Introduction

A full NLLx example: Mueller-Navelet jets 00000000 Practical implementation of the computation 0000000

Results

First calculation of Mueller Navelet jets at LHC at a complete NLL BFKL order

Samuel Wallon

Université Pierre et Marie Curie and Laboratoire de Physique Théorique CNRS / Université Paris Sud Orsay

Working group "Forward physics"

CERN, June 22th 2011

in collaboration with D. Colferai (Firenze), F. Schwennsen (DESY), L. Szymanowski (SINS, Varsaw)

JHEP 1012:026 (2010) 1-72 [arXiv:1002.1365 [hep-ph]]

<ロ> < 団> < 団> < 目> < 目> < 目> < 目 > < 目 > 1/36

Introduction	A full NLLx example: Mueller-Navelet jets	Practical implementation of the computation	Results
00000	00000000	000000	0000000
Motivation	S		

- One of the important longstanding theoretical questions raised by QCD is its behaviour in the perturbative Regge limit $s \gg -t$
- Based on theoretical grounds, one should identify and test suitable observables in order to test this peculiar dynamics

hard scales: $M_1^2, M_2^2 \gg \Lambda_{QCD}^2$ or $M_1'^2, M_2'^2 \gg \Lambda_{QCD}^2$ or $t \gg \Lambda_{QCD}^2$ where the *t*-channel exchanged state is the so-called hard Pomeron

How to test QCD in the perturbative Regge limit?

What kind of observable?

- perturbation theory should be applicable: selecting external or internal probes with transverse sizes $\ll 1/\Lambda_{QCD}$ (hard γ^* , heavy meson $(J/\Psi, \Upsilon)$, energetic forward jets) or by choosing large t in order to provide the hard scale.
- governed by the *"soft"* perturbative dynamics of QCD

and *not* by its *collinear* dynamics
$$m = 0$$

 $g \neq 0$
 $m = 0$

 \implies select semi-hard processes with $s\gg p_{T\,i}^2\gg \Lambda_{QCD}^2$ where $p_{T\,i}^2$ are typical transverse scale, all of the same order.

イロト イポト イヨト イヨト 三日

Results

Introduction	A full NLLx example: Mueller-Navelet jets	Practical implementation of the computation	Results
000000	00000000	000000	000000
How to tes	t QCD in the perturbative Re	gge limit?	

Some examples of processes

- inclusive: DIS (HERA), diffractive DIS, total $\gamma^*\gamma^*$ cross-section (LEP, ILC)
- semi-inclusive: forward jet and π^0 production in DIS, Mueller-Navelet double jets, diffractive double jets, high p_T central jet, in hadron-hadron colliders (Tevatron, LHC)
- exclusive: exclusive meson production in DIS, double diffractive meson production at e^+e^- colliders (ILC), ultraperipheral events at LHC (Pomeron, Odderon)

QCD in the perturbative Regge limit

• Small values of α_S (perturbation theory applies due to hard scales) can be compensated by large $\ln s$ enhancements. \Rightarrow resummation of $\sum_n (\alpha_S \ln s)^n$ series (Balitski, Fadin, Kuraev, Lipatov)

- Higher order corrections to BFKL kernel are known at NLL order (Lipatov Fadin; Camici, Ciafaloni), now for arbitrary impact parameter $\alpha_S \sum_n (\alpha_S \ln s)^n$ resummation
- impact factors are known in some cases at NLL
 - $\gamma^* \rightarrow \gamma^*$ at t = 0 (Bartels, Colferai, Gieseke, Kyrieleis, Qiao)
 - forward jet production (Bartels, Colferai, Vacca)

• $\gamma_L^* \rightarrow \rho_L$ in the forward limit (Ivanov, Kotsky, Papa)

note: for exclusive processes, some transitions may start at twist3, for which almost nothing is known. The first computation of the $\gamma_T^* \rightarrow \rho_T$ twist 3 transition at LL has been performed only recently I. V. Anikin, D. Y. Ivanov, B. Pire, L. Szymanowski and S. W. Phys. Lett. B 688:154-167, 2010; Nucl. Phys. B 828:1-68, 2010.

