
M2/CFP/Parours of Physique Théorique

Invarianes in physis and group theory

Exerises on Cartan algebra, roots, weights...

Equations refer to the leture of Jean-Bernard Zuber, Chapter 3, version 2013.

A. Cartan algebra and roots

1. Show that any element X of g may be written as X =
∑

xiHi +
∑

α∈∆ xαEα

with the notations of � 3.1.2.

For an arbitrary H in the Cartan algebra, determine the ation of ad(H) on suh

a vetor X ; onlude that ad(H)ad(H ′)X =
∑

α∈∆ xαα(H)α(H ′)Eα and taking into

aount that the eigenspae of eah root α has dimension 1, f point (∗) 2. of � 3.1.2,

that the Killing form reads

(H,H ′) = tr(ad(H)ad(H′)) =
∑

α∈∆

α(H)α(H′) . (1)

[Solution : For a �xed value of j, Hj has dim g independent eigenvetors (sine Hj

ats on g). These eigenvetors thus provide a set of generators, allowing to write

∀X ∈ g, X =
∑

xiHi +
∑

α∈∆

xαEα . (2)

For H ∈ h,

adHX = [H,X ] =
∑

α∈∆

xα[H,Eα] =
∑

α∈∆

xαα(H)Eα .

Thus

ad(H) ad(H ′)X =
∑

α∈∆

xαα(H ′) [H,Eα] =
∑

α∈∆

xαα(H ′)α(H)Eα

and

α(H ′)α(H)Eα = α(H ′)α(H)Eα

1



for a given α . Eah root α orresponds to an eigenspae spanned by Eα, of dimen-

sion 1. Thus

tr[ad(H) ad(H′)] =
∑

α∈∆

α(H′)α(H) .

℄

2. One wants to show that roots α de�ned by (3.5) or (3.6) generate all the dual

spae h∗ of the Cartan subalgebra h. Prove that if it were not so, there would exist

an element H of h suh that

∀α ∈ ∆ α(H) = 0 . (3)

Using (1) show that this would imply ∀H ′ ∈ h, (H,H ′) = 0. Why is that impos-

sible in a semi-simple algebra ? (see the disussion before equation (3.10)).

[Solution : One is looking for H =
∑

i h
i Hi ∈ h , so that α(H) =

∑

i h
i α(i) = 0

for every α ∈ ∆ . Thus, H should obey |∆| equations, whih would lead to a number

of undetermined parameters larger or equal to dim h − |∆| , {hi, i ∈ {1 · · ·dim h}}

being a solution of this set of equations. In the ase where |∆| < dim h∗ = dim h ,

a non-trivial solution (i.e. suh that hi
do not all vanish) thus exists, and H is non

zero.

The expression

(H, H ′) =
∑

α∈∆

α(H ′)α(H)

leads to

∀H ′ ∈ h , (H, H ′) = 0 .

Sine (H, Eα) = 0 , we thus dedue that

∀X ∈ h , (H, X) = 0 ,

thus showing that the Killing form is degenerate on h , in ontradition with the

semi-simpliity of h . Thus, ∆ spans h∗ (and thus |∆| ≥ dim h∗ = dimh). ℄

3. Variant of the previous argument : under the assumption of 2. and thus of (3),

show that H would ommute with all Hi and all the Eα, thus would belong to the

enter of g. Prove that the enter of an algebra is an abelian ideal. Conlude in the

ase of a semi-simple algebra.
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[Solution : Assume that ∃H ∈ h suh that ∀α ∈ ∆ , α(H) = 0 . Then, on one

hand [H, Hi] = 0 , while on the other hand ∀α ∈ ∆, [H ,Eα] = α(H)Eα = 0 so

that H ∈ Zg . Now, X ∈ Zg ⇔ ∀Y ∈ g, [X, Y ] = 0 . Obviously, [Zg, g] ⊂ Zg sine

[Zg, g] = {0}, showing that Zg is an abelian ideal of g (abelian sine every element

of Zg ommute with every element of g, in partiular those of Zg). Based on the

semi-simpliity of g, this implies that Zg = {0}, proving that H ∈ Zg is impossible.℄

B. Computation of the Nαβ

1. Show that the real onstants Nαβ satisfy Nαβ = −Nβα and, by omplex onju-

gation of [Eα, Eβ] = NαβEα+β that

Nα,β = −N−α,−β . (4)

[Solution : [Eα, Eβ] = Nα,β Eα+β if α+ β is a root. Sine [Eα, Eβ] = −[Eβ , Eα], we

thus have Nβ,α = −Nα,β .

[H,Eα] = αEα leads to [H,Eα]
† = −[H,E†

α] = αE†
α sine H is hermitian. Thus,

[H,E†
α] = −αE†

α and thus E†
α = E−α . From [Eα, Eβ] = Nα,β Eα+β we thus have

[Eα, Eβ ]
† = Nα,β E

†
α+β = Nα,β E−α−β . This leads to

Nα,β = N−β,−α = −N−α,−β = −Nβ,α .

