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Abstract. In this paper, we introduce a real symmetric and positive semi-
definite matrix, which we call the non-equilibrium conductance matrix, and
which generalizes the Onsager response matrix for a system in a non-equilibrium 
stationary state. We then express the thermodynamic eciency in terms of 
the coecients of this matrix using a parametrization similar to the one used 
near equilibrium. This framework, then valid arbitrarily far from equilibrium 
allows to set bounds on the thermodynamic eciency by a universal function 
depending only on the degree of coupling between input and output currents. 
It also leads to new general power-eciency trade-os valid for macroscopic 
machines that are compared to trade-os previously obtained from uncertainty 
relations. We illustrate our results on an unicycle heat to heat converter and 
on a discrete model of a molecular motor.
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Introduction

The second law of thermodynamics prevents the thermodynamic eciency of energy 
converters to exceed the reversible eciency [1], thus ruling out perpetual motion. 
The energy converters operating close to reversible eciency have been widely studied 
[2–5]. Historically, these questions were first addressed within the framework of weakly 
irreversible thermodynamics developed by Onsager for purely resistive systems [6, 7], 
i.e. systems with fluxes and anities instantaneously related. This theory assumes local 
equilibrium and expresses physical currents (e.g. energy currents, matter currents) as 
non-linear functions of the anities and local intensive parameters [1].
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In the linear response regime near equilibrium, currents become linear function 
of the anities, which defines the so-called Onsager response matrix. The framework 
based on this response matrix has been very successful to describe thermoelectric eects 
[8, 9], to determine the degree of coupling between influx and outflux [2, 10, 11], or to 
predict the eciency at maximum power [12, 13]. This framework can also be extended 
to cover mesoscopic and nanoscale systems [14]. A key result of the response matrix 
framework is Onsager’s reciprocity relations which can be deduced from a more general 
symmetry property called fluctuation theorems [15–17]. Previous attempts to gener-
alize the notion of Onsager matrix to non-equilibrium stationary states lead to non-
symmetric Onsager matrices, so that many properties were lost for that reason [18].

In this paper, building on the work of Polettini et al [19, 20], we introduce precisely 
a non-equilibrium conductance matrix that is symmetric just as the Onsager response 
matrix, but whose coefficients are now functions of the affinities. Intuitively, such a 
conductance matrix should exist at the macroscopic scale, because it can be constructed 
by associating conductances between every pair of states from the microscopic scale up 
to the macroscopic scale. Naturally, the question whether a symmetric matrix can be 
constructed in this way even when the system is in a non-equilibrium stationary state 
requires a more careful analysis.

For this reason, we assume in a first step that such a non-equilibrium conductance 
matrix can be constructed disregarding the issue of possible non-unicity of this matrix. 
We then show that a parametrization of the thermodynamic eciency introduced by 
Kedem and Caplan [2] for machines near equilibrium still applies to a machine oper-
ating far from equilibrium. This parametrization involves the degree of coupling ξ 
between the influx and outflux, which together with the functions Π and ϕ characterize 
the dissipation and therefore also the eciency of a machine. Using this parametriza-
tion which is linked to the chosen non-equilibrium conductance matrix, we show that 
the eciency admits a general upper bound valid arbitrarily far from equilibrium, 
which only depends on the degree of coupling. We also deduce from our framework 
power-eciency inequalities that set bounds on the output power as a function of the 
machine eciency.

In a second step, we construct the non-equilibrium conductance matrix from a 
framework based on the large deviation function (LDF) of currents. In the linear regime 
near equilibrium, this LDF has a quadratic form, which is related to central results of 
Statistical Physics such Onsager relations and the Fluctuation-Dissipation theorem. In 
this framework, response and current fluctuations are connected through an equality. 
Near a non-equilibrium stationary state, the relation between fluctuations and response 
takes instead the form of an inequality, which states that currents fluctuations near a 
non-equilibrium stationary state are always more likely than those predicted by lin-
ear response analysis close to this point [21, 22]. We show that a consequence of this 
property is an inequality between the non-equilibrium conductance matrix and the 
matrix of covariances of currents, for a certain matrix order among symmetric matrices 
[23]. Remarkably, our result contains various interesting power-eciency trade-os 
[24, 25]. Hence, our approach provides a unifying framework for studying and opti-
mizing machine performance, and illustrates the relevance of the concept of the non-
equilibrium conductance matrix.
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To summarize, in the first section, we use standard thermodynamics to constrain 
the form of the non-equilibrium conductance matrix and then we exploit a param-
etrization originally developped for equilibrium systems to describe the eciency of 
macroscopic thermodynamic machines operating far from equilibrium. In the second 
section, we derive an explicit formula for this non-equilibrium conductance matrix at 
the stochastic level. In the third section, we obtain various power-eciency inequalities 
from that framework which we illustrate with two examples: a three state model of heat 
to heat converter with strongly coupled heat fluxes and a discrete model of molecular 
motor [26, 27].

1. From non-equilibrium conductance matrix to constraints on power  
and eciency

1.1. The non-equilibrium conductance matrix

Machines are systems that produce on average a current against an external force, 
usually called thermodynamic anity. This is achieved by using another current gener-
ated by its own anity. Hence, a machine generically involves two anities F1 and F2 
associated with two physical currents J1 and J2. In terms of the physical currents and 
anities, the mean entropy production rate can be written as

σ = F1J1 + F2J2, (1)
which is the sum of two partial entropy production rates denoted by σX = FXJX. We 
focus here on the steady-state regime of the machine, where all quantities introduced 
so far are time-independent. Throughout the paper, we use kB = 1 which means that 
entropy production rates have the dimension of inverse time. Physical observables, 
including currents JX, anities FX, and partial entropy production rates σX, are labeled 
with index X = 1, 2. Close to equilibrium, physical currents are linear functions of the 
anities:

�
J1
J2

�
=

�
L1,1 L1,2

L2,1 L2,2

��
F1

F2

�
, (2)

where LX,Y  are the components of the Onsager matrix L [6]. This matrix has real and 
symmetric coecients which are independent of the anities.

Beyond the linear regime, the physical currents become non-linear functions of the 
anities but it is not known whether the concept of Onsager matrix can still be used 
for systems in non-equilibrium stationary state. Let us assume for the moment that 
such a generalization exists, which we call the non-equilibrium conductance matrix G. 
By similarity with the Onsager matrix, we assume a relation of the type

�
J1
J2

�
=

�
G1,1 G1,2

G2,1 G2,2

��
F1

F2

�
, (3)

with again real and symmetric coecients. An important dierence with the previous 
case is that the coecients of the matrix G are now necessarily functions of the anities 
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F1 and F2 unlike the constant coecients of the Onsager matrix L. Importantly these 
assumptions together with equation (3) still do not define a unique matrix G.

