M2/CFP /Parcours of Physique Théorique

Invariances in physics and group theory

Exercises on Cartan algebra, roots, weights...

Equations refer to the lecture of Jean-Bernard Zuber, Chapter 3, version 2013.

A. Cartan algebra and roots

1. Show that any element X of g may be written as X = > 2'H; + > A 2“E,
with the notations of § 3.1.2.

For an arbitrary H in the Cartan algebra, determine the action of ad(H) on such
a vector X ; conclude that ad(H)ad(H")X = > ., 2%a(H)a(H')E, and taking into
account that the eigenspace of each root o has dimension 1, cf point (%) 2. of § 3.1.2,

that the Killing form reads
(H,H') = tr(ad(H)ad(H')) = Y " a(H)a(H') . (1)
acA

[Solution : For a fixed value of j, H; has dim g independent eigenvectors (since H;

acts on g). These eigenvectors thus provide a set of generators, allowing to write

VX €gX=> o'H+Y 2°E,. (2)
a€A
For H € b,
adH X = [H, X] =Y a°[H Eo| = Y _2*a(H)E,.
acA acA
Thus

ad(H)ad(H') X =Y aa(H')[H,E) = Y _2a(H')o(H) E,

aEA acA

and
a(H)a(H)E, = o(H") a(H) E,



for a given «. Each root a corresponds to an eigenspace spanned by E,, of dimen-

sion 1. Thus

trfad(H) ad(H)] = Y a(H') a(H).

a€A

2. One wants to show that roots v defined by (3.5) or (3.6) generate all the dual
space h* of the Cartan subalgebra h. Prove that if it were not so, there would exist

an element H of § such that
Vaoe A «a(H)=0. (3)

Using (1) show that this would imply VH' € h, (H, H') = 0. Why is that impos-
sible in a semi-simple algebra ? (see the discussion before equation (3.10)).
[Solution : One is looking for H = ", h' H; € b, so that «(H) = >, h' oy = 0
for every a € A. Thus, H should obey |A| equations, which would lead to a number
of undetermined parameters larger or equal to dimb — |A|, {h%, i € {1---dimb}}
being a solution of this set of equations. In the case where |A| < dimbh* = dimb,
a non-trivial solution (i.e. such that h* do not all vanish) thus exists, and H is non
7€ro.

The expression

(H, H') =Y a(H')a(H)

aEA

leads to

VH €, (H, H)=0.

Since (H, E,) = 0, we thus deduce that
VX €, (H, X)=0,

thus showing that the Killing form is degenerate on b, in contradiction with the
semi-simplicity of . Thus, A spans h* (and thus |A| > dim h* = dim h). |

3. Variant of the previous argument : under the assumption of 2. and thus of (3),
show that H would commute with all H; and all the £, thus would belong to the
center of g. Prove that the center of an algebra is an abelian ideal. Conclude in the

case of a semi-simple algebra.



[Solution : Assume that 3H € b such that Vo € A, a(H) = 0. Then, on one
hand [H, H;] = 0, while on the other hand Yo € A, [H,E,] = a(H) E, = 0 so
that H € Z;. Now, X € Z, & VY € g,[X,Y] = 0. Obviously, [Z,,g] C Z, since
[Z,, 9] = {0}, showing that Z; is an abelian ideal of g (abelian since every element
of Z; commute with every element of g, in particular those of Z;). Based on the

semi-simplicity of g, this implies that Z; = {0}, proving that H € Z; is impossible.]|

B. Computation of the Ny
1. Show that the real constants N,z satisfy N,g = —Ng, and, by complex conju-
gation of [E,, Eg| = NopFEais that

Nag=-N_a_s. (4)

[Solution : [E,, Es] = N, g Esyp if a+ [ is a root. Since [E,, Eg] = —[Ejs, E,], we
thus have Ng, = —Ny 3.