℄

2. Consider three roots satisfying α+ β + γ = 0. Writing the Jaobi identity for

the triplet Eα, Eβ, Eγ , show that α(i)Nβγ + cycl. = 0. Derive from it the relation

Nαβ = Nβ,−α−β = N−α−β,α . (5)

[Solution : The Jaobi identity reads

[[Eα, Eβ], Eγ] + [[Eβ, Eγ], Eα] + [[Eγ , Eα], Eβ ] = 0

and thus

Nα,β [Eα+β, Eγ ] +Nβ,γ [Eβ+γ, Eα] +Nγ,α [Eα+γ , Eβ] = 0 ,

whih an be written as

Nα,β [E−γ , Eγ] +Nβ,γ [E−α, Eα] +Nγ,α [E−β , Eβ] = 0 ,
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i.e.

Nα,β H−γ +Nβ,γ H−α +Nγ,αH−β = 0 ,

so that

Nβ,γ (−α(j)Hj) + cycl.perm. = 0 .

Calulating (Hi, ) for a �xed value of i, we thus get

α(i) Nβ,γ + cycl.perm. = 0 .

We thus have

αNβ,γ + β Nγ,α + γ Nα,β = 0

so that

α(Nβ,−α−β −Nα,β) + β(N−α−β,α −Nα,β) = 0 .

This identity is valid for any set of roots α, β, γ satisfying α+ β + γ = 0 , so that α

and β are linearly independent, exept if β = ±α . Now :

• If α = β , then γ = −2α whih is impossible sine the only roots of the form λα

are ±α .

• If α = −β , then γ = 0 whih is again impossible.

We thus onlude, based on the linear independene of α and β, that

Nβ,−α−β = Nα,β = N−α−β,α .

This identity remains trivially satis�ed for β = α, sine on one hand [Eα, Eα] = 0,

i.e. Nα,α = 0 and on the other hand Nα,−2α = 0 sine −2α is not a root. Similarly,

it is also valid in the ase β = −α sine Nα,−α = N−α,0 = N0,α = 0 . The above

identity is thus valid for any set of roots α and β . ℄

3. Considering the α-hain through β and the two integers p et q de�ned in �

3.2.1, write the Jaobi identity for Eα, E−α and Eβ+kα, with p ≤ k ≤ q, and show

that it implies

〈α, β + kα〉 = Nα,β+kαNα,β+(k−1)α +Nβ+kα,αN−α,β+(k+1)α .

Let f(k) := Nα,β+kαN−α,−β−kα. Using the relations (5), show that the previous

equation may be reast as

〈α, β + kα〉 = f(k)− f(k − 1) . (6)
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[Solution : The Jaobi identity reads

[[Eα, E−α], Eβ+kα] + [[E−α, Eβ+kα], Eα] + [[Eβ+kα], Eα], E−α] = 0 ,

i.e.

[Hα, Eβ+kα] +N−α,β+kα [Eβ+(k−1)α, Eα] +Nβ+kα,α [Eβ+(k+1)α, E−α] = 0 ,

and thus

∑

i

α(i)[β(i) + k α(i)]Eβ+kα +N−α,β+kαNβ+(k−1)α,α Eβ+kα

+Nβ+kα,αNβ+(k+1)α,−α Eβ+kα = 0

From

∑

i α(i)[β(i)+k α(i)] = 〈α, β+k α〉 , Nβ+(k−1)α,α = −Nα,β+(k−1)α andNβ+(k+1)α,−α =

−N−α,β+(k+1)α we get, sine Eβ+kα 6= 0 ,

〈α, β + k α〉 = N−α,β+kαNα,β+(k−1)α +Nβ+kα,αN−α,β+(k+1)α .

From the de�nition of f , we have

f(k) = Nα,β+kαN−α,−β−kα = −N2
α,β+kα = Nβ+kα,αN−β−kα,−α = Nβ+kα,αN−α,β+(k+1)α .

Thus,

f(k − 1) = Nα,β+(k−1)αN−α,−β−(k−1)α .

Now, sine N−α,−β−(k−1)α = Nβ+kα,−α = −N−α,β+kα, where we have used Nγ,δ =

−N−γ−δ,γ , we thus have

〈α, β + k α〉 = f(k)− f(k − 1) .

℄

4. What are f(q) et f(q − 1) ? Show that the reursion relation (6) is solved by

f(k) = −(Nα,β+kα)
2 = (k − q)〈α, β +

1

2
(k + q + 1)〉 . (7)

What is f(p− 1) ? Show that the expression (3.21) is reovered. Show that (7) is in

aord with (3.23). The sign of the square root is still to be determined . . ., see [Gi℄.

[Solution : The de�nition of f leads to f(q) = Nα,β+qαN−α,−β−qα . Sine [Eα, Eβ+qα] =

Nα,β+qαEβ+(q+1)α while β+(q+1)α is not root, as implied by the de�nition of q, we

obtain Nα,β+qα = 0 and thus

f(q) = 0 .
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From the de�nition of f,

f(q − 1) = −N2
α,β+(q−1)α .

