that φ1(γ ) > φ2(γ ) for all γ . Since
γ o − φ1(γ ) < γ o − φ2(γ ), we have

I1(o) = max
γ

{γ o − φ1(γ )} < I2(o) = max
γ

{γ o − φ2(γ )} . (39)

The last minimization in Eq. (35) on the partial LDFs will withdraw the contribution coming
from the eigenvalue φ2(γ ) if it is smaller that φ1(γ ).

Physically speaking,we study a rare event in a system that has several independent subparts
(also called ergodic components). We assume that the initial probability cannot be zero in all
states of a subsystem, otherwise this subsystem shall be ignored. Each subpart of the system
has its own probability to realize the rare event at stake. The subpart for which the event is the
most likely will determine the event probability. This will be so if the rare event corresponds
to a fluctuation of a time average quantity on a sufficiently long time so as to neglect the role
of the initial state probability.

Mathematically speaking, when dealing with reducible biased operators whose highest
eigenvalue is the CGF of interest, we must divide the operator into irreducible sub-operators
for which holds the ensemble equivalence. For every sub-operators we proceed normally
using the ensemble equivalence to determine the partial LDFs of the chosen observable from
the Legendre–Fenchel transformation of the highest eigenvalue of the sub-operator. The final
LDF for the total system is then given by the minimum over all partial LDFs. This explains
why the final LDF is piecewise convex.
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3.3 Mean-Field IsingModel

Using the results of Sect. 3.2, we study the activity andmagnetization of an infinite range Ising
model. Thismodel is ergodic when considering a finite number of spins, but breaks ergodicity
in the thermodynamic limit. This model is famous for its equilibrium phase transition at the
thermodynamics [27] and dynamical level [26,36].

In the following, we first introduce the model and its mean field (MF) treatment. Second,
we provide the propagator of the generating function for magnetization and activity, and next
use it to determine the CGFs, LDFs and their convex hull.

3.3.1 Model Description and Thermodynamic Limit

We consider the fully connected Ising model made of N interacting spins {s} = (s1, . . . , sN ).
Each spin si can hop between states +1 and −1 by exchanging heat with a thermostat at
inverse temperature β. The interaction energy between two spins is V /N when the spins
are not aligned and vanishes for parallel spins. The interaction energy is independent of the
distance between spins. Beside the spin-spin interaction, each spin has a potential energy
−si E due to the presence of an external magnetic field. We introduce the free energy F(n) ≡
U (n) − Sint(n)/β of the mesostate n = ∑N

i=1 si in term of the total energy given (up to a
constant) by

U (n) ≡ − V

N

∑

1≤i≤ j≤N

si s j − E
∑

1≤i≤N

si = −n2
V

2N
− nE (40)

and of the internal entropy

Sint(n) ≡ ln N !/
[(

N + n

2

)
!
(
N − n

2

)
!
]

. (41)

We chose the transition rate from n to n + 2ε (with ε = ±1) to be

K (n + 2ε, n) ≡ Γ (N − εn) e
β
2 ((2εn+2)V /N+2εE). (42)

In the followingwe choseΓ = 1 andβ = 1 to set the time and energy scales respectively. The
system is in thermal equilibrium and the transition rates satisfy the detail balance equation

ln
K (n + 2ε, n)

K (n, n + 2ε)
= −β(F(n + 2ε) − F(n)), (43)

The probability of state n at time t , denoted pn = pn(t) evolves according to the master
equation

ṗn =
∑

ε=±1

[
K (n, n + 2ε)pn+2ε − K (n + 2ε, n)pn

]
, (44)

where ṗn is the time derivative of pn . The stationary probability π(n) is the equilibrium
probability

π(n) ≡ 1

Zeq
e−F(n) with Zeq ≡

N∑

n=0

e−F(n). (45)

The time-averaged stochastic magnetization is obtained from Eq. (3) by choosing the state
dependent function f (n) = n/N and a vanishing function g(n, n′) = 0 for all (n, n′):

M ≡ 1

NT

∫ T

0
dt n(t), (46)
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where n(t) is the mesostate at time t . We denote by m some real value that can be achieved
by the stochastic variable M . The mean magnetization in the stationary state writes

〈M〉 = 1

N

N∑

n=0

nπ(n). (47)

The activity rate is obtained from Eq. (3) by choosing g(n, n′) = 1/N and f (n) = 0 for all
(n, n′):

A ≡ 1

NT

∑

0≤t≤T :Δnt �=0

1 (48)

The activity rate is thus a time-symmetric observable: The number of spin flips per unit time
and per spin are identical in a trajectory and its time reversal. We denote by a some real value
that can be achieved by the stochastic variable A. The mean activity in the stationary state
writes

〈A〉 = 1

N

N∑

n=0

∑

ε=±1

π(n)K (n + 2ε, n). (49)

In the thermodynamic limit, when taking the continuous limit for the mesostate x ≡
n/N ∈ [−1, 1], the system energy changes by

lim
N→∞ [U (n + 2ε) −U (n)] = 2ε(V x + E) (50)

for a transition from n to n + 2ε. Accordingly, the transition rates are in the same limit

Jε(x) ≡ lim
N→+∞

K (xN + 2ε, xN )

N
= (1 − εx) eε[V x+E]. (51)

In this case, the master equation Eq. (44) can be transformed into an evolution equation for
x in the mean field (MF) approximation

〈ẋ〉 =
∑

ε=±1

ε Jε (〈x〉) . (52)

The steady state solution of this equation is the mean field magnetization x = mmf verifying

J−
(
mmf

)
= J+

(
mmf

)
. (53)

Using Eq. (51), the previous equation is equivalent to the transcendental equation

mmf = tanh
(
Vmmf + E

)
. (54)

The MF activity follows from the mean-field magnetization:

amf = J−
(
mmf

)
+ J+

(
mmf

)
=
[
1 − mmf

]
eVmmf+E +

[
1 + mmf

]
e−Vmmf−E . (55)