Introduction	A full NLLx example: Mueller-Navelet jets	Practical implementation of the computation	Results
000000	0000000	0000000	0000000
	Navelet jets: Basics		

Mueller Navelet jets

- Consider two jets (hadron paquet within a narrow cone) separated by a large rapidity, i.e. each of them almost fly in the direction of the hadron "close" to it, and with very similar transverse momenta
- in a pure LO collinear treatment, these two jets should be emitted back to back at leading order: $\Delta \phi \pi = 0$ ($\Delta \phi = \phi_1 \phi_2 =$ relative azimutal angle) and $k_{\perp 1} = k_{\perp 2}$. There is no phase space for (untagged) emission between them

Introduction A fr

A full NLLx example: Mueller-Navelet jets ●●○○○○○○ Practical implementation of the computation

Results 0000000

Mueller-Navelet jets at LL fails

Mueller Navelet jets at LL BFKL

- in LL BFKL ($\sim \sum (\alpha_s \ln s)^n$), emission between these jets \longrightarrow strong decorrelation between the relative azimutal angle jets, incompatible with $p\bar{p}$ Tevatron collider data
- a collinear treatment at next-to-leading order (NLO) can describe the data
- important issue: non-conservation of energy-momentum along the BFKL ladder. A BFKL-based Monte Carlo combined with e-m conservation improves dramatically the situation (Orr and Stirling)

Introduction	A full NLLx example: Mueller-Navelet jets	Practical implementation of the computation	Results
000000	0000000	000000	000000
C			

Studies at LHC: Mueller-Navelet jets

Mueller Navelet jets at NLL BFKL

 $\mathbf{k},\mathbf{k}'=\mathsf{Euclidian}$ two dimensional vectors

Jet vertex:	jet algorithms		
000000	00000000	0000000	0000000
Introduction	A full NLLx example: Mueller-Navelet jets	Practical implementation of the computation	Results

Jet algorithms

- a jet algorithm should be IR safe, both for soft and collinear singularities
- the most common jet algorithm are:
 - k_t algorithms (IR safe but time consuming for multiple jets configurations)
 - cone algorithm (not IR safe in general; can be made IR safe at NLO: Ellis, Kunszt, Soper)

Introduction	A full NLLx example: Mueller-Navelet jets	Practical implementation of the computation	Results
000000	00000000	000000	0000000
Jet vertex:	jet algorithms		

Cone jet algorithm at NLO (Ellis, Kunszt, Soper)

- Should partons $(|\mathbf{p}_1|, \phi_1, y_1)$ and $(\mathbf{p}_2|, \phi_2, y_2)$ combined in a single jet? $|\mathbf{p}_i| = \text{transverse energy deposit in the calorimeter cell } i$ of parameter $\Omega = (y_i, \phi_i)$ in $y - \phi$ plane
- ullet define transverse energy of the jet: $p_J = |\mathbf{p}_1| + |\mathbf{p}_2|$

• jet axis:

$$\Omega_{c} \begin{cases} y_{J} = \frac{|\mathbf{p}_{1}| y_{1} + |\mathbf{p}_{2}| y_{2}}{p_{J}} \\ \phi_{J} = \frac{|\mathbf{p}_{1}| \phi_{1} + |\mathbf{p}_{2}| \phi_{2}}{p_{J}} \end{cases}$$

parton₁
$$(\Omega_1, |\mathbf{p}_1|)$$

cone axis (Ω_c) $\Omega = (y_i, \phi_i)$ in $y - \phi$ plane
parton₂ $(\Omega_2, |\mathbf{p}_2|)$

If distances $|\Omega_i - \Omega_c|^2 \equiv (y_i - y_c)^2 + (\phi_i - \phi_c)^2 < R^2$ (i = 1 and i = 2) \implies partons 1 and 2 are in the same cone Ω_c combined condition: $|\Omega_1 - \Omega_2| < \frac{|\mathbf{p}_1| + |\mathbf{p}_2|}{max(|\mathbf{p}_1|, |\mathbf{p}_2|)^2} R$