On the other hand, 〈α, β + q α〉 = f(q)− f(q − 1) , so that

f(q − 1) = −〈α, β + q α〉 = −N2
α,β+(q−1)α .

From the expression 〈α, β〉+ k〈α, α〉 = f(k)− f(k − 1) we get

f(q)−f(q−1)+f(q−1)−f(q−2)+· · ·+f(k+1)−f(k) = −f(k) = (q−k)〈α, β〉+

q
∑

m=k+1

m〈α, α〉 .

From

q
∑

m=k+1

m = −
k
∑

m=1

m+
q
∑

m=1

= q(q+1)
2

− k(k+1)
2

= −k−q

2
(1 + k + q) we get

f(k) = (k − q)〈α, β〉+
1

2
〈α, α〉(1 + k + q)(k − q)

so that

f(k) = (k − q)〈α, β + 1
2
(k + q + 1)α〉 = −N2

α,β+kα .

We now ompute

f(p− 1) = Nα,β+(p−1)αN−α,−β−(p−1)α .

The seond oe�ient reads N−α,−β−(p−1)α = Nβ+pα,−α = −N−α,β+pα . Sine

[E−α, Eβ+pα] = N−α,β+pαEβ+(p−1)α

and using the fat that β + (p− 1)α is not a root by de�nition of q, we dedue that

N−α,β+pα = 0 and thus f(p− 1) = 0. Therefore,

f(p) = 〈α, β + pα〉 = −N2
α,β+pα = (p− q)〈α, β +

1

2
(p+ q + 1)α〉 ,

so that

〈α, β〉(p− q − 1) = [p−
1

2
(p− q)(p+ q + 1)]〈α, α〉 = −

1

2
(p− q − 1)(p+ q)〈α, α〉 .

Therefore,

2〈α, β〉 = (−p− q)〈α, α〉 = m〈α, α〉 .

We thus have

2
〈α, β〉

〈α, α〉
= m ∈ Z .
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We �nally get

f(0) = −N2
α,β = −q〈α, β+

1

2
(q+1)α〉 = −q[〈α, β〉+

1

2
(q+1)〈α, α〉] = −

q(1 − p)

2
〈α, α〉

and thus

|Nα, β| =

√

q(1− p)

2
〈α, α〉 .

℄

C. Study of the Bl =so(2l + 1) and G2 algebras

1. so(2l + 1) = Bl, l ≥ 2

a. What is the dimension of the group SO(2l+1) or of its Lie algebra so(2l+1) ?

[Solution : We start from the de�ning relation

OOt = OtO = 1

with O expanded as O = 1 + iT, i.e. (1 + iT )(1 + iT t) = 1 and thus i(T + T t) = 0,

showing that T is antisymmetri.

If T is an n × n matrix (for the ase of O(n) or SO(n)), T is haraterized by

(n2 − n)/2 elements, so that for n = 2ℓ+ 1,

dim o(2ℓ+ 1) = ℓ(2ℓ+ 1) .

This dimension is the same for so(2ℓ + 1) sine detO = 1 does not introdue any

additional onstraint on the Lie algebra (it only selets the onneted omponent of

the identity when onsidering the group).℄

b. What is the rank of the algebra ? (Hint : diagonalize a matrix of so(2l+1) on

C, or write it as a diagonal of real 2× 2 bloks, see leture notes, �3.1)

[Solution : Sine O is diagonalizable in the form

D = diag

(

0,

(

0 µj

−µj 0

)

j=1,··· ,ℓ

)

with real µj (see hapter 3), we thus get

rank so(2ℓ+ 1) = ℓ .

℄

. How many roots does the algebra have ? How many positive roots ? How many

simple ?
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[Solution : # of roots = dimension - rank = ℓ(2ℓ+ 1)− ℓ = 2l2 .

Among these roots, half of them are positive, i.e. ℓ2. The number of simple roots is

equal to the rank, i.e. ℓ .℄

d. Let ei, i = 1, · · · , l be a orthonormal basis in Rl
, 〈ei, ej〉 = δij . Consider the

set of vetors

∆ = {±ei , 1 ≤ i ≤ l} ∪ {±ei ± ej , 1 ≤ i < j ≤ l}

What is the ardinal of ∆ ?

[Solution : Card {±ei , 1 ≤ i ≤ l} = 2ℓ and Card {±ei ± ej , 1 ≤ i < j ≤ l} =

4C2
ℓ = 2l(l − 1), therefore Card∆ = 2l2 .℄

∆ is the set of roots of the algebra so(2l + 1).

e. A basis of simple roots is given αi = ei − ei+1, i = 1, · · · , l − 1, et αl = el.

Explain why the roots

ei =
∑

i≤k≤l

αk, 1 ≤ i ≤ l ,

ei − ej =
∑

i≤k<j

αk, 1 ≤ i < j ≤ l , (8)

ei + ej =
∑

i≤k<j

αk + 2
∑

j≤k≤l

αk, 1 ≤ i < j ≤ l ,

qualify as positive roots.

