Invariances in physics and group theory

Electromagnetic mass splittings in an $\mathrm{SU}(3)$ octet

0 . We easily get

$$
\begin{aligned}
\operatorname{dim}(E \otimes E) & =d^{2} \\
\operatorname{dim}(E \otimes E)_{S} & =\frac{d(d+1)}{2} \\
\operatorname{dim}(E \otimes E)_{A} & =\frac{d(d-1)}{2}
\end{aligned}
$$

a. One should distinguish the following multiplets : $(n, p),\left(\Sigma^{-}, \Sigma^{0}, \Sigma^{+}\right),\left(\Xi^{-}, \Xi^{0}\right),\left(\Lambda^{0}\right)$, therefore leading to 4 differences of masses, which can be chosen as $M_{n}-M_{p}$, $M_{\Sigma^{-}}-M_{\Sigma^{0}}, M_{\Sigma^{+}}-M_{\Sigma^{0}}$ and $M_{\Xi^{-}}-M_{\Xi^{0}}$.
b. Based on Wigner-Eckart theorem, since j^{μ} transforms under $S U(3)$ as 8 , and since B and B^{\prime} are in the representation 8 , on should determine the nomber of times that 8 appears in the product $8 \otimes 8 \otimes 8$, i.e. the number of invariants inside $8 \otimes 8 \otimes 8 \otimes 8$, or equivalently the number of times a given irreducible representation occurs in $8 \otimes 8$ and $8 \otimes 8$ (the equivalence of these various points of view are easily understood when playing with orthogonality formulas of characters). Now, from

$$
8 \otimes 8=1 \oplus 8 \oplus 8 \oplus 10 \oplus \overline{10} \oplus 27
$$

we thus deduce that this number equals $1+2^{2}+1+1+1=8$.
c. There are $8(8+1) / 2=36$ independent symmetric tensors of rank 2 in the representation 8 . This is in accordance with $\operatorname{dim}(1 \oplus 8 \oplus 27)=36$.
d. i) There are thus, denoting m_{R} the multiplicity of representation $R, m_{1}+m_{8}+$ $m_{27}=1+2+1=4$ independent amplitudes.
ii) Among these, the one associated to $\mathbb{1}$ give the same contribution to all δM_{B}. Thus, only 3 amplitudes contribute to the 4 independent mass differences $\delta M_{B}-$
$\delta M_{B^{\prime}}$.
iii) One can consider for example the four operators

$$
\begin{aligned}
O_{1} & =\operatorname{tr} \overline{\mathrm{B}} \mathrm{Q}^{2} \mathrm{~B}^{\prime} \\
O_{2} & =\operatorname{tr} \overline{\mathrm{B}} \mathrm{QB}^{\prime} \mathrm{Q} \\
O_{3} & =\operatorname{tr} \overline{\mathrm{B}} \mathrm{~B}^{\prime} \mathrm{Q}^{2} \\
O_{4} & =1
\end{aligned}
$$

among which O_{1}, O_{2} and O_{3} contribute to the mass differences.
e. i) Since there are 3 amplitudes contributing to 4 mass splittings, there should be a relation between these mass differences.
ii) See file DeltaM.nb
f. In the case of $J^{P}=0^{-}$, the previous approach leads to 3 independent amplitudes, among which only two of them contribute to the mass splittings, $\operatorname{tr} \Phi^{2} Q^{2}$ and $\operatorname{tr}(\Phi \mathrm{Q})^{2}$. We only have two independent mass differences : $m_{\pi^{+}}-m_{\pi^{0}}=m_{\pi^{-}}-m_{\pi^{0}}$ and $m_{K^{+}}-m_{K^{0}}=m_{K^{-}}-m_{K^{0}}$, the equalities coming from the identity of the mass of a particle and its antiparticle (from CPT invariance). Thus, we do not have anymore a relation between these mass differences!
g. One should evaluate the number of invariants in $10 \otimes \overline{10} \otimes(8 \otimes 8)_{S}$. Since $10 \otimes \overline{10}=1 \oplus 8 \oplus 27 \oplus 64$ and $(8 \otimes 8)_{S}=1 \oplus 8 \oplus 27$, there are thus 3 independent amplitudes, among which only those of the representations 8 and 27 do contribute to the mass splitting. We know two candidates for these invariants, namely Q and Q^{2}. Thus $\Delta_{e m}=\alpha Q+\beta Q^{2}$. The various mass splittings can organized as 6 independent ones, namely

$$
\begin{aligned}
& M_{\Delta^{-}}-M_{\Delta^{0}} \quad, M_{\Delta^{0}}-M_{\Delta^{+}}, M_{\Delta^{++}}-M_{\Delta^{+}} \text {, } \\
& M_{\Sigma^{*-}}-M_{\Sigma^{* 0}}, M_{\Sigma^{* 0}}-M_{\Sigma^{*+}}, M_{\Xi^{*-}}-M_{\Xi^{* 0}} \text {, }
\end{aligned}
$$

which implies that

$$
\begin{aligned}
& M_{\Delta^{-}}-M_{\Delta^{0}}=-\alpha+\beta \quad, M_{\Delta^{0}}-M_{\Delta^{+}}=-\alpha-\beta \quad, \quad M_{\Delta^{++}}-M_{\Delta^{+}}=0 \\
& M_{\Sigma^{*-}}-M_{\Sigma^{* 0}}=-\alpha+\beta, M_{\Sigma^{* 0}}-M_{\Sigma^{*+}}=-\alpha-\beta, M_{\Xi^{*-}}-M_{\Xi^{* 0}}=-\alpha+\beta
\end{aligned}
$$

from which we deduce that

$$
\begin{aligned}
M_{\Delta^{0}}-M_{\Delta^{+}} & =M_{\Sigma^{* 0}}-M_{\Sigma^{*+}} \\
M_{\Delta^{-}}-M_{\Delta^{0}} & =M_{\Sigma^{*-}}-M_{\Sigma^{* 0}}=M_{\Xi^{*-}}-M_{\Xi^{* 0}} \\
M_{\Delta^{++}} & =M_{\Delta^{+}}
\end{aligned}
$$

The experimental values (see PDG 2013) do not constraint very well the first and the third equality, since $M_{\Delta^{0}}-M_{\Delta^{+}}$and $M_{\Delta^{++}}-M_{\Delta^{+}}$are not known with a good precision. Still, it seems that the third equality is probably significantly violated. For the second set of equalities, one can only consider the last one (because $M_{\Delta^{-}}-M_{\Delta^{0}}$ is badly known). From PDG 2013, $M_{\Sigma^{*-}}-M_{\Sigma^{* 0}} \simeq 3.5 \mathrm{MeV}$ and $M_{\Xi^{*-}}-M_{\Xi^{* 0}} \simeq$ 3.2 MeV , with an error band leading to a very good compatibility of the two mass splitting.