LL jet vertex and cone algorithm

 $\mathbf{k}, \mathbf{k}' = \mathsf{Euclidian}$ two dimensional vectors

NLL jet vertex and cone algorithm

a(3.cone) (1 / 1

1 /

 $\mathbf{k},\mathbf{k}'=\mathsf{Euclidian}$ two dimensional vectors

$$S_{J}^{(2)} \mapsto \gamma(\mathbf{k}', \mathbf{k} - \mathbf{k}', xz; x) =$$

$$K + \int_{J}^{2} \left(\mathbf{k}, x \right) \Theta \left(\left[\frac{|\mathbf{k} - \mathbf{k}'| + |\mathbf{k}'|}{\max(|\mathbf{k} - \mathbf{k}'|, |\mathbf{k}'|)} R_{\text{cone}} \right]^{2} - \left[\Delta y^{2} + \Delta \phi^{2} \right] \right)$$

$$K + \int_{J}^{2} \left(\mathbf{k}, x \right) \Theta \left(\left[\Delta y^{2} + \Delta \phi^{2} \right] - \left[\frac{|\mathbf{k} - \mathbf{k}'| + |\mathbf{k}'|}{\max(|\mathbf{k} - \mathbf{k}'|, |\mathbf{k}'|)} R_{\text{cone}} \right]^{2} \right)$$

$$K + \int_{J}^{2} \left(\mathbf{k} - \mathbf{k}', xz \right) \Theta \left(\left[\Delta y^{2} + \Delta \phi^{2} \right] - \left[\frac{|\mathbf{k} - \mathbf{k}'| + |\mathbf{k}'|}{\max(|\mathbf{k} - \mathbf{k}'|, |\mathbf{k}'|)} R_{\text{cone}} \right]^{2} \right)$$

$$K + \int_{J}^{2} \left(\mathbf{k}, x \right) \Theta \left(\left[\Delta y^{2} + \Delta \phi^{2} \right] - \left[\frac{|\mathbf{k} - \mathbf{k}'| + |\mathbf{k}'|}{\max(|\mathbf{k} - \mathbf{k}'|, |\mathbf{k}'|)} R_{\text{cone}} \right]^{2} \right)$$

$$K + \int_{J}^{2} \left(\mathbf{k}, xz \right) \Theta \left(\left[\Delta y^{2} + \Delta \phi^{2} \right] - \left[\frac{|\mathbf{k} - \mathbf{k}'| + |\mathbf{k}'|}{\max(|\mathbf{k} - \mathbf{k}'|, |\mathbf{k}'|)} R_{\text{cone}} \right]^{2} \right)$$

$$K + \int_{J}^{2} \left(\mathbf{k}, xz \right) \Theta \left(\left[\Delta y^{2} + \Delta \phi^{2} \right] - \left[\frac{|\mathbf{k} - \mathbf{k}'| + |\mathbf{k}'|}{\max(|\mathbf{k} - \mathbf{k}'|, |\mathbf{k}'|)} R_{\text{cone}} \right]^{2} \right)$$

$$K + \int_{J}^{2} \left(\mathbf{k}, xz \right) \Theta \left(\left[\Delta y^{2} + \Delta \phi^{2} \right] - \left[\frac{|\mathbf{k} - \mathbf{k}'| + |\mathbf{k}'|}{\max(|\mathbf{k} - \mathbf{k}'|, |\mathbf{k}'|)} R_{\text{cone}} \right]^{2} \right)$$

$$K + \int_{J}^{2} \left(\mathbf{k}, xz \right) \Theta \left(\left[\Delta y^{2} + \Delta \phi^{2} \right] - \left[\frac{|\mathbf{k} - \mathbf{k}'| + |\mathbf{k}'|}{\max(|\mathbf{k} - \mathbf{k}'|, |\mathbf{k}'|)} R_{\text{cone}} \right]^{2} \right)$$

Introduction	A full NLLx example: Mueller-Navelet jets	Practical implementation of the computation	Results
000000	0000000	000000	0000000
Mueller-Na	velet jets at NLL and finitene	SS	