[Solution : There are

ei =
∑

i≤k≤l

αk, 1 ≤ i ≤ l , Card = ℓ ,

ei − ej =
∑

i≤k<j

αk, 1 ≤ i < j ≤ l , Card =
ℓ(ℓ− 1)

2
, (9)

ei + ej =
∑

i≤k<j

αk + 2
∑

j≤k≤l

αk, 1 ≤ i < j ≤ l , Card =
ℓ(ℓ− 1)

2
,

there are thus |∆+| = l2 of suh roots, whih expand on the set of simple roots

with integer oe�ients. Inluding their opposite (negative roots), they orretly

reprodue the whole set ∆.℄ Chek that assertion on the ase of B2 = so(5).

[Solution : For B2 = so(5), ∆ = {±e1,±e2,±e1± e2} with Card∆ = 8 . The ℓ = 2

(whih is equal to the rank of B2 = so(5)) simple roots are α1 = e1−e2 and α2 = e2 .

And ∆+ = {e1, e2, e1 − e2, e1 + e2} with Card∆+ = 4 . ℄
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f. Compute the Cartan matrix and hek that it agrees with the Dynkin diagram

given in the notes.

[Solution : Obviously, 2 〈αi, αi〉
〈αi,αi〉

= 2 . Then,

2
〈αj+1, αj〉

〈αj, αj〉
= 2

〈ej+1 − ej+2, ej − ej+1〉

〈ej − ej+1, ej − ej+1〉
=

2(−1)

2
= −1 ,

and

2
〈αj, αj+1〉

〈αj+1, αj+1〉
= −1 .

Finally,

2
〈αℓ−1, αℓ〉

〈αℓ, αℓ〉
= 2

〈eℓ−1 − eℓ, eℓ〉

〈eℓ, eℓ〉
= −2 ,

and

2
〈αℓ, αℓ−1〉

〈αℓ−1, αℓ−1〉
= 2

〈eℓ, eℓ−1 − eℓ〉

〈eℓ−1 − eℓ, eℓ−1 − eℓ〉
=

2(−1)

2
= −1 ,

whih an be summarized by

Cij = 2
〈αi, αj〉

〈αj, αj〉
=



























2 si 1 ≤ i = j ≤ l

−1 si 1 ≤ i = (j ± 1) ≤ l − 1

−2 si i = l − 1 , j = l

−1 si i = l , j = l − 1

orresponding to the Dynkin diagram illustrated in Fig. 1. The roots of B2 are

B ! " # l
l

Figure 1 � The Dynkin diagram for the algebra Bℓ.

illustrated in Fig. 2 ℄

g. Compute the sum ρ of positive roots.

[Solution :

2ρ =
ℓ

∑

i=1

ei +
∑

1≤i<j≤ℓ

(ei − ej + ei + ej) =
ℓ

∑

i=1

ei + 2
∑

1≤i<j≤ℓ

ei =
∑

1≤i<j≤ℓ

[1 + 2(ℓ− i)]ei

= (2l − 1)e1 + (2l − 3)e2 + · · ·+ (2l − 2i+ 1)ei + · · ·+ 3 el−1 + el

= (2l − 1)(α1 + · · ·αℓ) + (2l − 3)(α2 + · · ·αℓ) + · · ·+ (2l − 2i+ 1)(αi + · · ·αℓ)

+ · · ·+ 3 (αℓ−1 + αℓ) + αl

= (2l − 1)α1 + 2(2l − 2)α2 + · · ·+ i(2l − i)αi + · · ·+ l2αl .
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PSfrag replaements

α1

α2

e1

e2

Figure 2 � The roots of B2. In red, the two simple roots α1 and α2. In blak, the

two other positive roots, and in yan the four negative roots.

℄

h. The Weyl is the (�semi-diret") produt W ≡ Sl ⋉ (Z2)
l
, whih ats on the

ei (hene on weights and roots) by permutation and by independent sign hanges

ei 7→ (±1)iei. What is its order ? In the ase of B2, hek that assertion and draw

the �rst Weyl hamber.

[Solution : |Wℓ| = 2l.l! , and for B2 , |W2| = 8 . Permutations and hange of sign of

e1 and e2 indeed orresponds to (produts of) symmetries in �planes� orthogonal to

α1 and α2 ; they do not modify the piture of Fig. 2. It is worth obtaining W2 in a

pedestrian way. We easily get







α⊥
1 e1 = e2 , α⊥

2 e1 = e1 ,

α⊥
1 e2 = e1 , α⊥

2 e2 = −e2 .

Thus







α⊥
1 α⊥

2 e1 = e2 , α⊥
2 α⊥

1 e1 = −e2 ,

α⊥
1 α⊥

2 e2 = −e1 , α⊥
2 α⊥

1 e2 = e1 .

