
M2/CFP/Par
ours of Physique Théorique

Invarian
es in physi
s and group theory

Exer
ises on Cartan algebra, roots, weights...

Equations refer to the le
ture of Jean-Bernard Zuber, Chapter 3, version 2013.

A. Cartan algebra and roots

1. Show that any element X of g may be written as X =
∑

xiHi +
∑

α∈∆ xαEα

with the notations of � 3.1.2.

For an arbitrary H in the Cartan algebra, determine the a
tion of ad(H) on su
h

a ve
tor X ; 
on
lude that ad(H)ad(H ′)X =
∑

α∈∆ xαα(H)α(H ′)Eα and taking into

a

ount that the eigenspa
e of ea
h root α has dimension 1, 
f point (∗) 2. of � 3.1.2,

that the Killing form reads

(H,H ′) = tr(ad(H)ad(H′)) =
∑

α∈∆

α(H)α(H′) . (1)

[Solution : For a �xed value of j, Hj has dim g independent eigenve
tors (sin
e Hj

a
ts on g). These eigenve
tors thus provide a set of generators, allowing to write

∀X ∈ g, X =
∑

xiHi +
∑

α∈∆

xαEα . (2)

For H ∈ h,

adHX = [H,X ] =
∑

α∈∆

xα[H,Eα] =
∑

α∈∆

xαα(H)Eα .

Thus

ad(H) ad(H ′)X =
∑

α∈∆

xαα(H ′) [H,Eα] =
∑

α∈∆

xαα(H ′)α(H)Eα

and

α(H ′)α(H)Eα = α(H ′)α(H)Eα
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for a given α . Ea
h root α 
orresponds to an eigenspa
e spanned by Eα, of dimen-

sion 1. Thus

tr[ad(H) ad(H′)] =
∑

α∈∆

α(H′)α(H) .

℄

2. One wants to show that roots α de�ned by (3.5) or (3.6) generate all the dual

spa
e h∗ of the Cartan subalgebra h. Prove that if it were not so, there would exist

an element H of h su
h that

∀α ∈ ∆ α(H) = 0 . (3)

Using (1) show that this would imply ∀H ′ ∈ h, (H,H ′) = 0. Why is that impos-

sible in a semi-simple algebra ? (see the dis
ussion before equation (3.10)).

[Solution : One is looking for H =
∑

i h
i Hi ∈ h , so that α(H) =

∑

i h
i α(i) = 0

for every α ∈ ∆ . Thus, H should obey |∆| equations, whi
h would lead to a number

of undetermined parameters larger or equal to dim h − |∆| , {hi, i ∈ {1 · · ·dim h}}

being a solution of this set of equations. In the 
ase where |∆| < dim h∗ = dim h ,

a non-trivial solution (i.e. su
h that hi
do not all vanish) thus exists, and H is non

zero.

The expression

(H, H ′) =
∑

α∈∆

α(H ′)α(H)

leads to

∀H ′ ∈ h , (H, H ′) = 0 .

Sin
e (H, Eα) = 0 , we thus dedu
e that

∀X ∈ h , (H, X) = 0 ,

thus showing that the Killing form is degenerate on h , in 
ontradi
tion with the

semi-simpli
ity of h . Thus, ∆ spans h∗ (and thus |∆| ≥ dim h∗ = dimh). ℄

3. Variant of the previous argument : under the assumption of 2. and thus of (3),

show that H would 
ommute with all Hi and all the Eα, thus would belong to the


enter of g. Prove that the 
enter of an algebra is an abelian ideal. Con
lude in the


ase of a semi-simple algebra.
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[Solution : Assume that ∃H ∈ h su
h that ∀α ∈ ∆ , α(H) = 0 . Then, on one

hand [H, Hi] = 0 , while on the other hand ∀α ∈ ∆, [H ,Eα] = α(H)Eα = 0 so

that H ∈ Zg . Now, X ∈ Zg ⇔ ∀Y ∈ g, [X, Y ] = 0 . Obviously, [Zg, g] ⊂ Zg sin
e

[Zg, g] = {0}, showing that Zg is an abelian ideal of g (abelian sin
e every element

of Zg 
ommute with every element of g, in parti
ular those of Zg). Based on the

semi-simpli
ity of g, this implies that Zg = {0}, proving that H ∈ Zg is impossible.℄

B. Computation of the Nαβ

1. Show that the real 
onstants Nαβ satisfy Nαβ = −Nβα and, by 
omplex 
onju-

gation of [Eα, Eβ] = NαβEα+β that

Nα,β = −N−α,−β . (4)

[Solution : [Eα, Eβ] = Nα,β Eα+β if α+ β is a root. Sin
e [Eα, Eβ] = −[Eβ , Eα], we

thus have Nβ,α = −Nα,β .

[H,Eα] = αEα leads to [H,Eα]
† = −[H,E†

α] = αE†
α sin
e H is hermitian. Thus,

[H,E†
α] = −αE†

α and thus E†
α = E−α . From [Eα, Eβ] = Nα,β Eα+β we thus have

[Eα, Eβ ]
† = Nα,β E

†
α+β = Nα,β E−α−β . This leads to

Nα,β = N−β,−α = −N−α,−β = −Nβ,α .