The MF magnetization and activity are shown in the bifurcation diagram of Fig. 2. At a
critical value of the interaction energy, three MF magnetizations appear instead of a unique
one, due to the well known ferromagnetic transition of the Ising model. This bifurcation also
affects the system activity as shown on Fig. 2b and as expected from Eq. (55) since amf is
a function of mmf. We remark that for E = 0 the system activity is an even function of the
magnetization and hence the bifurcation diagram for activity has two branches only. We also
notice that the MF activity is higher for the branch that does not break the system symmetry.
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Fig. 2 a Stable (dark blue) and unstable (light blue) mean field steady state densities mmf versus interaction
energy V . b Stable (dark blue) and unstable (light blue) mean field steady state activity amf versus interaction
energy V . E = 0 for solid lines and E = 0.2 for dashed lines (Color figure online)

3.3.2 Propagator of the Generating Function for Magnetization and Activity

Like in the four state model of Sect. 3.1, we look for the propagator of the generating function
for the activity and magnetization:

G(xf , xi, κ, γ ) = 〈
eNT (κm+γ a)

〉
xf ,xi

, (56)

where as before the subscripts indicate a conditioning on the initial and final states, respec-
tively xi = ni/N and xf = nf/N . From a path integral approach, see Appendices A and B,
an asymptotic expression of the propagator reads

G(xf , xi, κ, γ ) 
N→+∞ exp

(
N
∫ T

0
dt ′L(xt ′ , ẋt ′ , κ, γ )

)
, (57)

where L is the Lagrangian

L(x, ẋ, κ, γ ) = ẋ

2
ln

(
−ẋ + √

ẋ2 + ϕ(x, γ )

2J−(x)eγ

)
−

∑

ε=±1

Jε(x)+
√
ẋ2 + ϕ(x, γ )+κx, (58)

with
ϕ(x, γ ) = 4

∏

ε=±1

Jε(x)e
γ = 4(1 + x)(1 − x)e2γ . (59)

The propagator of Eq. (57) is almost explicit: the path [x] starting in xi and ending in xf must
be determined using the Euler–Lagrange equation

∂L
∂x

= d

dt

(
∂L
∂ ẋ

)
. (60)

The propagator of the generating function is hence determined by the initial and final condi-
tions.

As explained in Sect. 3.2, we now vary initial and final conditions to obtain the dominant
contributions to the generating function.As the large size and long time limit of the propagator
is evaluated with large size limit first and then long time limit, the system is non-ergodic. Due
to this non-ergodicity, the dominant contributions are obtained from stationary trajectories,
i.e. element of the propagator G(x∗, x∗, κ, γ ) such that

∂L
∂x

(x∗, 0, κ, γ ) = 0. (61)
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and we denote x∗(κ, γ ) the various solutions of this equation. These constant trajectories are
the only ones that will dominate for at least one value of (κ, γ ). Following Sect. 3.2, we can
restrain the extremization over initial and final conditions to these stationary trajectories.

We provide a heuristic argument for the choice of stationary trajectories: Dominant tra-
jectories correspond to long-time behavior of the tilted system. We expect the tilted system
to be in a stationary state at long-time, as we study an equilibrium system. Neglecting the
boundary terms due to long time limit, we restrain to trajectories starting and ending into a
stationary state. The system being non-ergodic, the state space is divided into various subpart
each associated to different x∗ and we forbid trajectories that start and end into different
subpart of the state space. This approach is confirmed by numerical computation of the CGF
in the next section.

3.3.3 CGF of Magnetization and Activity

We now use the propagator of Eq. (57) to derive the CGF of magnetization and activity. This
CGF proceeds from the leading elements of the propagator of the generating function

φ(κ, γ ) = lim
N ,T→∞

1

NT
ln
〈
eNT κm+NT γ a 〉,

= max
xf ,xi

lim
N ,T→∞

1

NT
lnG(xf , xi, κ, γ )pi(xi). (62)

As explained above, we can focus on stationary trajectories that solve Eq. (61). Then, solving
for x amounts to find the extrema of L(x, 0, κ, γ ). Assuming that pi(x) > 0 for all x , one
can safely drop the initial probability pi in Eq. (62) ending with

φ(κ, γ ) = max
x

L(x, 0, κ, γ ), (63)

= √
ϕ(x∗(κ, γ ), γ ) −

∑

ε=±1

Jε(x
∗(κ, γ )) + κx∗(κ, γ ). (64)

Unfortunately, the determination of x∗(κ, γ ) involves a transcendental equation. We
solved this equation numerically to provide the CGFs before and after the bifurcation in
Fig. 3c and d respectively. Cross-sections of the CGF in the plane κ = 0 and γ = 0 are
shown in Fig. 3a and b.After the bifurcation forV = 1.5, theCGF is clearly not differentiable.
The left and right partial derivatives at (κ, γ ) = (0, 0) lead to different mean magnetization
and activity in agreement with the bifurcation diagram of Fig. 2 of the mean-field framework.
We notice on Fig. 3d that before the transition the CGF has a non differentiability not located
at the origin of the (γ, κ) plane. Hence, the mean magnetization and activity are unique, but
their fluctuations are impacted by the phase transition. We confirm our results by computing
numerically the CGF as the highest eigenvalue of the biased matrix

K γ,κ (x, y) =
{
K (x, y)eγ /N if x �= y
K (x, x) + κx/N if x = y

, (65)

for systems with N = 10 and N = 25 spins. As explained in Sect. 2.3, the CGFs of
finite size systems are everywhere differentiable. Then, they only approach gradually the
non-differentiable CGF when N → ∞.
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Fig. 3 Cross-sections of the CGF φ(κ, γ ) along a κ = 0 and b γ = 0 (solid lines), and corresponding CGFs
for the finite size system with N = 10 (dot-dashed lines) and N = 25 particles (dashed lines). Insets: Zoom
on the non-differentiable point of the light blue line for which V = 1.5. c CGF φ(κ, γ ) and level lines for
V = 1.5, d CGF φ(κ, γ ) and level lines for V = 0.5. For all figures E=0 (Color figure online)

3.3.4 Legendre–Fenchel Transformation of the CGF of Magnetization and Activity

The cLDF I ∗∗(m, a) shown in Fig. 4c and d is the Legendre–Fenchel conjugate of the CGF

I ∗∗(m, a) = max
κ,γ

{κm + γ a − φ(κ, γ )} . (66)

At low interaction energy V , we observe a smooth function whose unique minimum is given
by the mean-field solution of Eqs. (54)–(55). However, at higher interaction energy, a plateau
appears in the cLDF between the MF solutions. This plateau, in association with the non-
differentiability of the CGF, indicates a phase transition. As emphasized before, we always
have ergodicity within the canonical ensemble, and this plateau is the result of a “temporal
coexistence” of MF states: the system spends most of its time into the various MF states
leading to a time averaged magnetization and activity belonging to the convex area defined
by the MF solutions, here a triangle.