Using a IR safe jet algorithm, Mueller-Navelet jets at NLL are finite

- UV sector:
 - ullet the NLL impact factor contains UV divergencies $1/\epsilon$
 - they are absorbed by the renormalization of the coupling: $\alpha_S \longrightarrow \alpha_S(\mu_R)$
- IR sector:
 - PDF have IR collinear singularities: pole $1/\epsilon$ at LO
 - these collinear singularities can be compensated by collinear singularities of the two jets vertices and the real part of the BFKL kernel
 - the remaining collinear singularities compensate exactly among themselves
 - soft singularities of the real and virtual BFKL kernel, and of the jets vertices compensates among themselves

This was shown for both quark and gluon initiated vertices (Bartels, Colferai, Vacca)

Introduction 000000	A full NLLx example: Mueller-Na 000000000	velet jets Practical implementation of the computa •••••••	tion Results 0000000
Master fo	ormulas		
	k_T -factoriz	ed differential cross-section	
		$\frac{\mathrm{d}\sigma}{\mathrm{d} \mathbf{k}_{J,1} \mathrm{d} \mathbf{k}_{J,2} \mathrm{d}y_{J,1}\mathrm{d}y_{J,2}} = \int \mathrm{d}\phi_{J,1}\mathrm{d}\phi_{J,2}$	$_{J,2}\int\mathrm{d}^{2}\mathbf{k}_{1}\mathrm{d}^{2}\mathbf{k}_{2}$
	x_1 $\mathbf{k}_{J,1}, \phi_{J,1}, x_{J,1}$	$\times \Phi(\mathbf{k}_{J,1}, x_{J,1}, -\mathbf{k}_1)$	
	20000 20000	$ imes G({f k}_1,{f k}_2,\hat{s})$	

 $imes \Phi(\mathbf{k}_{J,2}, x_{J,2}, \mathbf{k}_2)$

00000

 k_2, ϕ_2

 $\mathbf{k}_{J\!,2}, \phi_{J\!,2}, x_{J\!,2}$

with $\Phi(\mathbf{k}_{J,2}, x_{J,2}, \mathbf{k}_2) = \int \mathrm{d}x_2 f(x_2) V(\mathbf{k}_2, x_2)$ $f \equiv \mathsf{PDF}_{\mathsf{CD}} x_J = \frac{|\mathbf{k}_J|}{\sqrt{s}} e^{y_J} z_{\mathsf{CD}} z_{\mathsf{CD}} e^{y_J} z_{\mathsf{CD}} z_{\mathsf{CD}} e^{y_J} z_{\mathsf{CD}} z_{\mathsf{CD}} z_{\mathsf{CD}} e^{y_J} z_{\mathsf{CD}} z_{\mathsf{$

Introduction	A full NLLx example:	Mueller-Navelet jets	Practical implementation of the computation	Result
000000	000000000		000000	0000
Master forr	nulas			

Angular coefficients

$$\mathcal{C}_{\boldsymbol{m}} \equiv \int \mathrm{d}\phi_{J,1} \,\mathrm{d}\phi_{J,2} \,\cos\left(\boldsymbol{m}(\phi_{J,1} - \phi_{J,2} - \pi)\right)$$
$$\times \int \mathrm{d}^2 \mathbf{k}_1 \,\mathrm{d}^2 \mathbf{k}_2 \,\Phi(\mathbf{k}_{J,1}, x_{J,1}, -\mathbf{k}_1) \,G(\mathbf{k}_1, \mathbf{k}_2, \hat{s}) \,\Phi(\mathbf{k}_{J,2}, x_{J,2}, \mathbf{k}_2).$$

• $m = 0 \implies$ cross-section

$$\frac{\mathrm{d}\sigma}{\mathrm{d}|\mathbf{k}_{J,1}|\,\mathrm{d}|\mathbf{k}_{J,2}|\,\mathrm{d}y_{J,1}\,\mathrm{d}y_{J,2}} = \mathcal{C}_0$$