℄

2. Consider three roots satisfying α+ β + γ = 0. Writing the Ja
obi identity for

the triplet Eα, Eβ, Eγ , show that α(i)Nβγ + cycl. = 0. Derive from it the relation

Nαβ = Nβ,−α−β = N−α−β,α . (5)

[Solution : The Ja
obi identity reads

[[Eα, Eβ], Eγ] + [[Eβ, Eγ], Eα] + [[Eγ , Eα], Eβ ] = 0

and thus

Nα,β [Eα+β, Eγ ] +Nβ,γ [Eβ+γ, Eα] +Nγ,α [Eα+γ , Eβ] = 0 ,

whi
h 
an be written as

Nα,β [E−γ , Eγ] +Nβ,γ [E−α, Eα] +Nγ,α [E−β , Eβ] = 0 ,
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i.e.

Nα,β H−γ +Nβ,γ H−α +Nγ,αH−β = 0 ,

so that

Nβ,γ (−α(j)Hj) + cycl.perm. = 0 .

Cal
ulating (Hi, ) for a �xed value of i, we thus get

α(i) Nβ,γ + cycl.perm. = 0 .

We thus have

αNβ,γ + β Nγ,α + γ Nα,β = 0

so that

α(Nβ,−α−β −Nα,β) + β(N−α−β,α −Nα,β) = 0 .

This identity is valid for any set of roots α, β, γ satisfying α+ β + γ = 0 , so that α

and β are linearly independent, ex
ept if β = ±α . Now :

• If α = β , then γ = −2α whi
h is impossible sin
e the only roots of the form λα

are ±α .

• If α = −β , then γ = 0 whi
h is again impossible.

We thus 
on
lude, based on the linear independen
e of α and β, that

Nβ,−α−β = Nα,β = N−α−β,α .

This identity remains trivially satis�ed for β = α, sin
e on one hand [Eα, Eα] = 0,

i.e. Nα,α = 0 and on the other hand Nα,−2α = 0 sin
e −2α is not a root. Similarly,

it is also valid in the 
ase β = −α sin
e Nα,−α = N−α,0 = N0,α = 0 . The above

identity is thus valid for any set of roots α and β . ℄

3. Considering the α-
hain through β and the two integers p et q de�ned in �

3.2.1, write the Ja
obi identity for Eα, E−α and Eβ+kα, with p ≤ k ≤ q, and show

that it implies

〈α, β + kα〉 = Nα,β+kαNα,β+(k−1)α +Nβ+kα,αN−α,β+(k+1)α .

Let f(k) := Nα,β+kαN−α,−β−kα. Using the relations (5), show that the previous

equation may be re
ast as

〈α, β + kα〉 = f(k)− f(k − 1) . (6)
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[Solution : The Ja
obi identity reads

[[Eα, E−α], Eβ+kα] + [[E−α, Eβ+kα], Eα] + [[Eβ+kα], Eα], E−α] = 0 ,

i.e.

[Hα, Eβ+kα] +N−α,β+kα [Eβ+(k−1)α, Eα] +Nβ+kα,α [Eβ+(k+1)α, E−α] = 0 ,

and thus

∑

i

α(i)[β(i) + k α(i)]Eβ+kα +N−α,β+kαNβ+(k−1)α,α Eβ+kα

+Nβ+kα,αNβ+(k+1)α,−α Eβ+kα = 0

From

∑

i α(i)[β(i)+k α(i)] = 〈α, β+k α〉 , Nβ+(k−1)α,α = −Nα,β+(k−1)α andNβ+(k+1)α,−α =

−N−α,β+(k+1)α we get, sin
e Eβ+kα 6= 0 ,

〈α, β + k α〉 = N−α,β+kαNα,β+(k−1)α +Nβ+kα,αN−α,β+(k+1)α .

From the de�nition of f , we have

f(k) = Nα,β+kαN−α,−β−kα = −N2
α,β+kα = Nβ+kα,αN−β−kα,−α = Nβ+kα,αN−α,β+(k+1)α .

Thus,

f(k − 1) = Nα,β+(k−1)αN−α,−β−(k−1)α .

Now, sin
e N−α,−β−(k−1)α = Nβ+kα,−α = −N−α,β+kα, where we have used Nγ,δ =

−N−γ−δ,γ , we thus have

〈α, β + k α〉 = f(k)− f(k − 1) .

℄

4. What are f(q) et f(q − 1) ? Show that the re
ursion relation (6) is solved by

f(k) = −(Nα,β+kα)
2 = (k − q)〈α, β +

1

2
(k + q + 1)〉 . (7)

What is f(p− 1) ? Show that the expression (3.21) is re
overed. Show that (7) is in

a

ord with (3.23). The sign of the square root is still to be determined . . ., see [Gi℄.

[Solution : The de�nition of f leads to f(q) = Nα,β+qαN−α,−β−qα . Sin
e [Eα, Eβ+qα] =

Nα,β+qαEβ+(q+1)α while β+(q+1)α is not root, as implied by the de�nition of q, we

obtain Nα,β+qα = 0 and thus

f(q) = 0 .
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From the de�nition of f,

f(q − 1) = −N2
α,β+(q−1)α .