[H,E,] = a E, leads to [H,E,]' = —[H,E!] = a E! since H is hermitian. Thus,
[H,El] = —a E}, and thus E! = E_,. From [E,, Es] = N, 3 E,.s we thus have
[Ea, Eg]' = Nag EL, 5 = Nag E_o—s . This leads to

Navﬁ = N—B,—Oj = _N_Oév_ﬁ = _NB704 :

2. Consider three roots satisfying oo 4+ 5 + v = 0. Writing the Jacobi identity for
the triplet E,, Eg, I, show that a()Ng, + cycl. = 0. Derive from it the relation

Nag=Nsa5=N-apa. (5)
[Solution : The Jacobi identity reads
HEOH Eﬁ]’ Ev] + HEB? Ew]’ Ea] + [[E% Ea]’ Eﬁ] =0

and thus
Nog [Earps Byl + Ny [Egiy, Ea] + Ny [Bayy, Eg] =0,

which can be written as

Na,ﬁ [E—va Ew] + Nﬁm/ [E—ou Ea] + Nv,a [E—Ba EB] =0,



i.e.

Naﬁ [‘[,7 + Ng,fy H_,+ N%a H,5 =0,

so that
Ng . (—agyH;) 4 cycl.perm. = 0.

Calculating (H;, ) for a fixed value of i, we thus get

o) Ng + cycl.perm. = 0.

We thus have

so that
@(Ng—a—p = Nap) + B(N-a—pa— Nap) =0.

This identity is valid for any set of roots «, 3, v satisfying o+ 8+~ = 0, so that «
and [ are linearly independent, except if 5 = +a. Now :

o If « = [, then v = —2a which is impossible since the only roots of the form \ «
are o .

o [f « = —f3, then v = 0 which is again impossible.

We thus conclude, based on the linear independence of a and 3, that

Np—a—p = Nap=N-apa-

This identity remains trivially satisfied for 5 = «, since on one hand [FE,, E,] = 0,
i.e. Nyo = 0 and on the other hand N, _s, = 0 since —2a is not a root. Similarly,
it is also valid in the case 8 = —a since Ny _o = N_n0 = Noo = 0. The above
identity is thus valid for any set of roots a and (3. |

3. Considering the a-chain through § and the two integers p et ¢ defined in §
3.2.1, write the Jacobi identity for E,, E_, and Egik,, with p < k < ¢, and show
that it implies

<Oé, 6 + kOé> = Na,ﬁJrkaNa,BJr(kfl)a + NﬁJrka,aNfa,BJr(kJrl)a .

Let f(k) := NagpikaN-a—p—ka- Using the relations (5), show that the previous

equation may be recast as

(@, 8+ ka) = f(k) = f(k=1). (6)
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[Solution : The Jacobi identity reads

[[EOM E—Oé]’ Eﬁ-i—koz] + [[E—OH Eﬁ-l-kﬂé]’ Ea] + [[Eﬁ-i-ka]’ Ea]> E—a] =0,

i.e.
[He, Eg kol + Noagria [Ept-1)ar Ba] + Notraa [Eptet1)ar B-al =0,
and thus
Z a(i)[B(i) + k a(i)] Estra + Noagrba Nt k-1aa Eotka
Z + Ngskaa Vot Da,—a Eprka =0
From 7, a()[B8(i)+k a(i)] = (o, B+ka), Ngrk—1)aa = —Nasrk—1)a a0d Npy (k1 1)a,—a =

—N_q g1 (k+1)a We get, since Egy o # 0,

<a7 6 +k a> = N—a,ﬁ-{-ka Na,ﬁ—i—(k—l)a + Nﬁ-l—ka,oz N—a,ﬁ-{—(k—l—l)a .

From the definition of f, we have

f(k) = Noz,ﬁ—i—kozN—a,—B—koz = _NiBJrka - Nﬁ-l—ka,ozN—ﬁ—ka,—a - Nﬁ—i—ka,aN—a,ﬁ-‘r(k—i—l)a .
Thus,
f(k - 1) = Na,ﬁ—i—(k—l)aN—a,—B—(k—l)oz .