We now specialize to a thermodynamic machine by assuming (without loss of gen-
erality) that the first process is the driving process and the second process is the output 
process. Hence the partial entropy production rate of the first process verifies σ1 � 0 
while σ2 � 0 for the second process. The thermodynamic eciency reads

η =
−σ2

σ1

. (4)

The second law imposes the positivity of the total entropy production rate σ = σ1 + σ2 � 0, 
which implies 0 � η � 1, where 0 is reached when there is no output current and 1 is 
reached for a reversible operation of the machine with vanishing entropy production 
rate σ. Now, using the above properties of the non-equilibrium conductance matrix, we 
get for the partial entropy production rates

σ1 = J1F1 = G1,1F1
2 +G1,2F1F2, (5)

σ2 = J2F2 = G2,1F1F2 +G2,2F2
2. (6)

We choose the anity dependent matrix to be positive semi-definite to guarantee the 
validity of the second law for arbitrary anities. Since G1,2 = G2,1 this means:

G1,1G2,2 � G1,2
2, (7)

for all possible anities. Using equations (5) and (6) combined with the conditions 
σ1 � 0 and σ2 � 0 leads to the inequalities

G1,1F
2
1 � −G1,2F1F2 � G2,2F

2
2 � 0, (8)

which are also valid for arbitrary anities.
The question of the existence of a non-equilibrium conductance matrix with the 

above properties can be resolved by exhibiting a particular solution. It is simple to 
check that the matrix

Gmin ≡ 1

σ

�
J2
1 J1J2

J1J2 J2
2

�
, (9)

satisfies equation (3) by construction and is positive semi-definite because its trace is 
positive and its determinant is zero. The reason for the subscript ‘min’ for this matrix, 
can be understood once we introduce a matrix order for symmetric matrices, called 
Loewner partial order [23]. This is defined in such a way that A � B means that 
A−B is a positive semi-definite matrix. This property implies that for two symmetric 
n× n matrices A and B:

A � B ⇔ ∀x ∈ Rn, xT ·A · x � xT ·B · x. (10)
Now, using equations (1), (3) and (8), one can show explicitly that the matrix G−Gmin 
is also a positive semi-definite matrix, because its trace is again positive and its deter-
minant is zero. Therefore, we have the general property

G � Gmin, (11)
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which justifies the name Gmin for a matrix which represents a minimum among all 
conductance matrices for the specific matrix order defined above.

1.2. General parametrization of the eciency

Thanks to the above properties of the non-equilibrium conductance matrix, we can 
introduce the functions

Π ≡ G1,1F
2
1 , ϕ ≡

�
G2,2F 2

2

G1,1F 2
1

, and ξ ≡ G1,2�
G1,1G2,2

sign(F1F2). (12)

These functions are direct generalizations of the ones used in the close-to-equilibrium 
regime [2]. The parameter Π = Π(F1,F2) determines the dissipation of the driving pro-
cess when there is no output process coupled to the driving process or when there is one 
but we choose to ignore it. In the following, we call this quantity the intrinsic dissipa-
tion of the driving process. Then ϕ = ϕ(F1,F2) is the relative intrinsic dissipation of the 
output process with respect to the driving process, and finally ξ = ξ(F1,F2) quantifies 
the degree of coupling [2, 4, 10, 13, 14]. From the constraints of equations (7) and (8), 
these functions are bounded by

Π � 0, ξ ∈ [−1, 0[, ϕ ∈ [0,−ξ], (13)
for the system to operate as a machine. If it does not, the above parametrization could 
still be used but with a modified range of the parameters, namely ϕ � 0 and ξ ∈ [−1, 1]. 
Note that we have also excluded the value ξ = 0 from our analysis which corresponds 
to having independent driving and output processes for which G1,2 = 0. In this case, 
the system cannot work as a machine because its eciency would be negative with 
η = −ϕ2 � 0. Note also that in the literature on thermoelectricity [2, 14], it is custom-
ary to use the figure of merit ZT instead of the degree of coupling. The two notions are 
simply related by ZT = ξ2/(1− ξ2), so that ZT is a real positive number which goes to 
infinity when ξ tends to  −1.

Restricting ourselves to a working machine, we use equations (5) and (6) in the 
definition (4) of thermodynamic eciency to obtain

η = −G1,2F1F2 +G2,2F
2
2

G1,1F 2
1 +G1,2F1F2

, (14)

which can be turned into

η = −ϕ2 + ξϕ

1 + ξϕ
, (15)

with the aid of equation (12). We emphasize that with this new parametrization, the 
machine eciency does not to depend explicitly on the intrinsic dissipation Π, but only 
depends on the relative intrinsic dissipation ϕ and on the degree of coupling ξ. The 
specific dependence of the eciency on the anities is then completely transferred to ϕ 
and ξ. As we shall see below, this new parametrization of the eciency provides useful 
insights into the machine properties. One important benefit in particular is the ability 
to bound the machine eciency and output power.
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1.3. Tight coupling far from equilibrium

In this section, we discuss the notion of tight coupling far-from-equilibrium based on the 
non-equilibrium conductance matrix and the (Π,ϕ, ξ) parametrization. Tight coupling 
between two entropy fluxes means that the elementary steps must produce entropy in 
constant proportion. In other words, the physical quantities corresponding to the driv-
ing and output processes must be always exchanged in the same proportion in such a 
way that the two equations in (3) are linearly dependent. The latter condition implies 
that the matrix G is of rank one, which means that it can be written in the form

G =

�
G1,1 G1,2

G2,1 G2,2

�
= G1,1

�
1 α

α α2

�
, (16)

in terms of a real coecient α. Using equation (3), one finds J1 = αJ2, thus α is pre-
cisely the proportionality factor between the two currents. Then using equation (9), one 
finds G = Gmin. Thus Gmin is the non-equilibrium conductance matrix of the system if 
it operates in the tight coupling regime. Furthermore, this shows that the inequality of 
equation (11) becomes saturated in the tight coupling regime.

Now, from equations (12) and (15), the coupling parameter reaches the value 
ξ = sign(F1F2α) = −1, because ξ ∈ [−1, 0[, and η = ϕ = |αF2/F1|. Thus, in the tight 
coupling regime, the degree of coupling reaches its minimum value.