On the other hand, 〈α, β + q α〉 = f(q)− f(q − 1) , so that

f(q − 1) = −〈α, β + q α〉 = −N2
α,β+(q−1)α .

From the expression 〈α, β〉+ k〈α, α〉 = f(k)− f(k − 1) we get

f(q)−f(q−1)+f(q−1)−f(q−2)+· · ·+f(k+1)−f(k) = −f(k) = (q−k)〈α, β〉+

q
∑

m=k+1

m〈α, α〉 .

From

q
∑

m=k+1

m = −
k
∑

m=1

m+
q
∑

m=1

= q(q+1)
2

− k(k+1)
2

= −k−q

2
(1 + k + q) we get

f(k) = (k − q)〈α, β〉+
1

2
〈α, α〉(1 + k + q)(k − q)

so that

f(k) = (k − q)〈α, β + 1
2
(k + q + 1)α〉 = −N2

α,β+kα .

We now 
ompute

f(p− 1) = Nα,β+(p−1)αN−α,−β−(p−1)α .

The se
ond 
oe�
ient reads N−α,−β−(p−1)α = Nβ+pα,−α = −N−α,β+pα . Sin
e

[E−α, Eβ+pα] = N−α,β+pαEβ+(p−1)α

and using the fa
t that β + (p− 1)α is not a root by de�nition of q, we dedu
e that

N−α,β+pα = 0 and thus f(p− 1) = 0. Therefore,

f(p) = 〈α, β + pα〉 = −N2
α,β+pα = (p− q)〈α, β +

1

2
(p+ q + 1)α〉 ,

so that

〈α, β〉(p− q − 1) = [p−
1

2
(p− q)(p+ q + 1)]〈α, α〉 = −

1

2
(p− q − 1)(p+ q)〈α, α〉 .

Therefore,

2〈α, β〉 = (−p− q)〈α, α〉 = m〈α, α〉 .

We thus have

2
〈α, β〉

〈α, α〉
= m ∈ Z .
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We �nally get

f(0) = −N2
α,β = −q〈α, β+

1

2
(q+1)α〉 = −q[〈α, β〉+

1

2
(q+1)〈α, α〉] = −

q(1 − p)

2
〈α, α〉

and thus

|Nα, β| =

√

q(1− p)

2
〈α, α〉 .

℄

C. Study of the Bl =so(2l + 1) and G2 algebras

1. so(2l + 1) = Bl, l ≥ 2

a. What is the dimension of the group SO(2l+1) or of its Lie algebra so(2l+1) ?

[Solution : We start from the de�ning relation

OOt = OtO = 1

with O expanded as O = 1 + iT, i.e. (1 + iT )(1 + iT t) = 1 and thus i(T + T t) = 0,

showing that T is antisymmetri
.

If T is an n × n matrix (for the 
ase of O(n) or SO(n)), T is 
hara
terized by

(n2 − n)/2 elements, so that for n = 2ℓ+ 1,

dim o(2ℓ+ 1) = ℓ(2ℓ+ 1) .

This dimension is the same for so(2ℓ + 1) sin
e detO = 1 does not introdu
e any

additional 
onstraint on the Lie algebra (it only sele
ts the 
onne
ted 
omponent of

the identity when 
onsidering the group).℄

b. What is the rank of the algebra ? (Hint : diagonalize a matrix of so(2l+1) on

C, or write it as a diagonal of real 2× 2 blo
ks, see le
ture notes, �3.1)

[Solution : Sin
e O is diagonalizable in the form

D = diag

(

0,

(

0 µj

−µj 0

)

j=1,··· ,ℓ

)

with real µj (see 
hapter 3), we thus get

rank so(2ℓ+ 1) = ℓ .

℄


. How many roots does the algebra have ? How many positive roots ? How many

simple ?
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[Solution : # of roots = dimension - rank = ℓ(2ℓ+ 1)− ℓ = 2l2 .

Among these roots, half of them are positive, i.e. ℓ2. The number of simple roots is

equal to the rank, i.e. ℓ .℄

d. Let ei, i = 1, · · · , l be a orthonormal basis in Rl
, 〈ei, ej〉 = δij . Consider the

set of ve
tors

∆ = {±ei , 1 ≤ i ≤ l} ∪ {±ei ± ej , 1 ≤ i < j ≤ l}

What is the 
ardinal of ∆ ?

[Solution : Card {±ei , 1 ≤ i ≤ l} = 2ℓ and Card {±ei ± ej , 1 ≤ i < j ≤ l} =

4C2
ℓ = 2l(l − 1), therefore Card∆ = 2l2 .℄

∆ is the set of roots of the algebra so(2l + 1).

e. A basis of simple roots is given αi = ei − ei+1, i = 1, · · · , l − 1, et αl = el.

Explain why the roots

ei =
∑

i≤k≤l

αk, 1 ≤ i ≤ l ,

ei − ej =
∑

i≤k<j

αk, 1 ≤ i < j ≤ l , (8)

ei + ej =
∑

i≤k<j

αk + 2
∑

j≤k≤l

αk, 1 ≤ i < j ≤ l ,

qualify as positive roots.