The contracted cLDF for activity I ∗∗(a) and magnetization I ∗∗(m) defined by

I ∗∗(m) ≡ min
a

I ∗∗(m, a) = max
κ

{κm − φ(κ, 0)} (67)

I ∗∗(a) ≡ min
m

I ∗∗(m, a) = max
γ

{γ a − φ(0, γ )} , (68)

are shown in Fig. 4a and b, together with the LDFs for the finite size systems obtained from
the Legendre transformation of their corresponding CGFs in Fig. 3a and b. For V = 1.5,
the latter LDFs converge towards the plateau with a speed that is lower for the activity LDF
than for the magnetization LDF in agreement with the fact that the plateau for the LDF of
activity lies between a stable MF solution and an unstable MF solution, while the plateau for
the magnetization lies between two stable solutions.
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Fig. 4 a cLDF I∗∗(a) (solid lines) and finite size LDF for N = 10 (dot-dashed lines), N = 25 (dashed lines)
and N=100 (long-dashed lines). b cLDF I∗∗(m) (solid lines) and finite size LDF for N = 10 (dot-dashed
lines) and N = 25 (dashed lines). Parameters are for (a, b): V = 0.5 (magenta lines) and V = 1.5 (light blue
lines). c–d cLDF I∗∗(m, a) of activity and magnetization and level lines (c) for V = 1.5 and (d) for V = 0.5.
Beige squares indicate the location of the stable solutions of Eqs. (54)–(55) whereas dark-blue squares are
for unstable solutions. For all figures E = 0. For figure (c–d), the color map replaces the level lines for low
values of the LDFs (Color figure online)

3.3.5 LDF of Magnetization and Activity

As explained in Sect. 3.2, the LDF follows from the Legendre–Fenchel transformation of the
elements of the propagator of the generating function. Therefore, Eq. (35) yields

I (m, a) = min
xf ,xi

max
κ,γ

[
κm + γ a − lim

N ,T→∞
1

NT
lnG(xf , xi, κ, γ )pi(xi)

]
(69)

Each stationary solution of Eq. (61) denoted x∗ defines a partial LDF

Ix∗(m, a) = max
κ,γ

{
κm + γ a − L(x∗(κ, γ ), 0, κ, γ )

}
. (70)

If the initial magnetization is in the same subpart of the state space than x∗, the system’s fluc-
tuations are best described by Ix∗(m, a). When ensemble averaging on the initial condition,
we look for the minimum on the stationary trajectories to obtain the LDF

I (m, a) = min
x∈{x∗} Ix (m, a). (71)

From the fact that I ∗∗ is the convex hull of I , we get the following inequality between the
two LDFs:

I (m, a) ≥ I ∗∗(m, a). (72)

The LDF I (m, a) is shown after the bifurcation on Fig. 5c, We also provide in Fig. 5a and
b the partial LDF for activity and magnetization (after contraction) and their convex hulls.
As expected, the LDF is not convex: the ensemble equivalence does not hold (in a specific
interval of magnetization and activity) for our model in the thermodynamic limit, due to
non-ergodicity.
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the cLDF (crosses) and the LDF (open squares). c Level lines of the LDF of activity and magnetization. For
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Comparing the cLDFs obtained from Eqs. (67)–(68) and the LDFs, we notice that the
formers are as expected the convex hull of the latters.

4 Non-convex LDF and Divergent Mixing Time

In the previous sections, we have obtained the LDF of activity and magnetization for the
canonical and microcanonical ensembles. In the thermodynamic limit, the ensemble equiv-
alence is broken at high interaction even though it holds at finite size. We now explore
the transition from equivalence to non-equivalence when increasing the size of the system,
putting the emphasis on the order of the large size and long time limits in the computation
of the statistics of magnetization and activity.

In this section, we point out the existence of a mixing time tmix that depends on the system
size. For systems of finite size, the mixing time governs the fluctuation regime. First, we
define the mixing time from the spectral gap of the finite size operator K . Second, we give
an estimate of the mixing time for the Ising model and prove that it diverges when N → ∞.
This means that it is impossible to fully relax from the initial condition when the system
includes too many spins, leading to an ergodicity breaking. Finally, we explore the different
regimes of fluctuations at finite size and time with numerical simulations, enlightening the
coherence of our previous results.

For the numerical simulations of this section, the magnetic field is non-zero (E = 0.2) in
order to break the up-down symmetry of the Ising model. Thanks to the magnetic field, two
different stablemagnetizations exist associated to different stable activities. Then, the activity
probability density function will be bimodal as it is beyond numerical reach (at large N ) to
detect the third unstable magnetization and its associated activity.Without the magnetic field,
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just the unique stable activity would appear on the numerical simulations and the activity
probability density function would be unimodal. For magnetization, we would observe only
bimodal probability density function for symmetry reasons.

4.1 Gap at Finite Size

We come back to the continuous-time process of Eq. (1) of Markov operator K . We assume
that K is diagonalizable. The eigenvalues are {λi }i=1,N , where λ1 = 0 and all other eigen-
values have negative real parts. Its set of eigenvectors is {li , ri }i=1,N where l1 is a uniform
vector and r1 = π is the stationary probability. The spectral gap Δλ of the operator K is the
difference between the largest eigenvalue λ1 and the real part of its second eigenvalues λ2.