• $m > 0 \implies$ azimutal decorrelation

$$\langle \cos(m\varphi) \rangle \equiv \langle \cos\left(m(\phi_{J,1}-\phi_{J,2}-\pi)\right) \rangle = rac{\mathcal{C}_m}{\mathcal{C}_0}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Introduction	A full NLLx example: Mueller-Navelet jets
000000	00000000

Practical implementation of the computation

Results 0000000

Master formulas in conformal variables

Rely on LL BFKL eigenfunctions

- LL BFKL eigenfunctions: $E_{n,\nu}(\mathbf{k}_1) = \frac{1}{\pi\sqrt{2}} \left(\mathbf{k}_1^2\right)^{i\nu \frac{1}{2}} e^{in\phi_1}$
- ullet decompose Φ on this basis
- use the known LL eigenvalue of the BFKL equation on this basis:

 $\omega(n,\nu) = \bar{\alpha}_s \chi_0\left(|n|, \frac{1}{2} + i\nu\right)$

with $\chi_0(n,\gamma)=2\Psi(1)-\Psi\left(\gamma+\frac{n}{2}\right)-\Psi\left(1-\gamma+\frac{n}{2}\right)$

$$(\Psi(x) = \Gamma'(x)/\Gamma(x), \, \bar{lpha}_s = N_c lpha_s/\pi)$$

 $\bullet \implies$ master formula:

$$\mathcal{C}_m = (4 - 3\,\delta_{m,0}) \int d\nu \, C_{m,\nu}(|\mathbf{k}_{J,1}|, x_{J,1}) \, C^*_{m,\nu}(|\mathbf{k}_{J,2}|, x_{J,2}) \left(\frac{\hat{s}}{s_0}\right)^{\omega(m,\nu)}$$

with

$$C_{m,\nu}(|\mathbf{k}_J|, x_J) = \int \mathrm{d}\phi_J \,\mathrm{d}^2\mathbf{k} \,\mathrm{d}x \,f(x)V(\mathbf{k}, x)E_{m,\nu}(\mathbf{k})\cos(m\phi_J)$$

• at NLL, same master formula: just change $\omega(m,
u)$ and V

Introduction	A full NLLx example:	Mueller-Navelet jets
000000	00000000	

Practical implementation of the computation ○○●○○○

BFKL Green's function at NLL

NLL Green's function: rely on LL BFKL eigenfunctions

- NLL BFKLkernel is not conformal invariant
- LL $E_{n,\nu}$ are not anymore eigenfunction
- this can be overcome by considering the eigenvalue as an operator with a part containing $\frac{\partial}{\partial \nu}$
- it acts on the impact factor

$$\omega(n,\nu) = \bar{\alpha}_s \chi_0 \left(|n|, \frac{1}{2} + i\nu \right) + \bar{\alpha}_s^2 \left[\chi_1 \left(|n|, \frac{1}{2} + i\nu \right) - \frac{\pi b_0}{2N_c} \chi_0 \left(|n|, \frac{1}{2} + i\nu \right) \left\{ -2\ln\mu_R^2 - i\frac{\partial}{\partial\nu} \ln \frac{C_{n,\nu}(|\mathbf{k}_{J,1}|, x_{J,1})}{C_{n,\nu}(|\mathbf{k}_{J,2}|, x_{J,2})} \right\} \right],$$

$$2\ln \frac{|\mathbf{k}_{J,1}| \cdot |\mathbf{k}_{J,2}|}{\mu_R^2}$$

Introduction	A full NLLx example:	Mueller-Navelet jets
000000	00000000	

Practical implementation of the computation 0000000

Results

LL substraction and s_0

- one sums up $\sum (\alpha_s \ln \hat{s}/s_0)^n + \alpha_s \sum (\alpha_s \ln \hat{s}/s_0)^n$ $(\hat{s} = x_1 x_2 s)$
- at LL s₀ is arbitrary
- natural choice: $s_0 = \sqrt{s_{0,1} s_{0,2}} s_{0,i}$ for each of the scattering objects
 - possible choice: $s_{0,i} = (|\mathbf{k}_{I}| + |\mathbf{k}_{I} \mathbf{k}|)^{2}$ (Bartels, Colferai, Vacca)
 - but depend on k, which is integrated over
 - ŝ is not an external scale (x_{1,2} are integrated over)
 - we prefer