[Solution : There are

ei =
∑

i≤k≤l

αk, 1 ≤ i ≤ l , Card = ℓ ,

ei − ej =
∑

i≤k<j

αk, 1 ≤ i < j ≤ l , Card =
ℓ(ℓ− 1)

2
, (9)

ei + ej =
∑

i≤k<j

αk + 2
∑

j≤k≤l

αk, 1 ≤ i < j ≤ l , Card =
ℓ(ℓ− 1)

2
,

there are thus |∆+| = l2 of su
h roots, whi
h expand on the set of simple roots

with integer 
oe�
ients. In
luding their opposite (negative roots), they 
orre
tly

reprodu
e the whole set ∆.℄ Che
k that assertion on the 
ase of B2 = so(5).

[Solution : For B2 = so(5), ∆ = {±e1,±e2,±e1± e2} with Card∆ = 8 . The ℓ = 2

(whi
h is equal to the rank of B2 = so(5)) simple roots are α1 = e1−e2 and α2 = e2 .

And ∆+ = {e1, e2, e1 − e2, e1 + e2} with Card∆+ = 4 . ℄
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f. Compute the Cartan matrix and 
he
k that it agrees with the Dynkin diagram

given in the notes.

[Solution : Obviously, 2 〈αi, αi〉
〈αi,αi〉

= 2 . Then,

2
〈αj+1, αj〉

〈αj, αj〉
= 2

〈ej+1 − ej+2, ej − ej+1〉

〈ej − ej+1, ej − ej+1〉
=

2(−1)

2
= −1 ,

and

2
〈αj, αj+1〉

〈αj+1, αj+1〉
= −1 .

Finally,

2
〈αℓ−1, αℓ〉

〈αℓ, αℓ〉
= 2

〈eℓ−1 − eℓ, eℓ〉

〈eℓ, eℓ〉
= −2 ,

and

2
〈αℓ, αℓ−1〉

〈αℓ−1, αℓ−1〉
= 2

〈eℓ, eℓ−1 − eℓ〉

〈eℓ−1 − eℓ, eℓ−1 − eℓ〉
=

2(−1)

2
= −1 ,

whi
h 
an be summarized by

Cij = 2
〈αi, αj〉

〈αj, αj〉
=



























2 si 1 ≤ i = j ≤ l

−1 si 1 ≤ i = (j ± 1) ≤ l − 1

−2 si i = l − 1 , j = l

−1 si i = l , j = l − 1


orresponding to the Dynkin diagram illustrated in Fig. 1. The roots of B2 are

B ! " # l
l

Figure 1 � The Dynkin diagram for the algebra Bℓ.

illustrated in Fig. 2 ℄

g. Compute the sum ρ of positive roots.

[Solution :

2ρ =
ℓ

∑

i=1

ei +
∑

1≤i<j≤ℓ

(ei − ej + ei + ej) =
ℓ

∑

i=1

ei + 2
∑

1≤i<j≤ℓ

ei =
∑

1≤i<j≤ℓ

[1 + 2(ℓ− i)]ei

= (2l − 1)e1 + (2l − 3)e2 + · · ·+ (2l − 2i+ 1)ei + · · ·+ 3 el−1 + el

= (2l − 1)(α1 + · · ·αℓ) + (2l − 3)(α2 + · · ·αℓ) + · · ·+ (2l − 2i+ 1)(αi + · · ·αℓ)

+ · · ·+ 3 (αℓ−1 + αℓ) + αl

= (2l − 1)α1 + 2(2l − 2)α2 + · · ·+ i(2l − i)αi + · · ·+ l2αl .
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PSfrag repla
ements

α1

α2

e1

e2

Figure 2 � The roots of B2. In red, the two simple roots α1 and α2. In bla
k, the

two other positive roots, and in 
yan the four negative roots.

℄

h. The Weyl is the (�semi-dire
t") produ
t W ≡ Sl ⋉ (Z2)
l
, whi
h a
ts on the

ei (hen
e on weights and roots) by permutation and by independent sign 
hanges

ei 7→ (±1)iei. What is its order ? In the 
ase of B2, 
he
k that assertion and draw

the �rst Weyl 
hamber.

[Solution : |Wℓ| = 2l.l! , and for B2 , |W2| = 8 . Permutations and 
hange of sign of

e1 and e2 indeed 
orresponds to (produ
ts of) symmetries in �planes� orthogonal to

α1 and α2 ; they do not modify the pi
ture of Fig. 2. It is worth obtaining W2 in a

pedestrian way. We easily get







α⊥
1 e1 = e2 , α⊥

2 e1 = e1 ,

α⊥
1 e2 = e1 , α⊥

2 e2 = −e2 .

Thus







α⊥
1 α⊥

2 e1 = e2 , α⊥
2 α⊥

1 e1 = −e2 ,

α⊥
1 α⊥

2 e2 = −e1 , α⊥
2 α⊥

1 e2 = e1 .