Going back to the general case, one deduces from equation (15) that

∂η

∂ξ

����
ϕ

= −ϕ(1− ϕ2)

(1 + ξϕ)2
, (17)

which is always negative since ϕ ∈ [0, 1]. Therefore, the eciency monotonously 
increases when ξ decreases, and the maximum value of the eciency at fixed value of 
ϕ is reached when ξ = −1, i.e. at tight coupling.

1.4. Maximum eciency as function of the degree of coupling

We now bound the eciency η = η(ξ,ϕ) of equation (15) by looking at the value of the 

function ϕ that yields the maximum eciency in equation (15) at a fixed degree of cou-

pling ξ. The condition ∂η/∂ϕ|ξ = 0 leads to a simple second degree polynomial equation

ξϕ2 + 2ϕ+ ξ = 0. (18)
Multiplying the numerator and denominator of equation (15) by 2 + ξϕ and using (18), 
we find that the maximum eciency becomes ηmax = −ξϕ/(2 + ξϕ). Using the solution 
of equation (18) in this expression of ηmax, we obtain the maximal machine eciency in 
terms of the degree of coupling function ξ,

ηmax(ξ) ≡
1−

�
1− ξ2

1 +
�
1− ξ2

, (19)

which is such that

ηmax(ξ) � η(ξ,ϕ) (20)
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for all ξ and ϕ in the allowed range. This inequality is illustrated in figure 4 for the 
model of molecular motor studied in section 4. As expected from the previous section, 
equation (19) also confirms that the maximum of the curve ηmax(ξ) is reached when the 
condition of tight coupling holds namely ξ = −1 since at this point ηmax = 1.

Since the maximum eciency depends only on the degree of coupling ξ, it is pos-
sible to bound the eciency by measuring the degree of coupling. For instance, if it is 
known that ξmin � ξ for all conditions of operation of the machine, then we can deduce 
from equation (20) that η � ηmax(ξmin). Note that the bound itself is not unique because 
ξ is constructed from the non-equilibrium conductance matrix which is not uniquely 
defined by equation (3); nevertheless the dependance of ηmax versus ξ is universal.

1.5. Power-eciency relations

In this section we derive two upper bounds for the entropy production rate of the out-
put process, a quantity which is the product of the output power of the machine with 
its anity. These bounds are functions of the eciency and hence are called power-
eciency relations, since they represent a constraint for reaching both high power and 
high eciency.

To obtain the first bound, we factorize G1,1F
2
1  in equation (6):

−σ2 = −G1,1F
2
1

�
G1,2F2

G1,1F1

+
G2,2F

2
2

G1,1F 2
1

�
= −Π

�
ξϕ+ ϕ2

�
. (21)

From equation (15) we have −(ξϕ+ ϕ2) = η(1 + ξϕ) and therefore

−σ2 = Πη (1 + ξϕ) , (22)
then using again equation (15), we can express ϕ in terms of η and ξ as

ϕ± = −ξ (η + 1)

2
± 1

2

�
(η + 1)2ξ2 − 4η, (23)

where we have used equations (19) and (20) to guarantee that ϕ is real. Inserting these 
two solutions in equation (22), we obtain

−σ±
2 = Πη

�
1− ξ2

1 + η

2
∓ ξ

�
ξ2

4
(1 + η)2 − η

�
. (24)

This equation shows that the relation between the output entropy production rate 
−σ2 and the eciency is in general bi-valued, which means that there are two possible 
values of the output entropy production rate for the same value of the eciency. This 
relation becomes single-valued when ξ = −1, i.e. for tight coupling, since in this case 
−σ−

2  is equal to zero, and only −σ+
2  remains.

In the general case of arbitrary coupling, it is enough to upper bound −σ+
2  to 

obtain a general bound on the output entropy production rate because −σ+
2 � −σ−

2  for 
ξ ∈ [−1, 0[. Since one can also show that −σ+

2  is always a decreasing function of ξ at 
fixed η, its maximum value is reached at ξ = −1, which corresponds to the tight cou-
pling condition. When inserting ξ = −1 into the expression of −σ+

2 , we obtain the first 
inequality:
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−σ2 � Πη(1− η). (25)
Alternatively, one can start from equation (6) and factorize G2,2F

2
2  which leads to 

σ2 = G2,2F
2
2 (1 + ξ/ϕ). Then, using again the explicit solution of ϕ as a function of ξ 

and η, one obtains an expression which when evaluated at ξ = −1 leads to the second 
inequality

−σ2 � G2,2F
2
2

1− η

η
. (26)

Despite the apparent similarities between equations (25) and (26) with the bounds 
recently derived in [25], we would like to stress that equations (25) and (26) represent 
a dierent result because our bounds are based on the non-equilibrium conductance 
matrix using classical thermodynamics in a macroscopic and deterministic setting. In 
contrast to that, the bounds of [25] have been derived in a stochastic setting based on 
uncertainty relations. The introduction of the non-equilibrium conductance matrix, the 
parametrization of the eciency and equations (25) and (26) represent our first main 
results. In the following, we explain how to reconcile both bounds within a formalism 
of large deviation of currents.

2. Construction of the non-equilibrium conductance matrix from a large deviation 
function framework

So far, our analysis was based primarily on classical thermodynamics, where currents 
are deterministic quantities. In contrast to that, we introduce in the following a sto-
chastic thermodynamics description, in which currents become random variables. As 
far as the microscopic dynamics is concerned, we assume that it can be described as a 
Markov jump process. This Markovian dynamics admits a non-equilibrium stationary 
state. In the following, by exploiting a quadratic bound of the LDF of currents near this 
non-equilibrium stationary state, we show how to define uniquely the NE conductance 
matrix.

We denote with upper case letters average quantities and with lower case letters the 
corresponding fluctuating quantities; then the subscript indicates the level of descrip-
tion, (x, y) for an edge, c = c1, c2, . . . for cycles and X = 1, 2 for the physical quantities.