Now, since N_o _3_(k—1)a = Ng4ka,—a = —N_a,s+ka, Where we have used N,; =

—N_,_5~, we thus have

(. f+ka)=f(k)—f(k-1).

4. What are f(q) et f(¢— 1)? Show that the recursion relation (6) is solved by

FR) = ~(Nopana)® = (k= @)l 8+ 3 (k+ g+ 1)) (7

What is f(p — 1) 7 Show that the expression (3.21) is recovered. Show that (7) is in
accord with (3.23). The sign of the square root is still to be determined ..., see [Gi].
[Solution : The definition of f leads to f(¢) = Na.gt+qaN-a,—p—qa - Since [Ey, Egiqa) =
Na gqaFs+(g+1)a While B+ (¢+ 1)a is not root, as implied by the definition of ¢, we
obtain N, g0 = 0 and thus

fl@)=0.
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From the definition of f,

fla=1) = =N2 514 1)a -

On the other hand, (o, 5+ qga) = f(q¢) — f(g— 1), so that

flg=1)=—(,B+qa)==NZ 5, 1)a-

From the expression («, 5) + k{a, o) = f(k) — f(k — 1) we get

F(@)=Fla=D+Fa=1)=F(g=2)+ - +f(k+1)=f (k) = = f(k) = (q=k)(e, B)+ Y mla,a).

m=k+1
! i L glgr)  k(k+D) ke
From ) m=- m+ ) =%T0= - 5= =-"A(1+k+q) we get
m=k+1 m=1 m=1

FR) = (k= @), 8) + 50, 0) (14 K+ @)k — )

so that

fk) = (k =)o, B+ 5(k + g+ 1)a) = =N2 54 -

We now compute
f(p=1) = Nopip-1aN-a,--p-1)a -

The second coefficient reads N_, _3_(p—1)a = Ngtpa,—a = —N_q,g4pa - Since

[E_os Esipal = Noapipalaip-1)a

and using the fact that 8+ (p — 1)a is not a root by definition of ¢, we deduce that
N_u g+pa = 0 and thus f(p — 1) = 0. Therefore,

F) = {8+ p0) = =N pipe = (= 0) o B+ 5(p -+ + D)a),

so that

(0. B)p—a—1) =lp— 5~ a)p-+a+ Dliea) =~ g~ Dp+0) o).

Therefore,

We thus have




We finally get

f(0)=—=NZ ;= —Q<a,ﬁ+%(q+1)a> = —q[{a, B)+5(g+ 1), a)] = —————(a, )

and thus

Mool =0,

C. Study of the B, =so(2l + 1) and Go algebras
1.so(2l4+1)=B;, 1 > 2
a. What is the dimension of the group SO(20+1) or of its Lie algebra so(2/+1) ?

[Solution : We start from the defining relation
00'=0'0=1

with O expanded as O =1 +4T, i.e. (14 T)(1+4iT*) =1 and thus (T +T*) =0,
showing that 7' is antisymmetric.

If T is an n x n matrix (for the case of O(n) or SO(n)), T is characterized by
(n? —n)/2 elements, so that for n = 20+ 1,

dimo(20 +1) =¢(20+1).

This dimension is the same for so(2¢ + 1) since det O = 1 does not introduce any
additional constraint on the Lie algebra (it only selects the connected component of
the identity when considering the group).|

b. What is the rank of the algebra? (Hint : diagonalize a matrix of so(2{+ 1) on
C, or write it as a diagonal of real 2 x 2 blocks, see lecture notes, §3.1)

[Solution : Since O is diagonalizable in the form

0 ,
D =diag | 0, o’
=i 0 )

with real u; (see chapter 3), we thus get

rank so(20 +1) = (.

c. How many roots does the algebra have ? How many positive roots ? How many

simple ?