This shows that α⊥
1 α⊥

2 = −α⊥
2 α⊥

1 is a rotation of angle −π/2 (in the oriented

plane e1, e2). Thus, any word made of I,−I, α⊥
1 , α

⊥
2 redu
es to the elements of

W2 = {I , α⊥
1 , α⊥

2 , α⊥
1 α⊥

2 ,−I ,−α⊥
1 ,−α⊥

2 ,−α⊥
1 α⊥

2 } . Equivalently, the Weyl group

is generated by the set of re�e
tions in the hyperplane (here line) orthogonal to the

various α′
s. The �rst Weyl 
hamber C1 = {λ|〈λ, αi〉 ≥ 0} is the o
tant between

α1 + α2 and α1 + 2α2 . ℄

i. Show that the ve
tors Λi =
∑i

j=1 ej , i = 1, · · · , l − 1, Λl =
1
2

∑l
j=1 ej are the

fundamental weights.
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[Solution : The fundamental weights are de�ned in su
h a way that Λi is orthogonal

PSfrag repla
ements

e1

e2

α1

α2

Λ1

Λ2

C1

−I C1

α⊥
1 C1

−α⊥
1 C1

α⊥
2 C1

−α⊥
2 C1

α⊥
2 α⊥

1 C1

α⊥
1

α⊥
2

α⊥
1 α⊥

2 C1

Figure 3 � The weight diagram for the algebra B2. The two simple roots α1 and

α2 are displayed as red lines. The two fundamental weights Λ1 and Λ2 are displayed

as blue lines. The latti
e of roots is shown as red dots, while the latti
e of weights

is shown as blue dots. The �rst Weyl 
hamber C1 is shown as a dark-grey zone. The

other Weyl 
hambers, shown as grey regions of various intensities, are obtained by

a
ting on C1 with the various element of the Weyl group, as expli
itely indi
ated.

to every root simple root αj (j 6= i), its normalization being �xed by 2 〈αi,Λi〉
〈αi, αi〉

= 1.

The denominators read

〈αi, αi〉 = 〈ei − ei+1, ei − ei+1〉 = 2 for i = 1, · · · , ℓ− 1 ,

〈αℓ, αℓ〉 = 1 .

The 
onstru
tion 
an be easily performed by re
ursion. First, Λ1 should be ortho-

gonal to αi (i > 1), so that, from the de�nition of αi, it should be orthogonal to

every ei (i > 1), implying that Λ1 is proportional to e1 . Its normalization requires

that 〈α1 , e1〉 = 1 and sin
e α1 = e1 − e2 , we thus have Λ1 = e1 . Now, by the same

reasoning, Λ2 should be in the plane spanned by e1 and e2 . Sin
e Λ2 should be
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orthogonal to α1 = e1 − e2 , Λ2 is proportional to e1 + e2 . In the 
ase ℓ = 2, we thus

have Λ2 = 1
2
(e1 + e2) while for ℓ > 2, Λ2 = e1 + e2 . Assume now (for i − 1 < ℓ)

that From the orthogonality of Λi with αj (i < j) we again dedu
e that Λi should

be a linear 
ombination of ei (i ≤ j). Furthermore, the orthogonality of Λi with αj

(j < i) implies, based on the relation ei−ej =
∑

i≤k<j αk, 1 ≤ i < j ≤ l , that Λi is

orthogonal to e1−e2 , · · · , e1−ei and thus that Λi is proportional to e1+e2+· · ·+ei,

the 
oe�
ient of proportionality being �xed as 1 (resp. 1/2) for i < ℓ (resp. i = ℓ).

The weight system, and the 8 Weyl 
hambers, is illustrated in Fig. 3. ℄

j. Using Weyl formula : dim(Λ) =
∏

α>0
〈Λ+ρ,α〉
〈ρ,α〉


ompute the dimension of the

two fundamental representations of B2 and of that of highest weight 2Λ2. In view of

these dimensions, what are these representations of SO(5) ?

[Solution : In the 
ase of B2, Λ1 = e1, Λ2 =
1
2
(e1+ e2), ρ = 3e1+ e2. One 
an 
he
k

that ρ = Λ1 + Λ2 . The set of positive roots is ∆+ = {e1, e2, e1 ± e2}. Sin
e

Λ1 + ρ =
5

2
e1 +

1

2
e2 ,

Λ2 + ρ = 2e1 + e2 ,

2Λ2 + ρ =
5

2
e1 +

3

2
e2 ,

we get

〈Λ1 + ρ, e1〉 =
5

2
, 〈Λ1 + ρ, e2〉 =

1

2
,

〈Λ1 + ρ, e1 − e2〉 =
5

2
−

1

2
= 2 , 〈Λ1 + ρ, e1 + e2〉 =

5

2
+

1

2
= 3 ,

〈ρ, e1〉 =
3

2
, 〈ρ, e2〉 =

1

2
,

〈ρ, e1 − e2〉 =
3

2
−

1

2
= 1 , 〈ρ, e1 + e2〉 =

3

2
+

1

2
= 2 ,

and thus

dim(Λ1) =
∏

α>0

〈Λ1 + ρ, α〉

〈ρ, α〉
=

5
2
× 1

2
× 2× 3

3
2
× 1

2
× 1× 2

i.e.

dim(Λ1) = 5 ve
tor representation .