2.1. Physical, cycle and edge currents and anities

The probability per unit time to jump from the state y to state x of the machine is 
given by the rate matrix of components k(x,y) � 0. We call the couple of states (x, y) an 
oriented edge when k(x,y) > 0. We assume that if the jump from y to x is possible then 
the reverse jump also exists, i.e. k(x,y) > 0 implies that k(y,x) > 0. The stationary prob-

ability of x, denoted πx, verifies by definition 
�

y k(x,y)πy = 0. The number of oriented 
edges is |E|. The average probability current along edge (x, y) in the stationary state is

J(x,y) ≡ k(x,y)πy − k(y,x)πx, (27)
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and the edge anity

F(x,y) ≡ ln
k(x,y)πy

k(y,x)πx

. (28)

Another level of description is that of cycles which consist of several edges con-
nected together. Cycle currents are linearly connected to edge currents [11] as:

J(x,y) ≡
�

c∈C
A(x,y),cJc, (29)

where A is an |E| × |C| matrix, such that A(x,y),c is zero if the edge (x, y) does not 
belongs to the cycle c, or ±1 if it belongs to it with the sign providing the orientation. 
The columns of A form a basis of vectors called fundamental cycles, and the ensemble 
of fundamental cycles is denoted C with cardinal |C|. This set is called fundamental 
because it is a minimal set of linearly independent cycles that can generate any cycle 
of the graph [28].

Each physical thermodynamic force involved in the interaction of the machine with 
its environment has a corresponding physical (also called sometimes operational for this 
reason) current associated with it. These currents are also linearly related to the cycle 
currents as:

JX ≡
�

c∈C
φX,cJc, (30)

where φX,c represents the amount of the physical quantity X which is exchanged with 
the environment when the cycle c is run once. Note that by construction the coecients 
of the matrix φ are dimension full, depending on the choice of physical currents, unlike 
the coecients of the matrix A which are dimensionless.

The entropy production takes the same value on these three levels, thus

σ =
�

(x,y)

J(x,y)F(x,y) =
�

c

JcFc =
�

X

JXFX. (31)

This allows to connect the edge, cycle and physical anities through dual forms of 
equations (29) and (30) [11, 19]:

Fc =
�

(x,y)

F(x,y)A(x,y),c, (32)

Fc =
�

X

FXφX,c. (33)

2.2. Quadratic bound on large deviations

In a stochastic description of the machine, all the currents introduced above at the var-
ious levels become stochastic quantities. Let us denote j(x,y) as the edge current associ-
ated to the net number of transitions from y to x per unit time during a trajectory of 
duration t. These edge currents {j(x,y)} are fluctuating quantities which are assumed to 
obey a large deviation principle. This means that the probability P of observing them 
in a total time t decays as
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P ({j(x,y)}) �t→+∞ e−tI({j(x,y)}), (34)
where I({j(x,y)}) is the large deviation function (LDF) of the currents also called rate 
function [29].

After some manipulations of equation (3) of [22]3, a quadratic bound for the LDF 
of edge currents can be written in the form

I({j(x,y)}) �
1

4

�

(x,y)

(j(x,y) − J(x,y))
2R̄(x,y), (35)

where

R̄(x,y) ≡
F(x,y)

J(x,y)
 (36)

represents the components of a diagonal resistance matrix, i.e. an edgewise resistance. 
Now, the cycle currents jc are connected to the edge currents j(x,y) by the stochastic 

version of equation (29). Let us introduce j̃ ≡ ( jc1 , jc2 , . . . , jc|C|)
T the vector of the cycle 

currents and J̃  its mean value. When using equation (29) as a change of variable into 
equation (35), we obtain

I(j̃) � 1

4
(j̃ − J̃)T · R̃ · (j̃ − J̃), (37)

where R̃ is the cycle resistance matrix of components

R̃c,c� ≡
�

(x,y)

A(x,y),cA(x,y),c�
F(x,y)

J(x,y)
. (38)

By contracting equation (37) over cycle currents, one obtains an upper bound for 
the LDF of physical currents j1, j2. The LDF we are interested in reads

Iquad(j) =
1

4
min
{..}

�
j̃ − J̃

�T

· R̃ ·
�
j̃ − J̃

�
, (39)

where {..} denotes the minimum over currents j̃ such that j = φ · j̃, with j the vector 
of physical currents (j1, j2). Since the function to be minimized is quadratic and the 
constraints are linear, this contraction can be achieved exactly as follows: The function 
to be minimized is

fquad =
1

4

�
j̃ − J̃

�T

· R̃ ·
�
j̃ − J̃

�
− λT ·

�
j − φ · j̃

�
, (40)

where λ is a Lagrange multiplier. After minimizing fquad with respect to j̃, one obtains 
an expression of j̃ as a function of λ. Then using again the constraint j = φ · j̃, one 

finds

λ = −1

2

�
φ · R̃−1 · φT

�−1

· (j − J) . (41)

3 More precisely, one needs to express the term σπ(y, z) of equation (3) of [22] as jπ(y, z)F (y, z) and divide jπ(y, z) 
out to obtain equation (35).
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Inserting this expression into j̃ and using it into Iquad, one obtains

Iquad(j) =
1

4
(j − J)T ·R · (j − J) , (42)

where we have introduced R as the 2× 2 resistance matrix in the basis of physical 
currents

R ≡
�
φ · R̃−1 · φT

�−1

. (43)

In the end, we obtain the following inequality for the LDF of physical currents:

I(j) � Iquad(j). (44)
The quadratic bound on the LDF used in equation (35) has been built to respect 

the fluctuation theorem [17, 22]. Therefore, at the level of physical observables the 
quadratic bound obeys the relation

Iquad(j)− Iquad(−j) = −jT · F . (45)

Once equation (42) is inserted into this equation, we obtain j
T ·R · J = jT · F  for all j, 

or equivalently R · J = F . After comparing with equation (3), we deduce the relation

G = R−1 = φ · R̃−1 · φT, (46)
that provides a consistent definition of the conductance matrix. Also note that we have 
assumed the matrices R̃, R and G to be invertible, if it is not the case the matrix Gmin 
introduced in equation (9) should be used from the beginning. An explicit example of 
this case is provided for an unicyclic machine in the section 4.1.

In appendix, we derive an alternate route leading to equation (46), which avoids the 
last step of equation (45) but relies instead on a further change of the level of descrip-
tion from that of cycles to that of physical currents.

To summarize, the property that edge current fluctuations in non-equilibrium sta-
tionary states are more likely than those predicted by linear response analysis [21, 22] 
which is equation (35), carries out to the level of cycles and from there to the level of 
physical macroscopic currents. This approach leads to a relation between anities and 
physical macroscopic currents that defines the non-equilibrium conductance matrix. 
The construction of this matrix from a large deviation framework represents our second 
main result.