This shows that α⊥
1 α⊥

2 = −α⊥
2 α⊥

1 is a rotation of angle −π/2 (in the oriented

plane e1, e2). Thus, any word made of I,−I, α⊥
1 , α

⊥
2 redues to the elements of

W2 = {I , α⊥
1 , α⊥

2 , α⊥
1 α⊥

2 ,−I ,−α⊥
1 ,−α⊥

2 ,−α⊥
1 α⊥

2 } . Equivalently, the Weyl group

is generated by the set of re�etions in the hyperplane (here line) orthogonal to the

various α′
s. The �rst Weyl hamber C1 = {λ|〈λ, αi〉 ≥ 0} is the otant between

α1 + α2 and α1 + 2α2 . ℄

i. Show that the vetors Λi =
∑i

j=1 ej , i = 1, · · · , l − 1, Λl =
1
2

∑l
j=1 ej are the

fundamental weights.
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[Solution : The fundamental weights are de�ned in suh a way that Λi is orthogonal

PSfrag replaements

e1

e2

α1

α2

Λ1

Λ2

C1

−I C1

α⊥
1 C1

−α⊥
1 C1

α⊥
2 C1

−α⊥
2 C1

α⊥
2 α⊥

1 C1

α⊥
1

α⊥
2

α⊥
1 α⊥

2 C1

Figure 3 � The weight diagram for the algebra B2. The two simple roots α1 and

α2 are displayed as red lines. The two fundamental weights Λ1 and Λ2 are displayed

as blue lines. The lattie of roots is shown as red dots, while the lattie of weights

is shown as blue dots. The �rst Weyl hamber C1 is shown as a dark-grey zone. The

other Weyl hambers, shown as grey regions of various intensities, are obtained by

ating on C1 with the various element of the Weyl group, as expliitely indiated.

to every root simple root αj (j 6= i), its normalization being �xed by 2 〈αi,Λi〉
〈αi, αi〉

= 1.

The denominators read

〈αi, αi〉 = 〈ei − ei+1, ei − ei+1〉 = 2 for i = 1, · · · , ℓ− 1 ,

〈αℓ, αℓ〉 = 1 .

The onstrution an be easily performed by reursion. First, Λ1 should be ortho-

gonal to αi (i > 1), so that, from the de�nition of αi, it should be orthogonal to

every ei (i > 1), implying that Λ1 is proportional to e1 . Its normalization requires

that 〈α1 , e1〉 = 1 and sine α1 = e1 − e2 , we thus have Λ1 = e1 . Now, by the same

reasoning, Λ2 should be in the plane spanned by e1 and e2 . Sine Λ2 should be
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orthogonal to α1 = e1 − e2 , Λ2 is proportional to e1 + e2 . In the ase ℓ = 2, we thus

have Λ2 = 1
2
(e1 + e2) while for ℓ > 2, Λ2 = e1 + e2 . Assume now (for i − 1 < ℓ)

that From the orthogonality of Λi with αj (i < j) we again dedue that Λi should

be a linear ombination of ei (i ≤ j). Furthermore, the orthogonality of Λi with αj

(j < i) implies, based on the relation ei−ej =
∑

i≤k<j αk, 1 ≤ i < j ≤ l , that Λi is

orthogonal to e1−e2 , · · · , e1−ei and thus that Λi is proportional to e1+e2+· · ·+ei,

the oe�ient of proportionality being �xed as 1 (resp. 1/2) for i < ℓ (resp. i = ℓ).

The weight system, and the 8 Weyl hambers, is illustrated in Fig. 3. ℄

j. Using Weyl formula : dim(Λ) =
∏

α>0
〈Λ+ρ,α〉
〈ρ,α〉

ompute the dimension of the

two fundamental representations of B2 and of that of highest weight 2Λ2. In view of

these dimensions, what are these representations of SO(5) ?

[Solution : In the ase of B2, Λ1 = e1, Λ2 =
1
2
(e1+ e2), ρ = 3e1+ e2. One an hek

that ρ = Λ1 + Λ2 . The set of positive roots is ∆+ = {e1, e2, e1 ± e2}. Sine

Λ1 + ρ =
5

2
e1 +

1

2
e2 ,

Λ2 + ρ = 2e1 + e2 ,

2Λ2 + ρ =
5

2
e1 +

3

2
e2 ,

we get

〈Λ1 + ρ, e1〉 =
5

2
, 〈Λ1 + ρ, e2〉 =

1

2
,

〈Λ1 + ρ, e1 − e2〉 =
5

2
−

1

2
= 2 , 〈Λ1 + ρ, e1 + e2〉 =

5

2
+

1

2
= 3 ,

〈ρ, e1〉 =
3

2
, 〈ρ, e2〉 =

1

2
,

〈ρ, e1 − e2〉 =
3

2
−

1

2
= 1 , 〈ρ, e1 + e2〉 =

3

2
+

1

2
= 2 ,

and thus

dim(Λ1) =
∏

α>0

〈Λ1 + ρ, α〉

〈ρ, α〉
=

5
2
× 1

2
× 2× 3

3
2
× 1

2
× 1× 2

i.e.

dim(Λ1) = 5 vetor representation .