See Fig. 4 for the 
orresponding weight diagram. Similarly, we dedu
e from

〈Λ2 + ρ, e1〉 = 2 , 〈Λ2 + ρ, e2〉 = 1 ,

〈Λ2 + ρ, e1 − e2〉 = 2− 1 = 1 = 2 , 〈Λ2 + ρ, e1 + e2〉 = 2 + 1 = 2 ,
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ements

e1

e2

Λ1

Figure 4 � The weight diagram for the representation (Λ1) of the algebra B2. The

weights are shown as green dots.

that

dim(Λ2) =
∏

α>0

〈Λ2 + ρ, α〉

〈ρ, α〉
=

2× 1× 1× 3
3
2
× 1

2
× 1× 2

i.e.

dim(Λ2) = 4 spinorial representation .

See Fig. 5 for the 
orresponding weight diagram. Finally,

PSfrag repla
ements
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Figure 5 � The weight diagram for the representation (Λ2) of the algebra B2. The

weights are shown as green dots.

〈2Λ2 + ρ, e1〉 =
5

2
, 〈2Λ2 + ρ, e2〉 =

3

2
,

〈2Λ2 + ρ, e1 − e2〉 =
5

2
−

3

2
= 1 = 2 , 〈2Λ2 + ρ, e1 + e2〉 =

5

2
+

3

2
= 4 ,

leads to

dim(2Λ2) =
∏

α>0

〈2Λ2 + ρ, α〉

〈ρ, α〉
=

5
2
× 3

2
× 1× 4

3
2
× 1

2
× 1× 2

13



i.e.

dim(2Λ2) = 10 adjoint representation .

See Fig. 6 for the 
orresponding weight diagram. Note that 2Λ2 = α1 + 2α2 is the

PSfrag repla
ements

e1

e2

2Λ2

Figure 6 � The weight diagram for the representation (2Λ2) of the algebra B2. The

weights are shown as green dots.

heighest root. In the αi basis, it reads 2Λ2 = α1 + 2α2 whi
h sum of 
omponents is

maximal. It is the heighest weight of the adjoint representation. ℄

k. Draw on the same �gure the roots and the low lying weights of so(5).

[Solution : See Fig. 3.℄

2. G2

In the spa
e R
2
, we 
onsider three ve
tors e1, e2, e3 of vanishing sum, 〈ei, ej〉 =

δij −
1
3
, and 
onstru
t the 12 ve
tors

±(e1−e2), ±(e1−e3), ±(e2−e3), ±(2e1−e2−e3), ±(2e2−e1−e3), ±(2e3−e1−e2)

They make the root system of G2, as we shall 
he
k.

a. What 
an be said on the dimension of the algebra G2 ?

[Solution : dimG2 = rank + number of roots = 12 + 2 = 14.℄

b. Show that α1 = e1−e2 and α2 = −2e1+e2+e3 are two simple roots, in a

ord

with the Dynkin diagram of G2 given in the notes. Compute the Cartan matrix.

[Solution : First,

〈ei, ei〉 =
2

3
and 〈ei, ei〉 = −

1

3
,

whi
h leads to

〈α1, α1〉=2
2

3
−2

(

−
1

3

)

=2 and 〈α2, α2〉=4
2

3
+2

2

3
−4

(

−
1

3

)

−4

(

−
1

3

)

+2

(

−
1

3

)

=6 ,
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and

〈α1, α2〉 = 〈α2, α1〉 = −2〈e1, e1〉+ 〈e1, e2〉+ 〈e1, e3〉+ 2〈e1, e2〉 − 〈e2, e2〉 − 〈e2, e3〉

= − 2
2

3
−

1

3
−

1

3
−

2

3
−

2

3
+

1

3
= −3 .

The Cartan matrix Cij = 2
〈αi, αj〉

〈αj, αj〉
thus reads

C =

(

2 −1

−3 2

)

as expe
ted, in a

ordan
e to the Dynkin diagram of Fig. 7.

G
2

! "

Figure 7 � The Dynkin diagram for the algebra G2.

℄


. What are the positive roots ? Compute the ve
tor ρ, half-sum of positive roots.

[Solution :∆+ = {α1, α2, α1+α2, 2α1+α2, 3α1+α2, 3α1+2α2} and ρ = 5α1+3α2 .

The root diagram is shown in Fig. 8. ℄

PSfrag repla
ements

α1

α2

e1

e2

e3

Figure 8 � The roots of G2. In red, the two other simple roots α1 and α2. In bla
k,

the four other positive roots, and in 
yan the six negative roots.

d. What is the group of invarian
e of the root diagram? Show that it is of order

12 and that it is the Weyl group of G2. Draw the �rst Weyl 
hamber.
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[Solution : The group of invarian
e of the root diagram is the diedral group D6 ,

of order 12. The weight diagram is illustrated in Fig. 9 ℄
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e1

e2

e3

α1

α2

Λ1

Λ2

C1

ρα⊥
1

α⊥
2

Figure 9 � The weight diagram for the algebra G2. The two simple roots α1 and

α2 are displayed as red lines. The two fundamental weights Λ1 and Λ2 are displayed

as blue lines. The latti
e of roots is shown as red dots, while the latti
e of weights is

shown as blue dots. These two latti
es are identi
al for G2. The 12 Weyl 
hambers

(the �rst Weyl 
hambers C1 is expli
itely indi
ated) are shown as grey regions of

various intensities. They are obtained by a
ting on C1 with the various element of

the Weyl group.

e. Che
k that the fundamental weights are

Λ1 = 2α1 + α2 Λ2 = 3α1 + 2α2 .