[Solution : # of roots = dimension - rank = £(2( + 1) — ¢ = 2[*.
Among these roots, half of them are positive, i.e. £2. The number of simple roots is
equal to the rank, i.e. £.]

d. Let e;, @ = 1,---,1 be a orthonormal basis in R!, {e;, e;) = d;;. Consider the

set of vectors
A={te;, 1<i<l}U{te; e, 1<i<j<l}

What is the cardinal of A?
[Solution : Card{te; , 1 <i <[} =2/ and Card{xe; te;, 1<i<j<I}=
4C% = 2I(1 — 1), therefore Card A = 2I? ]
A is the set of roots of the algebra so(2[ + 1).
e. A basis of simple roots is given o; = e; —e;4q, 1 = 1,--- ;1 — 1, et oy = e;.

Explain why the roots

1<k<l

€ — € = Zaka ]-<'L<j<la (8)
1<k<j

e +e = Z()ék—i-QZak, 1§Z<]§l,
i<k<j j<k<l

qualify as positive roots.

[Solution : There are

ei:Zak, 1< <1, Card =/,
i<k<l
. (-1
ei—ej:Zozk, 1<i<j<l, Card = (2 ), 9)
1<k<j
(-1
ei+e]~:'2‘ak+2'2ak, 1<i<y<I, Card = (2 ),
1<k<j I1<k<l
there are thus |A,| = [? of such roots, which expand on the set of simple roots

with integer coefficients. Including their opposite (negative roots), they correctly
reproduce the whole set A.] Check that assertion on the case of By = so(5).

[Solution : For By = so(5), A = {4e;, ey, £e; ey} with Card A = 8. The £ =2
(which is equal to the rank of By = so(5)) simple roots are a; = e; — e and g = 5.

And A, = {e1,ez,e1 —e9,e1 + €3} with Card Ay =4 |
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f. Compute the Cartan matrix and check that it agrees with the Dynkin diagram
given in the notes.

[Solution : Obviously, 2

lai.00) — 9 Then,

<ai7a >

2<04j+1a04j> 2<€j+1 — 2,6 —ejn1) _ 2(=1)

= = =1,
(aj,a;) (ej — €j41,€5 — €j11) 2
and
(@41, ajyr)
Finally,
2<04571,Oéz> _ (er-1 — e e) _9
(v, aup) (ee, er) ’
and
(g, ap-1) (ee,ep1—eq)  2(=1)
2 =2 = =1
(g1, 00-1) (ee-1—ep €01 —eg) 2 ’
which can be summarized by
2 sil<i=j <l
o _lanay ] -1 sil<i=(GE)<i-1
T ey, q) 2 sii=l—1,j=1
—1 sii=l,j=1-1

corresponding to the Dynkin diagram illustrated in Fig. 1. The roots of B, are

[

31010203000#0

FIGURE 1 — The Dynkin diagram for the algebra B,.

illustrated in Fig. 2 |

g. Compute the sum p of positive roots.

[Solution :
¢ ¢
2p:Zei+ Z (ei—ej—l—ei—l—ej):ZemLQ Z e; = Z [142(¢—1i)le;
i=1 1<i<j<t i=1 1<i<j<t 1<i<j<t

=2 -1er+ @20 —=3)ea+ -+ 2 —2i+1)e;+---+3e1+ ¢
=2l =1)(ar+--ap) + (2l =3)(ag+--ap) + -+ (2L =20 + 1) (0 + - )
+- 4+ 3 (a1 +a) + o
= (20 — Dy +2(20 — 2)ag + -+ i(2l —i)a; + - - - + Py .
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(o) €1

€y (9

FIGURE 2 — The roots of B,. In red, the two simple roots oy and «s. In black, the

two other positive roots, and in cyan the four negative roots.

h. The Weyl is the (“semi-direct") product W = &; x (Z,)!, which acts on the
e; (hence on weights and roots) by permutation and by independent sign changes
e; — (£1);e;. What is its order? In the case of By, check that assertion and draw
the first Weyl chamber.