Considering the initial probability pi, the probability

p(x, t) =
(
etK pi

)
(x) = π(x) +

∑

i

etλi ri (x)
∑

x

li (x)pi(x) (73)

is a formal solution to Eq. (1). Since the spectral gap Δλ of the operator K is positive, the
probability p(x, t) converges towards π . The mixing time tmix(ε) is used to quantify the time
that the system takes to relax to the stationary probability [37]. By definition, the mixing
time tmix(ε) is the minimal time for which starting from any initial probability the system is
at most at a distance ε of the stationary probability. Formally, the mixing time is

tmix(ε) ≡ inf

{
t � 0 : max

pi
‖etK pi − π‖T V � ε

}
, (74)

where the total variation distance is defined as ‖u‖T V = supx u(x). A common choice for
ε is e−1, such that tmix ≡ tmix(e−1). The mixing time quantifies the time needed to reach
stationary probability whatever the initial probability. In particular, an infinite mixing time
is a feature of non-ergodic systems. In practice, when considering large deviation statistics,
we must formally take a long time limit, i.e. a time much longer that the mixing time.

The mixing time of Eq. (74) is a maximization over all initial probabilities, therefore
looking at ‖etK pi−π‖T V for a uniform initial probability pi = 1 underestimates the mixing
time. We plot on Fig. 6c the evolution of this distance for various sizes. First, we observe an
exponential scaling of the total variation distance with time. When comparing with Eq. (73),
we expect the mixing time to be connected with the spectral gap. Indeed, we have forMarkov
processes [37]

1

Δλ
� tmix � − log pmin

i

Δλ
(75)

where pmin
i = minx pi(x) and Δλ is the spectral gap. Second, at very short times, the

evolution of total variation distance has a different scaling. This short time behavior is due to
the other eigenvalues whose influence on the probability p(x, t) disappears quickly. Finally,
the evolution of the total variation distance with system size reveals the strong dependencies
of the mixing time on the system size allowing for longer and longer transient behavior.

At finite time, the fluctuations critically differ if T � tmix or if T � tmix. On Fig. 6a and
b we show the empirical density probability of activity and magnetization for a system of
N = 60 spins and for different durations T , with tmix 
 100. And on Fig. 6d, we plot the
empirical probability density of activity for a system size N = 200 where tmix 
 105.

For T � tmix, the long time probabilities of magnetization and activity are those of an
ergodic system (the system has enough time to switch between MF states). The asymptotic
probability is then given by the cLDF of Sect. 3.3.4. The convergence toward the plateau
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for these cLDFs is discussed in the next section. Notice that the added small magnetic field
is responsible for the unimodality of the probability density functions, see Fig. 6a and b at
T = 300.

Otherwise when the second eigenvalue is well separated from the others, i.e. when Δλ �
|λ0 − λ3|, the probability p(x, t) is well approximated for |λ0 − λ3|−1 � T � tmix by

p(x, t) 
 π(x) + e−tΔλr1(x)
∑

y

l1(y)pi(y). (76)

It contains a term coming from the second eigenvalue. This second term induces the secondary
peak on the probability density function. Therefore, for intermediate times before the mixing
time, the system behaves as an effective non-ergodic system with fluctuations around each
MF states (the system lacks of time to switch between states). We have a transient behavior
where the probabilities of magnetization and activity are then bimodal, see Fig. 6d, and are
linked with the non-convex LDF of Sect. 3.3.5.

4.2 Estimation of the Gap for Systems with Detailed Balance

We now determine the scaling of the mixing time with the system size. To do so, we find an
upper bound on the spectral gap of systems with detailed balance which, combined with the
inequality of Eq. (75), estimates the mixing time scaling.

For Markov processes with detailed balance, we can estimate the spectral gap from the
Cheeger bound [34]. Indeed, in this case the Markov operator is symmetrizable, and we can
use known results on the gap of symmetric matrices. We introduce the matrix D√

π as the

diagonal matrix with elements D√
π (n, n) ≡ √

πn , then thematrix D√
π K D−1√

π
is symmetric

if the Markov matrix K respects detailed balance. We introduce the Cheeger constant as

Φ = inf
Ξ⊂Ω, 0<π(Ξ)�1/2

Q(Ξ c, Ξ)

π(Ξ)
, (77)

whereΞ is any subset of the set of state of our systemΩ such thatπ(Ξ) = ∑
x∈Ξ π(x) < 1/2

and,
Q(Ξ c, Ξ) =

∑

x,y|x∈Ξ, y∈Ξ c

π(x)K (y, x) (78)

is the sum of probability flow from the subset Ξ to the complementary of Ξ , denoted Ξ c.
From Ref. [34]

Δλ � 2Φ. (79)

Computing the Cheeger constant is difficult in general, but it is possible to bound it. For a
subset Ξ , the probability flow from Ξ to Ξ c is bounded by

Q(Ξ c, Ξ) ≤ Nbπ(x́)K (ý, x́) (80)

where Nb is the number of edge connecting Ξ and Ξ c and

(x́, ý) = arg max
x∈Ξ, y∈Ξ c

π(x)K (y, x), (81)

the edge supporting the biggest probability flow from Ξ to Ξ c. Denoting then x̃ the most
probable state in Ξ , we have

Φ � Nbπ(x́)K (ý, x́)

π(x̃)
. (82)
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Fig. 6 a Activity and b magnetization probability density functions obtained from numerical simulations
of various duration T for N = 60. c Logarithm of the total variation distance between etK pi and π as a
function of the duration of the evolution for various system size N . We simulate the evolution of N spins
using the Gillespie algorithm. For each size and time, a total of 15 × 104 trajectories are drawn. The initial
condition of the trajectory is draw from uniform distribution. The probability density functions are computed
from a histogram of 75 bins between the minimum and maximum values. The total variation distance is the
maximum of the difference between an histogram of the final value of the trajectory and an histogram of
15 × 104 points drawn from probability of Eq. (45). d Activity probability density functions obtained from
numerical simulations of various duration T for N = 200. The parameters are: V = 1.7, E = 0.2

Since we are mainly interested in the large size limit of the mixing time, we now assume
that the stationary probability satisfies a large deviation principle

π(x) 
N→+∞ e−NI(x). (83)

We consider a connected subset of states Ξ such that the state xmf with I(xmf) = 0 is not in
Ξ . For large enough N , the probability of Ξ is surely less than 1/2. Using the bound (82)
on the Cheeger constant, we find a large deviation estimate as

Φ � Nbπ(x́)K (ý, x́)

π(x̃)

 NbK (ý, x́)eN (I(x̃)−I(x́)). (84)

Therefore, if it exists Ξ such that the LDF I(x) has a local minimum x̃ ∈ Ξ that is not
a global minimum, we will have I(x̃) − I(x́) < 0. Then, if the product NbK (ý, x́) is
not diverging exponentially, we have bounded the spectral gap by something going to 0 as
N → +∞. Hence, the mixing time diverges with the system size, and the divergence is even
exponential.