[Solution : First, we 
ompute

〈α1, α1〉 = 2 , 〈α2, α2〉 = 6 and 〈α1, α2〉 = 〈α2, α1〉 = −3 .

Sin
e Λ1 is orthogonal to α2, obviously Λ1 should be proportional to 2α1 + α2 .

The normalization is �xed by the 
ondition 2 〈Λ1, α1〉
〈α1, α1〉

= 1 , leading to Λ1 = 2α1 +

α2 . Similarly, Λ2 is orthogonal to α1, and obviously Λ2 should be proportional to

α2 +
3
2
α1 . The normalization is �xed by the 
ondition 2 〈Λ2, α2〉

〈α2, α2〉
= 1 , leading to

Λ2 = 3α1 + 2α2 .℄
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f. What are the dimensions of the fundamental representations ?

[Solution :

〈ρ, α1〉 = 5〈α1, α1〉+ 3〈α1, α2〉 = 10− 9 = 1 ,

〈ρ, α2〉 = 5〈α1, α2〉+ 3〈α2, α2〉 = −15 + 18 = 3 ,

and thus

〈ρ, α1 + α2〉 = 4 , 〈ρ, 2α1 + α2〉 = 5 , 〈ρ, 3α1 + α2〉 = 6 , 〈ρ, 3α1 + 2α2〉 = 9 .

We also easily get

〈Λ1, α1〉 = 2〈α1, α1〉+ 〈α1, α2〉 = 4− 3 = 1 ,

〈Λ1, α2〉 = 2〈α1, α2〉+ 〈α2, α2〉 = −6 + 6 = 0 ,

whi
h leads to

〈Λ1, α1 + α2〉 = 1 , 〈Λ1, 2α1 + α2〉 = 2 , 〈Λ1, 3α1 + α2〉 = 3 , 〈Λ1, 3α1 + 2α2〉 = 3 .

Thus

dim(Λ1) =
∏

α>0

〈Λ1 + ρ, α〉

〈ρ, α〉
=

(

1 +
1

1

)

(1 + 0)

(

1 +
1

4

)(

1 +
2

5

)(

1 +
3

6

)(

1 +
3

9

)

and thus

dim(Λ1) = 7 ,

see Fig. 10 for the 
orresponding weight diagram. Finally, we get

〈Λ2, α1〉 = 3〈α1, α1〉+ 2〈α1, α2〉 = 6− 6 = 0 ,

〈Λ2, α2〉 = 3〈α1, α2〉+ 2〈α2, α2〉 = −9 + 12 = 3 ,

whi
h leads to

〈Λ2, α1 + α2〉 = 3 , 〈Λ2, 2α1 + α2〉 = 3 , 〈Λ2, 3α1 + α2〉 = 3 , 〈Λ2, 3α1 + 2α2〉 = 6 .

We obtain

dim(Λ2) =
∏

α>0

〈Λ2 + ρ, α〉

〈ρ, α〉
= (1 + 0)

(

1 +
3

3

)(

1 +
3

4

)(

1 +
3

5

)(

1 +
3

6

)(

1 +
6

9

)
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Figure 10 � The weight diagram for the representation (Λ1) of the algebra G2. The

weights are shown as green dots.
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Figure 11 � The weight diagram for the representation (Λ2) of the algebra G2. The

weights are shown as green dots.
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and thus, as expe
ted,

dim(Λ2) = 14 adjoint representation ,

see Fig. 11 for the 
orresponding weight diagram. Note that again, Λ2 = 3α1 + 2α2

is the heighest root.℄

g. In the two 
ases of B2 and G2, one observes that the highest weight of the

adjoint representation is given by the highest root. Explain why this is true in

general.

[Solution : The roots are the weights of the adjoint representation. The highest

weight of the adjoint representation is thus the highest root.℄

3. A little tou
h of parti
le physi
s

Why were the groups SO(5) or G2 inappropriate as symmetry groups exten-

ding the SU(2) isospin group, knowing that several �o
tets" of parti
les had been

observed ?

[Solution : There is no representation of dimension 8, although 7+1 would be not

so bad ... ?℄

D. Dimensions of SU(3) representations

We admit that the 
onstru
tion of � 3.4.2, of 
ompletely symmetri
 tra
eless rank

(p,m) tensors in C3
, does give the irredu
ible representations of SU(3) of highest

weight (p,m). Then we want to determine the dimension d(p,m) of the spa
e of

these tensors.

1. Show, by studying of the produ
t of two tensors of rank (p, 0) and (0, m) and

separating the tra
e terms (those 
ontaining a δij between one lower and one upper

index) that (p, 0)⊗ (0, m)=((p− 1, 0)⊗ (0, m− 1))⊕ (p,m) and thus that

d(p,m) = d(p, 0)d(0, m)− d(p− 1, 0)d(0, m− 1) .