[Solution : |W,| = 21!, and for By, |W,| = 8. Permutations and change of sign of
e; and es indeed corresponds to (products of) symmetries in "planes orthogonal to
a1 and as; they do not modify the picture of Fig. 2. It is worth obtaining W5 in a
pedestrian way. We easily get

Oéll €1 = €2, Oézl e = €1,
Ozf‘ €y = €1, Oz%‘ €y = —€9.
Thus
O[f‘ Oz%‘ e = €9, Oz%‘ O[f‘ €1 = —€9,
O[f‘ Oz%‘ €y = —€1, Oz%‘ O[f‘ €y = €.
This shows that a; a5 = —az ai is a rotation of angle —7/2 (in the oriented

plane e, e;). Thus, any word made of I, —I,ai,as reduces to the elements of
Wy = {l,ai ,a5 ,ai a5 ,—I,—a; ,—a3 ,—a; as }. Equivalently, the Weyl group
is generated by the set of reflections in the hyperplane (here line) orthogonal to the
various a's. The first Weyl chamber C; = {A|(\, ;) > 0} is the octant between
aj + ag and aq + 20 . |

i. Show that the vectors A; = Z;’:1 ej,i=1,---,1—1, A = %Zgzl e; are the
fundamental weights.
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[Solution : The fundamental weights are defined in such a way that A; is orthogonal

FIGURE 3 — The weight diagram for the algebra Bs. The two simple roots «; and
ap are displayed as red lines. The two fundamental weights A; and A, are displayed
as blue lines. The lattice of roots is shown as red dots, while the lattice of weights
is shown as blue dots. The first Weyl chamber C; is shown as a dark-grey zone. The
other Weyl chambers, shown as grey regions of various intensities, are obtained by

acting on C; with the various element of the Weyl group, as explicitely indicated.

to every root simple root «; (j # i), its normalization being fixed by 2% = 1.

The denominators read

(@i, o) e; —eiy1,6;—eip1) =2 fori=1,--- (-1,

=
<Ozg,Oég> =1.

The construction can be easily performed by recursion. First, A; should be ortho-
gonal to «; (i > 1), so that, from the definition of «;, it should be orthogonal to
every e; (i > 1), implying that A; is proportional to e; . Its normalization requires
that (ay,e;) = 1 and since oy = e; — ez, we thus have A; = e;. Now, by the same

reasoning, Ay should be in the plane spanned by e; and ey. Since A, should be
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orthogonal to a; = e; — ey, Ay is proportional to e; + e5 . In the case ¢ = 2, we thus
have Ay = %(el + e9) while for £ > 2, Ay = e; + e5. Assume now (for i — 1 < ¢)
that From the orthogonality of A; with a; (i < j) we again deduce that A; should
be a linear combination of e; (i < j). Furthermore, the orthogonality of A; with «;

(j < 1) implies, based on the relation e;—e; = > ap, 1<i<j<I, that A;is

i<k<j
orthogonal to e; —es , - - -, e; —e; and thus that A; is proportional to e; +es+- - - +¢;,
the coefficient of proportionality being fixed as 1 (resp. 1/2) for ¢ < ¢ (resp. i = /).
The weight system, and the 8 Weyl chambers, is illustrated in Fig. 3. |

j- Using Weyl formula : dim(A) = [, ., <A<:Z>°‘> compute the dimension of the

two fundamental representations of By and of that of highest weight 2A5. In view of
these dimensions, what are these representations of SO(5) ?

[Solution : In the case of By, A; = ey, Ay = %(el +e3), p = 3e1+ €. One can check
that p = A; + Ay . The set of positive roots is A, = {e1, es, e; £ es}. Since

5 1
AM+p=—e1+ ze,

2 2
Ao+ p=2e + e,
5 3
2A2+P:§61+§62,
we get
5 1
1 pael == a0 1 p762 = a0
(A1 +p. er) ; (A1 + p, €2) :
5 1 5 1
(Mitpe—e)=5-5=2, (Aitperte)=g+5=3,
3 1
<p7 61) = 57 <p7 62) = 5’
3 1 3 1
<p,€1—€2> 25_521, <p,€1—|—€2> :§+§:2,
and thus -
A I XzX2%X3
dim(Al):H< 1+p’0‘>:§ 2
S0 <p,O{> 3 5)(1)(2
i.e.

dim(A;) =5 vector representation .