In our case, we consider the subset of state Ξ− = {x |x � 0}, if E � 0 it has a stationary
probability less than 1/2, otherwise if E < 0, we consider the subset Ξ+ = {x |x � 0}.
We have then Nb = 1, x́ = 0− and ý = 0+, the lower and upper closest states to 0. The
stationary probability respects a large deviation principle, with a local minimum appearing
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Fig. 7 a Spectral gap as a function of the interaction energy V for various system sizes. b Large size LDF
of x defined by I(x) = limN→∞ 1

N ln π(x) for several interaction energies V . c Spectral Gap (lines with
symbols) and bound of Eq. (84) (symbols) as a function of the system size for various interaction energy V .
For all figures, we take E = 0.2

after the phase transition, see Fig. 7b. Therefore, the mixing time is diverging after the phase
transition, but not before.

These results are confirmed by numerical computation of the spectral gap. On Fig. 7a, we
plot the spectral gap as a function of the system size N and of the interaction energy V . Before
the phase transition, the spectral gap remains finite and so does the mixing time. After the
phase transition, the spectral gap goes to zero when increasing N . The speed of convergence
of the spectral gap is well caught by the bounds (84) as indicates the exponential decay with
increasing N shown on Fig. 7c. The mixing time is so at least diverging exponentially with
the system size.

4.3 Mixing Time as a Criterion to Study Fluctuations

From the previous results, we are now able to explain the effective transition from non-
ergodicity to ergodicity as the observation time becomes longer than the mixing time. At
the level of the dynamical ensembles, this corresponds to a transition from non-equivalence
to equivalence of ensembles. The fluctuations differ before and after the mixing time that
in addition is diverging with the system size N . In a first place, if we take the long time
limit before large size limit, we overcome the mixing time and the system stays ergodic. As
the equivalence remains valid, the fluctuations are correctly given by the cLDF. In a second
place, if the large size limit is taken first, the mixing time is infinite such that we stay in the
regime of fluctuations before the mixing time, the system is not ergodic and the LDF is likely
to be non-convex. Large deviation theory aims at describing asymptotic fluctuations, but the
limits should not be understood strictly: it is fundamental to distinguish the mixing time and
its dependency on the system size to interpret them correctly and use this framework for real
experimental systems or numerical simulations.
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5 Discussion and Conclusion

Like for equilibrium ensembles, ergodicity breaking is fundamental to understand the non-
equivalence of dynamical ensembles. Considering the connection between state variables
and dynamical observables, equilibrium systems without equivalence of equilibrium ensem-
bles will also exhibit non-equivalence of dynamical ensembles. We have provided general
arguments supporting that ergodicity is required, but may not be sufficient to observe non-
equivalence between the microcanonical and canonical dynamical ensembles. We have
considered a system without ergodicity (by construction) and one with emergent non-
ergodicity. In both cases we have obtained LDFs with an explicit dependency in the initial
condition, the so-called partial LDFs. From these partial LDFs, the LDF follows from min-
imizing on the initial condition. For systems with emergent ergodicity breaking we have
discussed the physical meaning of both the non-convex and convex LDFs. We did so by
comparing the observation time and the mixing time after which the initial condition can be
forgotten.

At a different level of large deviation, one may investigate the structure of the trajectories
corresponding to the null minima of the LDF and the relative weight of these minima. When
the system is not ergodic and the LDF is non-convex, we observe separate zeros of the LDF
that can be associated to the most probable values of the dynamical observable. In this case,
trajectories remain in a subpart of the state space given by the initial condition. For the fully
connected Ising model, the most probable states are the MFmagnetizations and their relative
probabilities are determined from the initial probability to start within each subpart of the
state space.

On the contrary, when the system is ergodic and the LDF convex, we observe a whole
continuous set of magnetizations and activities for which the LDF is zero, e.g. the triangle
region in Fig. 4c. These values correspond to trajectories where the system spends a fraction
of time around one MF state and another fraction around another MF state. Then, the final
value of the observable is the time average on these trajectories. The move between MF
states is allowed thanks to ergodicity. These trajectories are instantons of the Lagrangian, i.e.
trajectories going from a stationary solution of Euler–Lagrange equations to another [22,28,
45]. The typical time scale (connected to the mixing time) at which these instantons occur
depends on the system size, as explained for driven diffusive channels in Ref. [1]. In the
present paper, we did not take instantons into account for the minimization of Eq. (62).
However, taking them into account does not modify the cLDF at the considered level of large
deviations, but only describes fluctuations inside the linear region (here a plateau) of the
cLDF [46].

In our framework, we have assumed that it is always possible to find at least one station-
ary stochastic process (called driven process) that reproduces a fluctuation of the dynamical
observables as a typical event. Ensemble equivalencemeans that this driven process is unique
and does not depend on the initial condition. In our framework, ensemble non-equivalence
means that there are several driven processes according to the initial conditions. We did not
consider the case where no stationary driven process exists. This may happen for diffusive
processes for which the state space is non-compact and the system relaxes while never reach-
ing a stationary state. These cases were associated with a partial equivalence of dynamical
ensembles in Refs. [42,44,49].

Model of glasses are known to have large relaxation time scales that are beyond numerical
and experimental reach. The characterization of their fluctuations during this relaxation is an
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active field of research. Since we characterized fluctuations before and after mixing time, we
expect that our framework could be useful to study metastable states of glasses.

Acknowledgements We acknowledge Massimiliano Esposito for his advice on this project that started when
GV was a post-doctoral fellow in his research team. We thank V. Lecomte and A. Lazarescu for the insightful
discussions in connection with this work.