[Solution : The tensors of the spa
e (p, 0) ⊗ (0, m) are tensors of rank (p,m)


ompletely symmetri
 in their p upper indi
es, 
ompletely symmetri
 in theirm lower

indi
es, but they have a priori arbitrary tra
es between upper and lower indi
es. We

would like to show that any tensor t
i1···ip
j1···jm

of this spa
e 
an be expressed as the sum

19



of a tensor with the same symmetries and with vanishing tra
es, and of a tensor

whi
h possesses tra
es, i.e. of the form

v
i1···ip
j1···jm

:=
m
∑

n=1

p
∑

q=1

δ
iq
jn
u
i1···îq···ip

j1···ĵn···jm

where the hat on top of an index means that the given index has been omitted, and u

is a tensor to be determined, whi
h is 
ompletely symmetri
 in its p−1 upper indi
es

and in its m − 1 lower indi
es, thus belonging to the spa
e (p − 1, 0)⊗ (0, m − 1).

One would thus like to write

t
i1···ip
j1···jm

=
[

t− v
]i1···ip

j1···jm
+ v

i1···ip
j1···jm

,

[t−v] being tra
eless, and we are going to �x u by requiring that δj1i1 [t−v]
i1···ip
j1···jm

= 0.

(due to the symmetries of t and v this implies that every tra
e betwen an upper

index and a lower index vanish). We �rst 
onsider the 
ase p = m = 2 , and write

vi1i2j1j2
= δi1j1 u

i2
j2
+ δi2j1 u

i1
j2
+ δi1j2 u

i2
j1
+ δi2j2 u

i1
j1
.

Sin
e ea
h index 
an take 3 values, the 
onstraint

δj1i1 [t− v]i1i2j1j2
= 0

leads to

tii2ij2
− [3 ui2

j2
+ ui2

j2
+ ui2

j2
+ δj2i2 u

i
i] = 0 .

Taking now a new tra
e by mean of δj2i2 , we get 8 u
i
i = tijij . This 
ompletely �xes the

expression of ui2
j2
a

ording to

5 ui2
j2
= tii2ij2

− δj2i2 u
i
i = tii2ij2

−
1

8
δj2i2 t

ij
ij ,

i.e.

ui2
j2
=

1

5
tii2ij2

−
1

40
δj2i2 t

ij
ij .

One 
an similarly study the 
ase p = 3 and m = 2 , and write

vi1i2i3j1j2
= δi1j1 u

i2i3
j2

+ δi2j1 u
i1i3
j2

+ δi3j1 u
i1i2
j2

+ δi1j2 u
i2i3
j1

+ δi2j2 u
i1i3
j1

+ δi3j2 u
i1i2
j1

.

The 
ontra
tion of δj1i1 with [t− v]i1i2i3j1j2
gives

[3 + 1 + 1 + 1]ui2i3
j2

+ δi2j2 u
ii3
i + δi3j2 u

ii2
i − tii2i3ij2

= 0 .
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Next, 
ontra
ting with δi2j2 gives

[6 + 3 + 1] uii3
i − tiji3ij = 0 ,

and thus allows us to �x 
ompletely u as

ui2i3
j2

= −
1

60

[

tiji3ij δi2j2 + tiji2ij δi3j2
]

+
1

6
tii2i3ij2

.

The general 
ase 
an be treated following the same line of thought, although it

is rather painful to write expli
itely : after a �nite number of operation (equal to

inf(p,m)), one 
an determine 
ompletely the tensor u, whi
h a
hieves the proof that

(p, 0)⊗ (0, m)=((p− 1, 0)⊗ (0, m− 1))⊕ (p,m) and thus that

d(p,m) = d(p, 0)d(0, m)− d(p− 1, 0)d(0, m− 1) .

℄

2. Show by a 
omputation analogous to that of SU(2) that

d(p, 0) = d(0, p) =
1

2
(p+ 1)(p+ 2) .

[Solution : By symmetry, one 
an always organize the indi
es in su
h a way that

1's o

urs �rst, then 2's and �nally 3's, i.e. looking as 1 · · ·1 2 · · ·2 3 · · ·3. On should

niw introdu
e 2 separations between the blo
ks of 1, 2 and 3's. Consider �rst the

separation between 2 and 3's. There are p+1 possibilities (from a 
on�guration with

only 3's, looking as 3 · · ·3, till the one with no 3's, looking as 1 · · ·1 2 · · ·2), labeling

for example the position r of the �rst 3 (whi
h varies from 1 to p + 1 in these two

extreme 
ases). Then, the total number of 1's and 2's is r − 1, and we thus have

r possibilities to 
hoose the separation between 1's and 2's. This means that the

number we are looking for is just

d(p, 0) = d(0, p) =

p+1
∑

r=1

r =
1

2
(p + 1)(p+ 2) .

℄

3. Derive from it the expression of d(p,m) and 
ompare with (3.64).

[Solution : From d(p,m) = d(p, 0)d(m, 0)− d(p− 1, 0)d(m− 1, 0) = 1
4
(p + 1)(p +

2)(m+ 1)(m+ 2)− 1
4
p(p+ 1)m(m+ 1) we dedu
e

d(p,m) = 1
2
(m+ 1)(p+ 1)(m+ p+ 2) ,

℄
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