See Fig. 4 for the orresponding weight diagram. Similarly, we dedue from

〈Λ2 + ρ, e1〉 = 2 , 〈Λ2 + ρ, e2〉 = 1 ,

〈Λ2 + ρ, e1 − e2〉 = 2− 1 = 1 = 2 , 〈Λ2 + ρ, e1 + e2〉 = 2 + 1 = 2 ,

12
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e1

e2

Λ1

Figure 4 � The weight diagram for the representation (Λ1) of the algebra B2. The

weights are shown as green dots.

that

dim(Λ2) =
∏

α>0

〈Λ2 + ρ, α〉

〈ρ, α〉
=

2× 1× 1× 3
3
2
× 1

2
× 1× 2

i.e.

dim(Λ2) = 4 spinorial representation .

See Fig. 5 for the orresponding weight diagram. Finally,

PSfrag replaements

e1

e2

Λ2

Figure 5 � The weight diagram for the representation (Λ2) of the algebra B2. The

weights are shown as green dots.

〈2Λ2 + ρ, e1〉 =
5

2
, 〈2Λ2 + ρ, e2〉 =

3

2
,

〈2Λ2 + ρ, e1 − e2〉 =
5

2
−

3

2
= 1 = 2 , 〈2Λ2 + ρ, e1 + e2〉 =

5

2
+

3

2
= 4 ,

leads to

dim(2Λ2) =
∏

α>0

〈2Λ2 + ρ, α〉

〈ρ, α〉
=

5
2
× 3

2
× 1× 4

3
2
× 1

2
× 1× 2

13



i.e.

dim(2Λ2) = 10 adjoint representation .

See Fig. 6 for the orresponding weight diagram. Note that 2Λ2 = α1 + 2α2 is the

PSfrag replaements

e1

e2

2Λ2

Figure 6 � The weight diagram for the representation (2Λ2) of the algebra B2. The

weights are shown as green dots.

heighest root. In the αi basis, it reads 2Λ2 = α1 + 2α2 whih sum of omponents is

maximal. It is the heighest weight of the adjoint representation. ℄

k. Draw on the same �gure the roots and the low lying weights of so(5).

[Solution : See Fig. 3.℄

2. G2

In the spae R
2
, we onsider three vetors e1, e2, e3 of vanishing sum, 〈ei, ej〉 =

δij −
1
3
, and onstrut the 12 vetors

±(e1−e2), ±(e1−e3), ±(e2−e3), ±(2e1−e2−e3), ±(2e2−e1−e3), ±(2e3−e1−e2)

They make the root system of G2, as we shall hek.

a. What an be said on the dimension of the algebra G2 ?

[Solution : dimG2 = rank + number of roots = 12 + 2 = 14.℄

b. Show that α1 = e1−e2 and α2 = −2e1+e2+e3 are two simple roots, in aord

with the Dynkin diagram of G2 given in the notes. Compute the Cartan matrix.

[Solution : First,

〈ei, ei〉 =
2

3
and 〈ei, ei〉 = −

1

3
,

whih leads to

〈α1, α1〉=2
2

3
−2

(

−
1

3

)

=2 and 〈α2, α2〉=4
2

3
+2

2

3
−4

(

−
1

3

)

−4

(

−
1

3

)

+2

(

−
1

3

)

=6 ,
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and

〈α1, α2〉 = 〈α2, α1〉 = −2〈e1, e1〉+ 〈e1, e2〉+ 〈e1, e3〉+ 2〈e1, e2〉 − 〈e2, e2〉 − 〈e2, e3〉

= − 2
2

3
−

1

3
−

1

3
−

2

3
−

2

3
+

1

3
= −3 .

The Cartan matrix Cij = 2
〈αi, αj〉

〈αj, αj〉
thus reads

C =

(

2 −1

−3 2

)

as expeted, in aordane to the Dynkin diagram of Fig. 7.

G
2

! "

Figure 7 � The Dynkin diagram for the algebra G2.

℄

. What are the positive roots ? Compute the vetor ρ, half-sum of positive roots.

[Solution :∆+ = {α1, α2, α1+α2, 2α1+α2, 3α1+α2, 3α1+2α2} and ρ = 5α1+3α2 .

The root diagram is shown in Fig. 8. ℄
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α1

α2

e1

e2

e3

Figure 8 � The roots of G2. In red, the two other simple roots α1 and α2. In blak,

the four other positive roots, and in yan the six negative roots.

d. What is the group of invariane of the root diagram? Show that it is of order

12 and that it is the Weyl group of G2. Draw the �rst Weyl hamber.

15



[Solution : The group of invariane of the root diagram is the diedral group D6 ,

of order 12. The weight diagram is illustrated in Fig. 9 ℄
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e1

e2

e3

α1

α2

Λ1

Λ2

C1

ρα⊥
1

α⊥
2

Figure 9 � The weight diagram for the algebra G2. The two simple roots α1 and

α2 are displayed as red lines. The two fundamental weights Λ1 and Λ2 are displayed

as blue lines. The lattie of roots is shown as red dots, while the lattie of weights is

shown as blue dots. These two latties are idential for G2. The 12 Weyl hambers

(the �rst Weyl hambers C1 is expliitely indiated) are shown as grey regions of

various intensities. They are obtained by ating on C1 with the various element of

the Weyl group.

e. Chek that the fundamental weights are

Λ1 = 2α1 + α2 Λ2 = 3α1 + 2α2 .