3. Implications for the thermodynamic eciency and the output power

In this section, we show how previously obtained bounds on eciency [24], and power-
eciency trade-os [25] can be derived from a framework based on the non-equilibrium 
conductance matrix.
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3.1. Inequality involving the non-equilibrium conductance matrix and the covariance ma-
trix of physical currents

We introduce the cumulant generating function (CGF) defined by

λ(γ1, γ2) ≡ lim
t→∞

1

t
ln
�
et(γ1j1+γ2j2)

�
,

 (47)
which is the Legendre transform of the LDF of the physical currents 
λ(γ1, γ2) = maxj1,j2 [γ1j1 + γ2j2 − I( j1, j2)]. Similarly, the Legendre transform of the 
quadratic LDF is λquad(γ1, γ2) ≡ maxj1,j2 [γ1j1 + γ2j2 − Iquad( j1, j2)]. From equation (44), 
we have

λquad(γ1, γ2) � λ(γ1, γ2), (48)
where λquad(γ1, γ2) can be explicitly determined using equation (42). The maximum 
with respect to j1 and j2 leads to the condition

γ =
1

2
R · (j − J) , (49)

where γ is the vector (γ1, γ2). Inserting this result into the definition of λquad and using 
the property R−1 = G, we obtain

λquad(γ) = γT ·G · γ + J · γ. (50)
This equation holds for any value of the conjugated variables γ. Then, the functions λ 
and λquad have the same value at origin and the same first derivative with respect to 
γ around the origin, therefore the inequality (48) can be carried out to second order 
derivatives. The result is the following inequality

∀γ ∈ R2, γT ·G · γ � 1

2
γT ·C · γ, (51)

where we have introduced the covariance matrix as

CXY = Cov(jX, jY ) ≡ lim
t→∞

t [�jXjY � − �jX� �jY �] =
∂2λ

∂γX∂γY

(0, 0). (52)

Now, equation (51) simply reads G � C/2 for the matrix order introduced in equa-
tion (10). Choosing γ = (γ1, 0)

T or (0, γ2)
T in equation (51) leads to the tight bounds 

derived in [20]:

G1,1F1
2 � Var(σ1)

2
, (53)

G2,2F2
2 � Var(σ2)

2
, (54)

after multiplying the inequalities by F1
2 or F2

2 respectively. These inequalities are 
satur ated in the linear regime close to equilibrium, where the non-equilibrium conduc-
tance matrix becomes the standard Onsager matrix L and the relation L = C/2 is the 
well-known fluctuation-response relation. When using the above inequalities (53) and 
(54) into (25) and (26), one obtains
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−�σ2� � Πη(1− η) � Var(σ1)

2
η(1− η), (55)

−�σ2� � G22(F2)
21− η

η
� Var(σ2)

2

1− η

η
. (56)

Thus we retrieve the power-eciency trade-os derived by Pietzonka and Seifert [25]

−�σ2� �
Var(σ1)

2
η(1− η), (57)

−�σ2� �
Var(σ2)

2

1− η

η
. (58)

3.2. From uncertainty relations to bounds on the eciency

By combining the inequality G � C/2 obtained in the previous section with equa-
tion (11), one obtains

Gmin � G � C

2
, (59)

where the first inequality on the left hand side becomes saturated only if the system 
has strongly coupled physical currents. Using again the property (10) for the matrix 
order, the relation Gmin � C/2 implies three inequalities by choosing three particular 
values of the vector x, namely (F1, 0)

T, (0,F2)
T and (F1,F2)

T. These are the so-called 
uncertainty relations [21, 22]:

�σ1�2
�σ� � Var(σ1)

2
, (60)

�σ2�2
�σ� � Var(σ2)

2
, (61)

�σ� � Var(σ)

2
. (62)

Now, we recall the definition of eciency in terms of average partial and total 
entropy production rates

η = 1− �σ�
�σ1�

. (63)

Inserting this definition into equations (60)–(62), one recovers two known bounds on 
eciency [24]:

η � min

�
1− 2

�σ1�
Var(σ1)

,
1

1− 2 �σ2�
Var(σ2)

�
, (64)
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and

η � max

�
1− Var(σ)

�σ1�
,

1

1− Var(σ)
�σ2�

�
. (65)

Among these two inequalities, the first one namely equation (64) is probably the most 
useful one because it involves only the partial entropy production rates of process 1 or 
2, whereas equation (65) requires information on both processes which is often missing.

4. Illustration on small machines

4.1. Unicyclic engine

We start by studying a simple example of heat-to-heat converter. We consider the uni-
cyclic three states model depicted on figure 1. Each state a,b,c has a dierent energy 
Ea,Eb,Ec and each transition is connected to a dierent heat reservoir at inverse 
temper ature β1, β2, β3. The transition rates are

k(b,a) = Γe−
β1
2
(Eb−Ea), k(a,b) = Γe−

β1
2
(Ea−Eb),

k(c,b) = Γe−
β2
2
(Ec−Eb), k(b,c) = Γe−

β2
2
(Eb−Ec),

k(a,c) = Γe−
β3
2
(Ea−Ec), k(c,a) = Γe−

β3
2
(Ec−Ea),

 

(66)

where Γ is the coupling strength to the reservoirs. The system is coupled to three heat 
reservoirs, and its total entropy production rate is σ = −β1J1 − β2J2 − β3J3, where 
Ji denotes the heat flux from the heat reservoir i to the system. Using the energy 
conservation J1 + J2 + J3 = 0, we obtain the total entropy production rate σ = 
(β3 − β1)J1 + (β3 − β2)J2. We consider as driving current the heat flow J1 and output 
current the heat flow J2, and we assume that the temperatures of the reservoirs satisfy 
β3 > β1 and β3 > β2 and the energies are such that Eb > Ec > Ea. Under these condi-
tions, the driving and output currents are such that J1 > 0 and J2 < 0, and the system 
operates as a machine that transfers heat from a cold to a hot reservoir using the 

Figure 1. Sketch of the unicyclic heat to heat converter with three states a, b, and 
c. Transition a ↔ b is promoted by the heat reservoir at inverse temperature β1, 
transition b ↔ c by the heat reservoir at inverse temperature β2, and c ↔ a for β3.
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thermodynamic force generated by the transfer of heat from a hot to a cold reservoir. 
The partial entropy production rates and physical anities are then

σ1 = (β3 − β1)J1, F1 = (β3 − β1)

σ2 = (β3 − β1)J2, F2 = (β3 − β2).
 (67)

At the lower level, the system has a single cycle c1 for which we chose the orien-
tation a → b → c. Thus, the matrix of fundamental cycles A is actually the vector 
A = (1, 1, 1)T. Due to the stationary condition, the current is the same on each edge 
and is equal to the cycle current