See Fig. 4 for the corresponding weight diagram. Similarly, we deduce from

<A2—|—p, €1> = 2, <A2—|—p, €2> = 1,
(Ao+p,e1—e) =2—-1=1=2, (Ao +p,e1te) =2+1=2,
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FIGURE 4 — The weight diagram for the representation (A;) of the algebra B,. The

weights are shown as green dots.

that

dim(Az) = [ ]

<A2 + P, Oé>

2x1x1x3

a>0 <p7 a>

i.e.

3 o 1
§><§><1><2

dim(A;) =4 spinorial representation .

See Fig. 5 for the corresponding weight diagram. Finally,

FIGURE 5 — The weight diagram for the representation (Ay) of the algebra B,. The

weights are shown as green dots.

(2MN2+ p, €1+ €3) =

(202 +p, €2) =

NN W
I
W

DO | Ot
+

X 1x4

5
(2N +p, €1) = 5
5 3
2/ —e)=-—2=1=2
(205 + p, €1 — €3) 573 )
leads to
dim(2A,) = H 2A2 + p,c)
a>0 <p7 O{)
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i.e.

dim(2A5) = 10 adjoint representation .

See Fig. 6 for the corresponding weight diagram. Note that 2A, = a1 + 2as5 is the

FIGURE 6 — The weight diagram for the representation (2A5) of the algebra Bs. The

weights are shown as green dots.

heighest root. In the «; basis, it reads 2A; = a; + 2a5 which sum of components is
maximal. It is the heighest weight of the adjoint representation. |
k. Draw on the same figure the roots and the low lying weights of so(5).

[Solution : See Fig. 3.]

2. G
In the space R?, we consider three vectors ey, s, e3 of vanishing sum, (e;, e;) =

0ij — %, and construct the 12 vectors
:I:(Cl —62), :|:(61 —63), :|:(62 —63), :|:(261 — €9 —63), :I:(262 —€1 —63), :I:(263 — €1 —62)
They make the root system of (G5, as we shall check.

a. What can be said on the dimension of the algebra G5 7
[Solution : dim G5 = rank + number of roots = 12+ 2 = 14|
b. Show that ay = e; —es and ap = —2e; +e5+e3 are two simple roots, in accord
with the Dynkin diagram of G5 given in the notes. Compute the Cartan matrix.
[Solution : First,
(e5,€) = % and  (e;,e;) = —3
which leads to

2 1 2 2 1 1 1
<Oél, Oél>:2 5—2 (—g) =2 and <062, 042>:4§+2§—4 <—§> —4 <—§>+2 <—§) :6,
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and

(a1, ag) = (ag, aq)

1
= —2-—=— - == — = - =-3
3 3 3 3 3 3
The Cartan matrix Cj; = QM thus reads
{aj, ;)

2 -1
C =
(57
as expected, in accordance to the Dynkin diagram of Fig. 7.

2

1
G, e==e

FIGURE 7 — The Dynkin diagram for the algebra G5.

c. What are the positive roots 7 Compute the vector p, half-sum of positive roots.
[Solution : A, = {1, as, ag+as, 2a1+ay, 3a;+as, 3a1+2a3} and p = bag+3as .

The root diagram is shown in Fig. 8. |

e %)

“a-

FIGURE 8 — The roots of (z5. In red, the two other simple roots a; and a». In black,

the four other positive roots, and in cyan the six negative roots.

d. What is the group of invariance of the root diagram ? Show that it is of order

12 and that it is the Weyl group of G5. Draw the first Weyl chamber.
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[Solution : The group of invariance of the root diagram is the diedral group Ds,

of order 12. The weight diagram is illustrated in Fig. 9 |

or

FIGURE 9 — The weight diagram for the algebra GG5. The two simple roots a; and
ap are displayed as red lines. The two fundamental weights A; and A, are displayed
as blue lines. The lattice of roots is shown as red dots, while the lattice of weights is
shown as blue dots. These two lattices are identical for G5. The 12 Weyl chambers
(the first Weyl chambers C; is explicitely indicated) are shown as grey regions of
various intensities. They are obtained by acting on C; with the various element of

the Weyl group.

e. Check that the fundamental weights are
A =201 + Ay = 301 + 205 .
[Solution : First, we compute
(o, a1) =2, (ag, a9) =6 and (g, as) = (a9, ay) = —3.