Appendix A: Derivation of the Propagator for Generating Function

We look for an expression of the propagator of the generating function G(xf , xi, κ, γ ) =〈
eNT (κm+γ a)

〉
xf ,xi

as a path integral over all trajectories for the system state n. We use the
discrete time tk = kdt corresponding to the k’s time step of duration dt , with the final time
T = tL = Ldt . We write the system state ntk = nk for short. This state at time tk changes by
nk − nk−1 = 2εk = −2, 0 or 2 when a spin jumps from up to down, doesn’t jump or jumps
from down to up. The sum over all paths for a given initial condition is

∑

[εk ]
=
∑

ε0

∑

ε1

· · ·
∑

εN−1

. (85)

Since jump probabilities depend on the magnetization, the path integration should include a
sum on the system state nk for all k

∑

[nk ]
=
∑

n1

∑

n2

· · ·
∑

nL−1

, (86)

with the condition that one spin at most jumps at each time step. In the above sums, the index
n goes from −N to N . All in all, the propagator of the generating function writes

G(ni, nf , κ, γ ) =
∑

[nk ,εk ]

[
L∏

k=1

p(nk |nk−1)δ(nk − nk−1 − 2εk−1)

]

× e
κ
(∑L

k=1 nk−1dt
)
+γ

(∑L
k=1 ,εk �=0 1

)

, (87)

with p(nk |nk−1) the probability of the transition nk−1 → nk . Let’s use the Laplace repre-
sentation of the Dirac distribution

δ(nk − nk−1 − 2εk−1) =
∫ ibk+∞

ibk−∞
dpk
2π

eipk (nk−nk−1−2εk−1), bk ∈ R, (88)

for every integer k between 1 and L to get

G(ni, nf , κ, γ ) =
∑

[nk ,εk ]

∫ (
L∏

k=1

dpk
2π

)

×
[

L∏

k=1

p(nk |nk−1)e
ipk (nk−nk−1−2εk−1)+κnk−1dt+γ

]
. (89)

In the next step, we sum over [εk] to obtain

G(ni, nf , κ, γ ) =
∑

[nk ]

∫ (
L∏

k=1

dpk
2π

eipk (nk−nk−1)

)
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×
L∏

k=1

[
p(nk−1|nk−1) +

∑

ε=±1

p(nk−1 + ε|nk−1)e
−2ipkε+γ

]
eκnk−1dt .

(90)

The propagator for staying in the same state during a time step is p(nk |nk) = 1 −(
∑

ε=±1
K (nk + 2ε, nk)

)
dt , and when changing of state writes p(nk + ε|nk) = K (nk +

2ε, nk)dt . Exponentiating the product yields

G(ni, nf , κ, γ ) =
∑

[nk ]

∫ (
L∏

k=1

dpk
2π

)
exp

(
idt

L∑

k=1

pk
(nk − nk−1)

dt

)

× exp

[
L∑

k=1

dt

(
∑

ε

K (nk−1 + 2ε, nk−1)
(
e−2ipkε+γ − 1

)
+ κnk−1

)]
.

(91)

The propagator of the generating function becomes in the continuous limit

G(xf , xi, κ, γ ) =
∫

D[x]
∫

D[p] exp
[
N
∫ T

0
dtipt ẋt

−
∫ T

0
dt

(
∑

ε

Jε(xt )
(
1 − e−2ipt ε+γ

)
+ κxt

)]
(92)

where
∫ D[x] (resp. ∫ D[p]) is a short notation for the integral on the paths of density (resp.

momentum) with given initial and final values. Finally, the path integral expression of the
generating function is given by

G(xf , xi, κ, γ ) =
∫

D[x]
∫

D[p] exp (NAκ,γ [x, p, T ]) (93)

with the action Aκ,γ being a functional of the paths [x, p]

Aκ,γ [x, p, T ] =
∫ T

0
dtipt ẋt −

∫ T

0
dtH(xt , pt , κ, γ ). (94)

We have introduced the Hamiltonian function

H(x, p, κ, γ ) =
∑

ε=±1

[
1 − exp (−2ipε + γ )

]
Jε(x) − κx . (95)

This function is the representation in the continuous limit of a tridiagonal Metzler matrix,
whose spectrum is real.2 As a consequence, ip is a real number.

Appendix B: Wentzel–Kramers–Brillouin Approximation

We now use a saddle point integration to obtain the leading order in N of the propagator
of the generating function G(xf , xi, κ, γ ) which is asymptotically exact in the large size

2 This property is stated in problem 5, page 174 of Ref. [30].
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limit. For each integration, we deform the contour so that it goes through the saddle point of
Aκ,γ [x, p, t]. Therefore, the saddle point is the minimum of Aκ,γ [x, p, t] solving

δ

δpt
Aκ,γ [x, p, T ] = 0, (96)

δ

δxt
Aκ,γ [x, p, T ] = 0, (97)

where
δ

δxt
denotes a functional derivative.

In this case, the saddle point calculation is equivalent to the WKB approximation of
quantum mechanics. The propagator of the generating function will be given by the paths
maximizing the action, i.e. the classical paths starting at xi and ending at xf . These paths
solve the Hamilton’s equations

i ẋt = ∂pH(xt , pt , κ, γ ), (98)

i ṗt = − ∂xH(xt , pt , κ, γ ). (99)

The propagator of the generating function can be written as

G(xf , xi, κ, γ ) 
N→+∞ exp

[
N
∫ T

0
dt (ipt ẋt − H(xt , pt , κ, γ ))

]
, (100)

where (x, p) correspond to the solutions of Eqs. (98)–(99) with initial and final conditions
xi and xf . Moreover the Hamiltonian (95) is time independent, and is hence a conserved
quantity along the trajectory. Maupertuis’ action

∫ T
0 dtipt ẋt is a function of the Hamiltonian

and writes ∫ T

0
dtipt ẋt =

∫ xf

xi
dxip(x). (101)

where p(x) can be obtained by inverting Eq. (95). We observe that Maupertuis’ action is
always negative in view of the clockwise motion along the orbits that can be justified by
inspection of Eq. (98).