J(b,a) = J(c,b) = J(a,c) = Jc1 =
Γ

Z

�
k(b,a)k(a,c)k(c,b) − k(a,b)k(b,c)k(c,a)

�
, (68)

where we have defined

Z = k(a,b)k(a,c) + k(a,b)k(b,c) + k(a,c)k(c,b) + k(b,a)k(b,c) + k(b,c)k(c,a)

+ k(b,a)k(a,c) + k(c,a)k(c,b) + k(c,b)k(b,a) + k(c,a)k(a,b).
 (69)

The corresponding edge anities are defined in equation (28). From the matrix of fun-
damental cycles A, we derive the cycle anity

Fc1 = (β3 − β1)(Eb − Ea) + (β3 − β2)(Ec − Eb) = ln
k(b,a)k(a,c)k(c,b)
k(a,b)k(b,c)k(c,a)

. (70)

When comparing with the physical anities F1 and F2 of equation (67), we identify 
using equation (33) the matrix

φ =

�
Eb − Ea

Ec − Eb

�
. (71)

The physical currents follow from equation (30) as J1 = Jc1(Eb − Ea) and J2 = Jc1(Ec − Eb), 
in order that the entropy production rate writes σ = Jc1Fc1 = J1F1 + J2F2.

We now turn to the conductance and resistance matrices. From the definition of the 
edge resistance matrix of equation (36), we have R̄(x,y) = F(x,y)/Jc1 since all edge prob-
ability currents are equal to the cycle current. Equation (38) yields the cycle resistance 
matrix which is the scalar

R̃ =
Fc1

Jc1
. (72)

In the end, equation (46) for the non equilibrium conductance matrix yields

G =
Jc1
Fc1

�
(Eb − Ea)

2 (Ec − Eb)(Eb − Ea)

(Ec − Eb)(Eb − Ea) (Ec − Ea)
2

�
, (73)

which is not invertible as expected for unicyclic machines. In this case, the conductance 
matrix is equal to the minimum conductance matrix Gmin defined in equation (9). In 
the end, the parameters associated to the non-equilibrium conductance matrix are:

Π = (Ea − Eb)
2(β1 − β3)

2 Jc1
Fc1

=
J2
1F

2
1

σ
, (74)
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ϕ =

����
(β2 − β3)(Eb − Ec)

(β1 − β3)(Ea − Eb)

���� =
−J2F2

J1F1

= η, (75)

ξ = −1, (76)
confirming that this system operates in the tight coupling regime.

4.2. Molecular motor

Our second example is a discrete model of a molecular motor [26, 27]. The motor has 
only two internal states and evolves on a linear discrete lattice by consuming adenosine 
triphosphate (ATP) molecules. The position of the motor is given by two variables the 
position n on the lattice and y is the number of ATP consumed, as shown in figure 2. 
The even and odd sites are denoted by a and b, respectively. Note that the lattice of a 
and b sites extends indefinitely in both directions along the n and y axis; for the spatial 
direction n, the lattice step defines the unit length. There are two physical forces act-
ing on the motor, a chemical force controlled by the chemical potential dierence of 
the hydrolysis reaction of ATP, Δµ and a mechanical force f applied directly on the 
motor. The whole system is in contact with a heat bath, and we choose to express all 
energies in units of kBT . Equilibrium corresponds to the vanishing of the two currents, 
namely the mechanical current v̄ which is the average velocity of the motor on the lat-
tice, and r the chemical current, which is its average rate of ATP consumption. Since 
the system operates cyclically, the change of internal energy in a cycle is zero and the 
first law takes the form q + rΔµ+ fv̄ = 0 where q is the heat flow coming from the 
heat bath, rΔµ represents the chemical work and f v̄ represents the mechanical work; 
all quantities are evaluated in a cycle. Under these conditions, the second law takes the 
form σ = −q, and the entropy production rate takes the following form:

σ = f v̄ + rΔµ. (77)
In the normal operation of the motor, chemical energy is converted into mechanical 
energy, which means that the driving process (1) is the chemical one and the output 
process (2) the mechanical one in agreement with the choice of convention made in this 
paper. Thus, the two partial entropy production rates should be σ1 = rΔµ, with the 
chemical anity F1 = Δµ and σ2 = fv̄, with mechanical anity F2 = f.

In this model, there are four reactions between the two states, corresponding to four 
edges, with for each of them a forward or backward direction along each edge as rep-
resented in figure 3. Two of these reactions are passive and do not involve ATP while 
the other two are active and do involve ATP. Together, there are eight rates for these 
four reactions which are given by

−→ωb
−1 = α�eθ

+
b f , −→ωb

0 = ω� eθ
+
b f ,

←−ωa
1 = α�e−�+Δµ−θ−a f , ←−ωa

0 = ω� e−�−θ−a f ,
←−ωb

−1 = α e−θ−b f , ←−ωb
0 = ω e−θ−b f ,

−→ωa
1 = α e−�+Δµ+θ+a f , −→ωa

0 = ω e−�+θ+a f ,

 

(78)

where we have kept the original notation of [26, 27] for the rates. In the above expres-

sions, θ±i  represent load distribution factors which are arbitrary except for the constraint 
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θ+a + θ−b + θ−a + θ+b = 2 [27]. Let us choose to orientate all these edges from state a to b. 
Then, the four edge currents and anities are

J(1) = πa
←−ωa

1 − πb
−→ωb

−1, F(1) = ln
←−ωa

1πa
−→ωb

−1πb

, (79)

J(2) = πa
←−ωa

0 − πb
−→ωb

0, F(2) = ln
←−ωa

0πa
−→ωb

0πb

, (80)

J(3) = πa
−→ωa

0 − πb
←−ωb

0, F(3) = ln
−→ωa

0πa
←−ωb

0πb

, (81)

J(4) = πa
−→ωa

1 − πb
←−ωb

−1, F(4) = ln
−→ωa

1πa
←−ωb

−1πb

, (82)

in terms of the stationary probabilities to be in state a or b, namely πa and πb. The 
explicit expressions of the currents in terms of the transition rates is known [26, 27].

−1 0 1
n

2 3

−1

0

1y

b a b a b

a b a bb

b a b a b

−→ωb
0

←−ωa
0

−→ωa
0

←−ωb
0

−→ωa
1

←−ωb
−1

−→ωb
−1

←−ωa
1

Figure 2. Sketch of the state space for our discrete model of molecular motor 
specifying the transition rates. The horizontal axis provides the motor position n 
and the vertical axis the number y of consumed ATP. This figure is reproduced 
from [27] with permission from authors.