Since A; is orthogonal to as, obviously A; should be proportional to 2a; + as.

(A1, 01)
(o1, 1)

ap . Similarly, A, is orthogonal to ay, and obviously Ay should be proportional to

% = 1, leading to

The normalization is fixed by the condition 2 = 1, leading to A; = 2a; +

oy + %Ozl. The normalization is fixed by the condition 2

A2 = 3011 + 2012 ]
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f. What are the dimensions of the fundamental representations ?

[Solution :

(p, 1) = 5(an, a1) + 3{ar, az) =10 -9 =1,

)
(p, ag) = blay, ag) + 3(ag, ag) = =15+ 18 =3,
and thus
(p, a1 + o) =4, (p, 2a1 + az) =5, (p, 3a1 +az) =6, (p, 3a; +2a2) =9.
We also easily get

(A1, an) = 2{aq, aq) + (g, ap) =4 -3 =1,
(A1, o) = 2(a1, ag) + (a2, ag) = =6 +6=0,

which leads to

<A1, (03] —|-042> = 1, <A1, 20(1 —|-042> = 2, <A1, 30[1 +042> = 3, <A1, 30[1 +20[2> =3.

Thus
dim(Al)IH%: <1+%) (140) (14&) <1+§) (1+%) <1+g)
and thus

dlm(Al) = 7,

see Fig. 10 for the corresponding weight diagram. Finally, we get

<A2, Oz1> = 3(0(1, O[1> -+ 2(0(1, OZQ> =6—6= 0,
(A2, az) = 3(an, az) + 2(az, ag) = =9 +12 =3,

which leads to
<A2, aq + O[2> = 3, <A2, 20(1 + O[2> = 3, <A2, 30[1 + OZQ) = 3, <A2, 30[1 + 20[2> = 6 .

We obtain

i) = [TEE2Y ) (142) (142) (142) (142) (1+3)

a>0
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FIGURE 10 — The weight diagram for the representation (A;) of the algebra Gy. The

weights are shown as green dots.

FIGURE 11 — The weight diagram for the representation (Ay) of the algebra Gs. The

weights are shown as green dots.
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and thus, as expected,

dim(As) = 14 adjoint representation ,

see Fig. 11 for the corresponding weight diagram. Note that again, Ay = 3oy + 2as
is the heighest root.]

g. In the two cases of By and G, one observes that the highest weight of the
adjoint representation is given by the highest root. Explain why this is true in
general.

[Solution : The roots are the weights of the adjoint representation. The highest
weight of the adjoint representation is thus the highest root.|

3. A little touch of particle physics

Why were the groups SO(5) or Gy inappropriate as symmetry groups exten-
ding the SU(2) isospin group, knowing that several “octets" of particles had been
observed ?
[Solution : There is no representation of dimension 8, although 741 would be not

so bad ... 7]

D. Dimensions of SU(3) representations

We admit that the construction of § 3.4.2, of completely symmetric traceless rank

(p,m) tensors in C3, does give the irreducible representations of SU(3) of highest
weight (p,m). Then we want to determine the dimension d(p,m) of the space of
these tensors.

1. Show, by studying of the product of two tensors of rank (p,0) and (0, m) and
separating the trace terms (those containing a 5} between one lower and one upper

index) that (p,0) ® (0,m)=((p —1,0) ® (0,m — 1)) @ (p, m) and thus that
d(p,m) = d(p,0)d(0,m) —d(p—1,0)d(0,m —1).

[Solution : The tensors of the space (p,0) ® (0,m) are tensors of rank (p,m)
completely symmetric in their p upper indices, completely symmetric in their m lower

indices, but they have a priori arbitrary traces between upper and lower indices. We

would like to show that any tensor téiiili?