In the large size limit, we can also use a saddle point integration on p to switch to the
Lagrangian framework. To do so, we look for the solution of Eq. (98). We derive a quadratic
equation either for eips or for e−ips whose solutions are

e±2ips = ∓ẋs +
√
ẋs2 + ϕ(xs, γ )

2J∓(xs)eγ
, (102)

with ϕ(x, γ ) defined in Eq. (59). Inserting this into Eq. (93) leads to the propagator of the
generating function of Eq. (57) with Lagrangian (58).

References

1. Baek, Y., Kafri, Y., Lecomte, V.: Dynamical phase transitions in the current distribution of driven diffu-
sive channels. J. Phys. A Math. Theor. 51(10), 105001 (2018). http://stacks.iop.org/1751-8121/51/i=10/
a=105001

2. Barato, A.C., Chetrite, R.: A formal view on level 2.5 large deviations and fluctuation relations. J. Stat.
Phys. 160(5), 1154–1172 (2015). https://doi.org/10.1007/s10955-015-1283-0

3. Barré, J., Mukamel, D., Ruffo, S.: Inequivalence of ensembles in a system with long-range interactions.
Phys. Rev. Lett. 87, 030,601 (2001). https://doi.org/10.1103/PhysRevLett.87.030601

123

http://stacks.iop.org/1751-8121/51/i=10/a=105001
http://stacks.iop.org/1751-8121/51/i=10/a=105001
https://doi.org/10.1007/s10955-015-1283-0
https://doi.org/10.1103/PhysRevLett.87.030601


Non-equivalence of Dynamical Ensembles and Emergent…

4. Bertini, L., Faggionato, A., Gabrielli, D.: From level 2.5 to level 2 large deviations for continuous time
Markov chains. Markov Process. Relat. Fields. 20(3), 545–562 (2012)

5. Biroli, G., Garrahan, J.P.: Perspective: the glass transition. J. Chem. Phys. 138(12), 12A301 (2013). https://
doi.org/10.1063/1.4795539

6. Bouchet, F., Dauxois, T., Mukamel, D., Ruffo, S.: Phase space gaps and ergodicity breaking in systems
with long-range interactions. Phys. Rev. E 77(1), 011,125 (2008). https://doi.org/10.1103/PhysRevE.77.
011125

7. Bouchet, F., Gupta, S., Mukamel, D.: Thermodynamics and dynamics of systems with long-range inter-
actions. Phys. A Stat. Mech. Appl. 389(20), 4389–4405 (2010). https://doi.org/10.1016/j.physa.2010.
02.024. http://www.sciencedirect.com/science/article/pii/S0378437110001512. Proceedings of the 12th
International Summer School on Fundamental Problems in Statistical Physics

8. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)
9. Budini,A.A., Turner, R.M.,Garrahan, J.P.: Fluctuating observation time ensembles in the thermodynamics

of trajectories. J. Stat.Mech. TheoryExp. 2014(3), P03012 (2014). http://stacks.iop.org/1742-5468/2014/
i=3/a=P03012

10. Callen, H.B.: Thermodynamics and an Introduction to Thermostatistics. Wiley (1985). https://www.
wiley.com/en-us/Thermodynamics+and+an+Introduction+to+Thermostatistics%2C+2nd+Edition-p-
9780471862567

11. Campa, A., Dauxois, T., Ruffo, S.: Statistical mechanics and dynamics of solvable models with long-
range interactions. Phys. Repo. 480(3–6), 57–159 (2009). https://doi.org/10.1016/j.physrep.2009.07.001.
http://www.sciencedirect.com/science/article/pii/S0370157309001586

12. Chandler, D., Garrahan, J.P.: Dynamics on the way to forming glass: bubbles in space-time. Annu. Rev.
Phys. Chem. 61(1), 191–217 (2010). https://doi.org/10.1146/annurev.physchem.040808.090405. https://
doi.org/10.1146/annurev.physchem.040808.090405. PMID: 20055676

13. Chetrite, R., Touchette, H.: Nonequilibrium microcanonical and canonical ensembles and their equiva-
lence. Phys. Rev. Lett. 111, 120,601 (2013). https://doi.org/10.1103/PhysRevLett.111.120601

14. Chetrite, R., Touchette, H.: Nonequilibrium Markov processes conditioned on large deviations. Ann.
Henri Poincaré 16(9), 2005–2057 (2015). https://doi.org/10.1007/s00023-014-0375-8

15. Costeniuc,M., Ellis, R.S., Touchette, H.: Complete analysis of phase transitions and ensemble equivalence
for theCurie–Weiss–Pottsmodel. J.Math. Phys.46(6), 063301 (2005). https://doi.org/10.1063/1.1904507

16. Csiszár, I., Shields, P.C.: Information Theory and Statistics: A Tutorial. Now Foundations and Trends
(2004). https://doi.org/10.1561/0100000004

17. Dinwoodie, I.H.: Identifying a large deviation rate function. Ann. Probab. 21(1), 216–231 (1993). https://
doi.org/10.1214/aop/1176989402

18. Dinwoodie, I.H., Zabell, S.L.: Large deviations for exchangeable random vectors. Ann. Probab. 20(3),
1147–1166 (1992). https://doi.org/10.1214/aop/1176989683

19. Ellis, R.S., Touchette, H., Turkington, B.: Thermodynamic versus statistical nonequivalence of ensem-
bles for the mean-field Blume–Emery–Griffiths model. Phys. A Stat. Mech. Appl. 335(3–4), 518–538
(2004). https://doi.org/10.1016/j.physa.2003.11.028. http://www.sciencedirect.com/science/article/pii/
S0378437103011075

20. Feller, W.: An Introduction to Probability Theory and Its Applications, vol. 2. Wiley, Hoboken (2008)
21. Ferré, G., Touchette, H.: Adaptive sampling of large deviations. J. Stat. Phys. (2018). https://doi.org/10.