Figure 3. (a) Sketch of the eective two-state system with four edges. Edge 
orientation is head toward b. (b) Set of fundamental cycles with their orientations.
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Here, there are three cycles identified in figure 3(c). Given our convention of orienta-
tion of the edges, the edge currents and the cycle currents are related in the following 
way

J(1) = Jc1 + Jc3, (83)

J(2) = −Jc3, (84)

J(3) = Jc2, (85)

J(4) = −Jc1 − Jc2, (86)
which means that the matrix A is

A =




1 0 1

0 0 −1

0 1 0

−1 −1 0


 . (87)

The physical currents can be expressed in terms of the displacements Δn and the 
change in the number of ATP molecules Δy along each transition per unit time. For 
the four edges, these changes are

edge (1) (2) (3) (4)
Δy 1 0 0 1
Δn −1 −1 1 1

φ̄ =

�
1 0 0 1

−1 −1 1 1

�
, (88)

which defines a matrix that we denote φ̄. Then, summing the edge contributions over 
cycles gives the matrix

φ = φ̄ ·A =

�
0 −1 1

−2 0 0

�
. (89)

Another approach is to identify the matrix φ by making the description at the edge 
and cycle levels matches with the one at the level of physical observables. Precisely 

the entropy production rate is σ =
�

i=1,4 J(i)F(i) at the edge level, σ =
�

i=1,3 JciFci, 

at cycle level, and σ = fv̄ + rΔµ at the level of physical currents and anities. Note 
that all edge anities and currents are not independent, with the above choice of 
transition rates, one finds the constraint on edge currents 

�
i J(i) = 0 and similarly for 

edge anities F(1) + F(3) − F(2) − F(4) = 0. These compatibility relations are essential to 
relate edge or cycle currents to the two physical currents (v̄, r). The physical currents 
are v̄ = 2(J(3) + J(4)) and r = −J(3) − J(2) in terms of the edge currents while the physi-
cal anities are 2f = F(4) − F(1) and Δµ = F(1) − F(2) in terms of the edge anities. In 
the end, the relations between the cycle anities and the physical anities read

Fc1 = −2f , (90)

Fc2 = −Δµ, (91)

Fc3 = Δµ, (92)



Degree of coupling and eciency of energy converters far-from-equilibrium

20https://doi.org/10.1088/1742-5468/aaa8fe

J. S
tat. M

ech. (2018) 023205

in agreement with the matrix φ given in equation (89).
We now turn to the conductance and resistance matrices. From the definition of the 

edge resistance matrix below equation (35), we have

R̄ =




R̄(1) 0 0 0

0 R̄(2) 0 0

0 0 R̄(3) 0

0 0 0 R̄(4)


 , (93)

where using equations (79)–(82), we have R̄(i) = J(i)/F(i) for i = 1, . . . , 4. The cycle 
resist ance matrix is then obtain from (38)

R̃ =



R̄(1) + R̄(4) R̄(4) R̄(1)

R̄(4) R̄(3) + R̄(4) 0

R̄(1) 0 R̄(1) + R̄(2)


 . (94)

The cycle conductance matrix is the inverse of the cycle resistance matrix (94), then 
this leads using (43), to the following non-equilibrium conductance matrix

G =
1

ZG

�
(R̄(1) + R̄(4))(R̄(3) + R̄(2)) 2(R̄(4)R̄(2) − R̄(1)R̄(3))

2(R̄(4)R̄(2) − R̄(1)R̄(3)) 4(R̄(1) + R̄(2))(R̄(3) + R̄(4))

�
, (95)

with

ZG = R̄(1)R̄(4)R̄(3) + R̄(1)R̄(4)R̄(2) + R̄(1)R̄(3)R̄(2) + R̄(4)R̄(3)R̄(2). (96)
Using this matrix and the definitions of equation (12), we find the following parameters

Π =
(R̄(1) + R̄(4))(R̄(3) + R̄(2))

R̄(1)R̄(4)R̄(3) + R̄(1)R̄(4)R̄(2) + R̄(1)R̄(3)R̄(2) + R̄(4)R̄(3)R̄(2)

(Δµ)2, (97)

ϕ =

�
(R̄(1) + R̄(2))(R̄(3) + R̄(4))

(R̄(1) + R̄(4))(R̄(3) + R̄(2))

2| f |
|Δµ| , (98)

ξ =
−(R̄(4)R̄(2) − R̄(1)R̄(3))�

(R̄(1) + R̄(2))(R̄(3) + R̄(4))(R̄(1) + R̄(4))(R̄(3) + R̄(2))
,

 (99)

which are used to make the plots of figures 4 and 5.

4.3. Discussion

The maximal eciency given by equation (19) is shown as function of the degree of cou-
pling in figure 4. This maximal eciency is compared with the eciency of the molecu-
lar motor model which is analytically solvable. The corresponding comparison for the 
unicyclic engine is not shown because the degree of coupling is always  −1. In order to 
test this bound, we vary either (i) the thermodynamic forces, namely f and Δµ, which 
together characterize the distance to equilibrium, or (ii) the kinetic parameters of the 
model (α, α�, ε, θi..). The test (i) is carried out in the main figure in which either the 
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anity f is varied at fixed Δµ or vice versa, covering a large regime of conditions far 
from equilibrium. The test (ii) is carried out in the inset, by scanning over a large panel 
of kinetic parameters. Both figures confirm that the maximum eciency only depends 
on the degree of coupling. These figures also show that this maximum eciency is 
reached under some accessible conditions.

Figures 5(a) and (b) illustrate the power-eciency trade-o for the molecular motor 
and the unicyclic engine respectively, by showing the mean output entropy produc-
tion rate −�σ2� as function of the eciency η. A striking feature in these plots is that 
the entropy production rate is bi-valued for the molecular motor as explained in sec-
tion 1.5 while it is single-valued for the unicyclic engine, because the unicyclic engine 
is a tight coupled engine. In order to test the inequality of equations (25) and (26), we 
compare −�σ2� (solid line) evaluated using exact expressions of the average currents, 
with the power-eciency bounds of equations (25) and (26) (empty symbols). As shown 
in figure 5(b), these bounds become exact in the tight coupled case.