[Solution : First, we ompute

〈α1, α1〉 = 2 , 〈α2, α2〉 = 6 and 〈α1, α2〉 = 〈α2, α1〉 = −3 .

Sine Λ1 is orthogonal to α2, obviously Λ1 should be proportional to 2α1 + α2 .

The normalization is �xed by the ondition 2 〈Λ1, α1〉
〈α1, α1〉

= 1 , leading to Λ1 = 2α1 +

α2 . Similarly, Λ2 is orthogonal to α1, and obviously Λ2 should be proportional to

α2 +
3
2
α1 . The normalization is �xed by the ondition 2 〈Λ2, α2〉

〈α2, α2〉
= 1 , leading to

Λ2 = 3α1 + 2α2 .℄
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f. What are the dimensions of the fundamental representations ?

[Solution :

〈ρ, α1〉 = 5〈α1, α1〉+ 3〈α1, α2〉 = 10− 9 = 1 ,

〈ρ, α2〉 = 5〈α1, α2〉+ 3〈α2, α2〉 = −15 + 18 = 3 ,

and thus

〈ρ, α1 + α2〉 = 4 , 〈ρ, 2α1 + α2〉 = 5 , 〈ρ, 3α1 + α2〉 = 6 , 〈ρ, 3α1 + 2α2〉 = 9 .

We also easily get

〈Λ1, α1〉 = 2〈α1, α1〉+ 〈α1, α2〉 = 4− 3 = 1 ,

〈Λ1, α2〉 = 2〈α1, α2〉+ 〈α2, α2〉 = −6 + 6 = 0 ,

whih leads to

〈Λ1, α1 + α2〉 = 1 , 〈Λ1, 2α1 + α2〉 = 2 , 〈Λ1, 3α1 + α2〉 = 3 , 〈Λ1, 3α1 + 2α2〉 = 3 .

Thus

dim(Λ1) =
∏

α>0

〈Λ1 + ρ, α〉

〈ρ, α〉
=

(

1 +
1

1

)

(1 + 0)

(

1 +
1

4

)(

1 +
2

5

)(

1 +
3

6

)(

1 +
3

9

)

and thus

dim(Λ1) = 7 ,

see Fig. 10 for the orresponding weight diagram. Finally, we get

〈Λ2, α1〉 = 3〈α1, α1〉+ 2〈α1, α2〉 = 6− 6 = 0 ,

〈Λ2, α2〉 = 3〈α1, α2〉+ 2〈α2, α2〉 = −9 + 12 = 3 ,

whih leads to

〈Λ2, α1 + α2〉 = 3 , 〈Λ2, 2α1 + α2〉 = 3 , 〈Λ2, 3α1 + α2〉 = 3 , 〈Λ2, 3α1 + 2α2〉 = 6 .

We obtain

dim(Λ2) =
∏

α>0

〈Λ2 + ρ, α〉

〈ρ, α〉
= (1 + 0)

(

1 +
3

3

)(

1 +
3

4

)(

1 +
3

5

)(

1 +
3

6

)(

1 +
6

9

)
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Figure 10 � The weight diagram for the representation (Λ1) of the algebra G2. The

weights are shown as green dots.
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Figure 11 � The weight diagram for the representation (Λ2) of the algebra G2. The

weights are shown as green dots.
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and thus, as expeted,

dim(Λ2) = 14 adjoint representation ,

see Fig. 11 for the orresponding weight diagram. Note that again, Λ2 = 3α1 + 2α2

is the heighest root.℄

g. In the two ases of B2 and G2, one observes that the highest weight of the

adjoint representation is given by the highest root. Explain why this is true in

general.

[Solution : The roots are the weights of the adjoint representation. The highest

weight of the adjoint representation is thus the highest root.℄

3. A little touh of partile physis

Why were the groups SO(5) or G2 inappropriate as symmetry groups exten-

ding the SU(2) isospin group, knowing that several �otets" of partiles had been

observed ?

[Solution : There is no representation of dimension 8, although 7+1 would be not

so bad ... ?℄

D. Dimensions of SU(3) representations

We admit that the onstrution of � 3.4.2, of ompletely symmetri traeless rank

(p,m) tensors in C3
, does give the irreduible representations of SU(3) of highest

weight (p,m). Then we want to determine the dimension d(p,m) of the spae of

these tensors.

1. Show, by studying of the produt of two tensors of rank (p, 0) and (0, m) and

separating the trae terms (those ontaining a δij between one lower and one upper

index) that (p, 0)⊗ (0, m)=((p− 1, 0)⊗ (0, m− 1))⊕ (p,m) and thus that

d(p,m) = d(p, 0)d(0, m)− d(p− 1, 0)d(0, m− 1) .