JIm

of this space can be expressed as the sum
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of a tensor with the same symmetries and with vanishing traces, and of a tensor
which possesses traces, i.e. of the form

m p R

Uim = D D T

n=1 g=1
where the hat on top of an index means that the given index has been omitted, and u
is a tensor to be determined, which is completely symmetric in its p—1 upper indices
and in its m — 1 lower indices, thus belonging to the space (p — 1,0) ® (0, m — 1).

One would thus like to write

i1-+ip _[ _ ]il...ip i1-+ip

[t —v] being traceless, and we are going to fix u by requiring that 5511 [t — v]zlllj’:n = 0.
(due to the symmetries of ¢t and v this implies that every trace betwen an upper

index and a lower index vanish). We first consider the case p = m = 2, and write

i1t2 __ Ci1 12 19 11 i1 12 i 11
Vjijo = 5]’1 Uy, + 5]’1 uj, + 5]'2 Uy + 5]'2 Uy, -

Since each index can take 3 values, the constraint

J i1i2
shlt =z = 0
leads to

112
t; s

- [3u;22 +u;22 +u;22 +5§§ ul] =0.
Taking now a new trace by mean of 5fj , we get Sul = tZ . This completely fixes the

. is .
expression of w32 according to

12 __ g4n2 _ §J2 0 __ 4u2 T §]2 4]
Sup =12 — 02 u; =1, 851‘2 i
i.e.
. 1 . 1 . .
uy =t — 02 b

J2 5 ij2 40 "2 ij

One can similarly study the case p = 3 and m = 2, and write

119293 __ i1 ,,1213 12 , 1113 13 , 1112 11 1213 12 1113 13, 1112
Yj1ja _5j1 Uy, +5j1 uj, +5j1 Uj, +5]'2,“]'1 +5]éujl +5]'2u]'1 )

The contraction of 52311 with [t — v]zll?;?’ gives
[B+ 1+ 1+ 1u2® + 672 u® + 62wl — 2 = 0.

) ) ij2
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Next, contracting with 5;; gives

6+ 3+ 1]uis — 7% =0,

% i
and thus allows us to fix completely u as

Lo ijis o ijia i L iini
~%0 [t 072 + 2 0] + glin -

The general case can be treated following the same line of thought, although it

1213 __
Jj2

u
is rather painful to write explicitely : after a finite number of operation (equal to
inf(p, m)), one can determine completely the tensor u, which achieves the proof that

(p,0)® (0,m)=((p—1,0) ® (0,m — 1)) & (p, m) and thus that

d(p,m) = d(p,0)d(0,m) —d(p—1,0)d(0,m —1).

2. Show by a computation analogous to that of SU(2) that

A(p,0) = d(0.) = 5(p + o +2)

[Solution : By symmetry, one can always organize the indices in such a way that
1’s occurs first, then 2’s and finally 3’s, i.e. lookingas 1---12---23---3. On should
niw introduce 2 separations between the blocks of 1, 2 and 3’s. Consider first the
separation between 2 and 3’s. There are p+ 1 possibilities (from a configuration with
only 3’s, looking as 3 - - - 3, till the one with no 3’s, looking as 1---12---2), labeling
for example the position r of the first 3 (which varies from 1 to p + 1 in these two
extreme cases). Then, the total number of 1’s and 2’s is » — 1, and we thus have
r possibilities to choose the separation between 1’s and 2’s. This means that the

number we are looking for is just

p+1

d(p,0) = d0.p) = > 7= 3o+ )(p+2).

r=1

3. Derive from it the expression of d(p, m) and compare with (3.64).
[Solution : From d(p, m) = d(p,0)d(m,0) — d(p — 1,0)d(m — 1,0) = 1(p+ 1)(p +
2)(m + 1)(m +2) — ip(p + 1)m(m + 1) we deduce

d(p,m) =3(m+1)(p+1)(m+p+2),
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