The figure also shows a comparison with the power-eciency inequalities derived 
by Pietzonka and Seifert [25] (full symbols). The variances appearing in these inequali-
ties can be evaluated from the cumulant generating function of the currents that is 
known exactly for these models [21, 26, 27]. We confirm with this figure that the new 
bound derived from the present framework is more tight than the bounds derived 
in [25], in agreement with equations (55). Note that the two bounds derived in this 
reference collapse with each other in the tight coupled case, but stay above the exact 
value except at the two extremal values of η = 0 and η = 1. Indeed, in these regions, 
the engine works near equilibrium. One reason for which the bounds of [25] are less 
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Figure 4. Illustration of the bound of equation (19) (blue solid line) for the 
molecular motor model. For a given chemical potential dierence Δµ = 15.0 
(purple circles), the force f is varied along the curve. Alternatively, for a given 
force f  =  −1 (green crosses) the chemical potential dierence is varied along the 

curve. The kinetic parameters are those of [27]: α = 0.57, α� = 1.3.10−6, ω = 3.5, 

ω� = 108.15 � = 10.81, θ+a = 0.25, θ−a = 1.83, θ+b = 0.08, θ−b = −0.16. Inset: Eciency 
versus degree of coupling when varying all kinetic parameters at fixed anities 
Δµ = 10.0 and f  =  −1.9. The kinetic parameters listed above are randomly chosen 
by multiplying the values used in the main figure by ex with x drawn uniformly 
within [−2, 2].
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tight than ours is that they are a consequence of uncertainty relations, which for this 
molecular motor model do not yield a particularly sharp prediction of the eciency, 
as discussed in [30].

5. Conclusion

In this work, we have developed a framework based on the notion of non-equilibrium 
conductance matrix to analyze the eciency and the output power of energy converters 
operating far from equilibrium. This matrix is initially only partially constrained by the 
dependence of the physical currents on thermodynamic anities. Nevertheless it shares 
many properties with the Onsager matrix, the two matrices are symmetric positive 
definite and become identical near equilibrium but dier otherwise. These properties 
are sucient to exploit a parametrization of the eciency introduced by Kedem and 
Kaplan for machines operating near equilibrium [2] and use it for general machines 
operating far from equilibrium. With this parametrization linked to a specific choice of 
non-equilibrium conductance matrix, we have shown that the eciency of machines is 
generally bounded by an universal expression dependent only on the degree of coupling. 
The maximum value of this bound is the reversible eciency which is only accessible to 
tight coupled machines. This result means practically that a bound on the eciency of 
a machine can be deduced from a measurement of its degree of coupling. This observa-
tion could have interesting applications for various thermodynamic devices, such as for 
instance photoelectric cells.
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Figure 5. Output entropy production rate as a function of the machine eciency 
using exact expression (solid blue line). Power-eciency bounds of equations (25) 
(green open squares), (26) (yellow open circles), (57) (magenta full squares) and 
(58) (blue full circles) for (a) the molecular motor model with Δµ = 7.0 and the 
same kinetic parameters as in figures 4 and (b) the unicyclic engine at β1 = 0.5, 
β3 = 1, Γ = 1, Ea  =  1, Eb  =  4 and Ec  =  2. For both figures, F1 is held fixed when 
varying F2.
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When a microscopic kinetic model of the machine is known, more insights into the 
eciency of the machine can be obtained. In particular, tighter bounds on the output 
power in terms of the eciency as compared to [25] follow from our approach. We have 
explained the relation between the various bounds using properties on the large devia-
tions of the currents.

This work naturally begs the question whether the non-equilibrium conductance 
matrix can itself be determined experimentally. As mentioned above the dependence 
of the physical currents on thermodynamic anities is in general insucient to define 
the conductance matrix uniquely. However we have also shown that a unique conduc-
tance matrix can be defined from the knowledge of local resistances (which make up 
the resist ance matrix) and of the weights between cycle currents and physical currents 
(which make up the φ matrix).

The framework introduced here should be useful to revisit old questions such as 
the eciency at maximum power or the role played of time reversal symmetry for the 
eciency. In this context, it would be interesting to study extensions of the present 
framework to systems in which the Onsager reciprocity relations are modified, either 
due to a magnetic field [31, 32] or because the machine operates under time-periodic 
driving [33].

Acknowledgments

We acknowledge H-J Hilhorst for his pertinent comments on this paper.

Appendix. Microscopic framework for the non-equilibrium conductance matrix

In the following, we emphasize the physical meaning of G as a conductance matrix. We 
intend to shown how to switch from the resistance matrix at the edge level to the NE 
conductance matrix at the level of physical currents.

Starting at the edge level, the resistance matrix R̄ is diagonal in the space of edges, 

with diagonal elements R̄(x,y) as defined in equation (36). The inverse of the edge resist-
ance matrix is the edge conductance matrix Ḡ = R̄

−1
. We remark that the elements 

of the resistance matrix depend on the physical anities through transition rates and 
stationary probability.

At the level of cycles, the matrix R̃ for cycle resistance introduced in equation (38) 
connects cycle anities and currents via

Fc =
�

c�

R̃c,c�Jc. (A.1)

Indeed, using equation (29) in equation (36), one may express R̃ as a function of R̄ 
since

F(x,y) =
�

c

R̄(x,y)A(x,y),cJc, (A.2)

Fc� =
�

c

�

(x,y)

(AT)c�,(x,y)R̄(x,y)A(x,y),cJc, (A.3)
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where we have used equation (32) in the second step. This leads to the cycle resistance 
matrix defined in the main text

R̃c�,c =
�

(x,y)

(AT)c,(x,y)R̄(x,y)A(x,y),c. (A.4)

Here the analogy with electric circuits holds: electrical resistances add when connected 
in series. The cycle conductance matrix G̃ is then

G̃ ≡ R̃
−1

= (AT · R̄ ·A)−1 = A+ · Ḡ ·AT+, (A.5)
where A+ is the Moore–Penrose pseudo inverse of the matrix of fundamental cycles A 
[34].

At the level of physical observables, the NE conductance connects currents to 
anities via

JY ≡
�

X

GY ,XFX. (A.6)

Considering that the amount of physical quantity Y  exchanged with the environment 
during cycle c is φY ,c and using equation (A.1), one gets

JY =
�

c

φY ,cJc =
�

c,c�

φY ,cG̃c,c�Fc =
�

X

�

c,c�

φY ,cG̃c,c�φ
T
c,XFX. (A.7)

Therefore, the physical conductance matrix writes

G = φ ·A+ · Ḡ · (φ ·A+)T, (A.8)
which is the same non-equilibrium matrix as given by equations (43)–(46). The electri-
cal analogy also holds: cycle conductances add when connected in parallel which makes 
senses when considering that the current flows from one reservoir to another through 
sequences of cycles.
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