[Solution : The tensors of the spae (p, 0) ⊗ (0, m) are tensors of rank (p,m)

ompletely symmetri in their p upper indies, ompletely symmetri in theirm lower

indies, but they have a priori arbitrary traes between upper and lower indies. We

would like to show that any tensor t
i1···ip
j1···jm

of this spae an be expressed as the sum

19



of a tensor with the same symmetries and with vanishing traes, and of a tensor

whih possesses traes, i.e. of the form

v
i1···ip
j1···jm

:=
m
∑

n=1

p
∑

q=1

δ
iq
jn
u
i1···îq···ip

j1···ĵn···jm

where the hat on top of an index means that the given index has been omitted, and u

is a tensor to be determined, whih is ompletely symmetri in its p−1 upper indies

and in its m − 1 lower indies, thus belonging to the spae (p − 1, 0)⊗ (0, m − 1).

One would thus like to write

t
i1···ip
j1···jm

=
[

t− v
]i1···ip

j1···jm
+ v

i1···ip
j1···jm

,

[t−v] being traeless, and we are going to �x u by requiring that δj1i1 [t−v]
i1···ip
j1···jm

= 0.

(due to the symmetries of t and v this implies that every trae betwen an upper

index and a lower index vanish). We �rst onsider the ase p = m = 2 , and write

vi1i2j1j2
= δi1j1 u

i2
j2
+ δi2j1 u

i1
j2
+ δi1j2 u

i2
j1
+ δi2j2 u

i1
j1
.

Sine eah index an take 3 values, the onstraint

δj1i1 [t− v]i1i2j1j2
= 0

leads to

tii2ij2
− [3 ui2

j2
+ ui2

j2
+ ui2

j2
+ δj2i2 u

i
i] = 0 .

Taking now a new trae by mean of δj2i2 , we get 8 u
i
i = tijij . This ompletely �xes the

expression of ui2
j2
aording to

5 ui2
j2
= tii2ij2

− δj2i2 u
i
i = tii2ij2

−
1

8
δj2i2 t

ij
ij ,

i.e.

ui2
j2
=

1

5
tii2ij2

−
1

40
δj2i2 t

ij
ij .

One an similarly study the ase p = 3 and m = 2 , and write

vi1i2i3j1j2
= δi1j1 u

i2i3
j2

+ δi2j1 u
i1i3
j2

+ δi3j1 u
i1i2
j2

+ δi1j2 u
i2i3
j1

+ δi2j2 u
i1i3
j1

+ δi3j2 u
i1i2
j1

.

The ontration of δj1i1 with [t− v]i1i2i3j1j2
gives

[3 + 1 + 1 + 1]ui2i3
j2

+ δi2j2 u
ii3
i + δi3j2 u

ii2
i − tii2i3ij2

= 0 .
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Next, ontrating with δi2j2 gives

[6 + 3 + 1] uii3
i − tiji3ij = 0 ,

and thus allows us to �x ompletely u as

ui2i3
j2

= −
1

60

[

tiji3ij δi2j2 + tiji2ij δi3j2
]

+
1

6
tii2i3ij2

.

The general ase an be treated following the same line of thought, although it

is rather painful to write expliitely : after a �nite number of operation (equal to

inf(p,m)), one an determine ompletely the tensor u, whih ahieves the proof that

(p, 0)⊗ (0, m)=((p− 1, 0)⊗ (0, m− 1))⊕ (p,m) and thus that

d(p,m) = d(p, 0)d(0, m)− d(p− 1, 0)d(0, m− 1) .

℄

2. Show by a omputation analogous to that of SU(2) that

d(p, 0) = d(0, p) =
1

2
(p+ 1)(p+ 2) .

[Solution : By symmetry, one an always organize the indies in suh a way that

1's ours �rst, then 2's and �nally 3's, i.e. looking as 1 · · ·1 2 · · ·2 3 · · ·3. On should

niw introdue 2 separations between the bloks of 1, 2 and 3's. Consider �rst the

separation between 2 and 3's. There are p+1 possibilities (from a on�guration with

only 3's, looking as 3 · · ·3, till the one with no 3's, looking as 1 · · ·1 2 · · ·2), labeling

for example the position r of the �rst 3 (whih varies from 1 to p + 1 in these two

extreme ases). Then, the total number of 1's and 2's is r − 1, and we thus have

r possibilities to hoose the separation between 1's and 2's. This means that the

number we are looking for is just

d(p, 0) = d(0, p) =

p+1
∑

r=1

r =
1

2
(p + 1)(p+ 2) .

℄

3. Derive from it the expression of d(p,m) and ompare with (3.64).

[Solution : From d(p,m) = d(p, 0)d(m, 0)− d(p− 1, 0)d(m− 1, 0) = 1
4
(p + 1)(p +

2)(m+ 1)(m+ 2)− 1
4
p(p+ 1)m(m+ 1) we dedue

d(p,m) = 1
2
(m+ 1)(p+ 1)(m+ p+ 2) ,

℄
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