1007/s10955-018-2108-8
22. Freidlin, M.I., Wentzell, A.D.: Random Perturbations of Dynamical Systems. Grundlehren der mathema-

tischen Wissenschaften. Springer, New York (1984). https://doi.org/10.1007/978-3-642-25847-3
23. Garrahan, J.P.: Classical stochastic dynamics and continuousmatrix product states: gauge transformations,

conditioned and driven processes, and equivalence of trajectory ensembles. J. Stat. Mech. Theory Exp.
2016(7), 073208 (2016). http://stacks.iop.org/1742-5468/2016/i=7/a=073208

24. Garrahan, J.P., Jack, R.L., Lecomte, V., Pitard, E., van Duijvendijk, K., van Wijland, F.: Dynamical
first-order phase transition in kinetically constrained models of glasses. Phys. Rev. Lett. 98(19), 195,702
(2007). https://doi.org/10.1103/PhysRevLett.98.195702

25. Garrahan, J.P., Jack, R.L., Lecomte, V., Pitard, E., van Duijvendijk, K., van Wijland, F.: First-order
dynamical phase transition in models of glasses: an approach based on ensembles of histories. J. Phys. A
Math. Theor. 42(7), 075007 (2009). http://stacks.iop.org/1751-8121/42/i=7/a=075007

26. Glauber, R.J.: Time-dependant statistics of the Ising model. J. Math. Phys. 4, 294 (1963). https://doi.org/
10.1063/1.1703954

27. Goldenfeld, N.: Lectures on Phase Transitions and the RenormalizationGroup. Perseus Books Publishing,
L.L.C, New York (1992)

123

https://doi.org/10.1063/1.4795539
https://doi.org/10.1063/1.4795539
https://doi.org/10.1103/PhysRevE.77.011125
https://doi.org/10.1103/PhysRevE.77.011125
https://doi.org/10.1016/j.physa.2010.02.024
https://doi.org/10.1016/j.physa.2010.02.024
http://www.sciencedirect.com/science/article/pii/S0378437110001512
http://stacks.iop.org/1742-5468/2014/i=3/a=P03012
http://stacks.iop.org/1742-5468/2014/i=3/a=P03012
https://www.wiley.com/en-us/Thermodynamics+and+an+Introduction+to+Thermostatistics%2C+2nd+Edition-p-9780471862567
https://www.wiley.com/en-us/Thermodynamics+and+an+Introduction+to+Thermostatistics%2C+2nd+Edition-p-9780471862567
https://www.wiley.com/en-us/Thermodynamics+and+an+Introduction+to+Thermostatistics%2C+2nd+Edition-p-9780471862567
https://doi.org/10.1016/j.physrep.2009.07.001
http://www.sciencedirect.com/science/article/pii/S0370157309001586
https://doi.org/10.1146/annurev.physchem.040808.090405
https://doi.org/10.1146/annurev.physchem.040808.090405
https://doi.org/10.1146/annurev.physchem.040808.090405
https://doi.org/10.1103/PhysRevLett.111.120601
https://doi.org/10.1007/s00023-014-0375-8
https://doi.org/10.1063/1.1904507
https://doi.org/10.1561/0100000004
https://doi.org/10.1214/aop/1176989402
https://doi.org/10.1214/aop/1176989402
https://doi.org/10.1214/aop/1176989683
https://doi.org/10.1016/j.physa.2003.11.028
http://www.sciencedirect.com/science/article/pii/S0378437103011075
http://www.sciencedirect.com/science/article/pii/S0378437103011075
https://doi.org/10.1007/s10955-018-2108-8
https://doi.org/10.1007/s10955-018-2108-8
https://doi.org/10.1007/978-3-642-25847-3
http://stacks.iop.org/1742-5468/2016/i=7/a=073208
https://doi.org/10.1103/PhysRevLett.98.195702
http://stacks.iop.org/1751-8121/42/i=7/a=075007
https://doi.org/10.1063/1.1703954
https://doi.org/10.1063/1.1703954


H. Vroylandt, G. Verley

28. Grafke, T., Grauer, R., Schäfer, T.: The instanton method and its numerical implementation in fluid
mechanics. J. Phys. A Math. Theor. 48(33), 333001 (2015). http://stacks.iop.org/1751-8121/48/i=33/
a=333001

29. Hedges, L.O., Jack, R.L., Garrahan, J.P., Chandler, D.: Dynamic order–disorder in atomistic mod-
els of structural glass formers. Science 323(5919), 1309–1313 (2009). https://doi.org/10.1126/science.
1166665. http://science.sciencemag.org/content/323/5919/1309

30. Horn, R.A., Johnson, C.R.: Matrix Analysis, 2nd edn. Cambridge University Press, Cambridge (2012).
https://doi.org/10.1017/9781139020411

31. Jack, R.L., Sollich, P.: Large deviations and ensembles of trajectories in stochastic models. Prog. Theor.
Phys. Suppl. 184, 304–317 (2010). https://doi.org/10.1143/PTPS.184.304. http://ptps.oxfordjournals.org/
content/184/304.abstract

32. Jack, R.L., Garrahan, J.P., Chandler, D.: Space-time thermodynamics and subsystem observables in a
kinetically constrained model of glassy materials. J. Chem. Phys. 125(18), 184509 (2006). https://doi.
org/10.1063/1.2374885

33. Keys, A.S., Chandler, D., Garrahan, J.P.: Using the s ensemble to probe glasses formed by cooling and
aging. Phys. Rev. E 92, 022304 (2015). https://doi.org/10.1103/PhysRevE.92.022304

34. Lawler, G.F., Sokal, A.D.: Bounds on the l2 spectrum for Markov chains and Markov processes: a
generalization of Cheeger’s inequality. Trans. Am. Math. Soc. 309(2), 557–580 (1988). http://www.jstor.
org/stable/2000925

35. Lebowitz, J.L., Spohn, H.: A Gallavotti–Cohen-type symmetry in the large deviation functional for
stochastic dynamics. J. Stat. Phys. 95(1), 333–365 (1999). https://doi.org/10.1023/A:1004589714161

36. Lecomte, V., Appert-Rolland, C., van Wijland, F.: Thermodynamic formalism for systems with Markov
dynamics. J. Stat. Phys. 127(1), 51–106 (2007). https://doi.org/10.1007/s10955-006-9254-0

37. Levin, D.A., Yuval Peres, E.L.W.: Markov Chains and Mixing Times, vol. 58. American Mathematical
Society, Providence (2008)
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