$$s_{0,1} = (|\mathbf{k}_{J,1}| + |\mathbf{k}_{J,1} - \mathbf{k}_{1}|)^{2} \rightarrow s_{0,1}' = \frac{x_{1}^{2}}{x_{J,1}^{2}} \mathbf{k}_{J,1}^{2} \\ s_{0,2} = (|\mathbf{k}_{J,2}| + |\mathbf{k}_{J,2} - \mathbf{k}_{2}|)^{2} \rightarrow s_{0,2}' = \frac{x_{2}^{2}}{x_{J,2}^{2}} \mathbf{k}_{J,2}^{2} \\ \end{array} \right\} \quad \stackrel{\hat{s}}{=} e^{y_{J,1} - y_{J,2}} = e^{Y}$$

• $s_0 \rightarrow s'_0$ affects the BFKL NLL Green function the impact factors:

$$\Phi_{\rm NLL}(\mathbf{k}_i; s'_{0,i}) = \Phi_{\rm NLL}(\mathbf{k}_i; s_{0,i}) + \int d^2 \mathbf{k}' \, \Phi_{\rm LL}(\mathbf{k}'_i) \, \mathcal{K}_{\rm LL}(\mathbf{k}'_i, \mathbf{k}_i) \frac{1}{2} \ln \frac{s'_{0,i}}{s_{0,i}} \tag{1}$$

- numerical stabilities (non azimuthal averaging of LL substraction) improved with the choice $s_{0,i} = (\mathbf{k}_i - 2\mathbf{k}_{J,i})^2$ (then replaced by $s'_{0,i}$ after numerical integration) (□) (@) (E) (E) E
- (1) can be used to test $s_0 \rightarrow \lambda s_0$ dependence

Introduction	A full NLLx example: Mueller-Navelet jets	Practical implementation of the computation	Results		
000000	00000000	0000000	0000000		
Collinear improvement at NLL					

Collinear improved Green's function at NLL

- one may improve the NLL BFKLkernel for n=0 by imposing its compatibility with DGLAP in the collinear limit Salam; Ciafaloni, Colferai
- ullet usual (anti)collinear poles in $\gamma=1/2+i
 u$ (resp. $1-\gamma)$ are shifted by $\omega/2$
- one practical implementation:

• the new kernel $\bar{\alpha}_s \chi^{(1)}(\gamma, \omega)$ with shifted poles replaces $\bar{\alpha}_s \chi_0(\gamma, 0) + \bar{\alpha}_s^2 \chi_1(\gamma, 0)$

• $\omega(0,\nu)$ is obtained by solving the implicit equation

$$\omega(0,\nu) = \bar{\alpha}_s \chi^{(1)}(\gamma,\omega(0,\nu))$$

for $\omega(n,\nu)$ numerically.

• there is no need for any jet vertex improvement because of the absence of γ and $1 - \gamma$ poles (numerical proof using Cauchy theorem "backward")

Introduction	A full NLLx example: Mueller-Navelet jets	Practical implementation of the computation	Result
000000	00000000	000000	0000
Numerical	implementation		

In practice

- MSTW 2008 PDFs (available as Mathematica packages)
- $\mu_R = \mu_F$ (this is imposed by the MSTW 2008 PDFs)
- two-loop running coupling $lpha_s(\mu_R^2)$
- We use a ν grid (with a dense sampling around 0)
- all numerical calculations are done in Mathematica
- \bullet we use Cuba integration routines (in practice Vegas): precision 10^{-2} for 500.000 max points per integration
- mapping $|\mathbf{k}| = |\mathbf{k}_J| \tan(\xi \pi/2)$ for \mathbf{k} integrations $\Rightarrow [0, \infty[\rightarrow [0, 1]]$
- although formally the results should be finite, it requires a special grouping of the integrand in order to get stable results

 \implies 14 minimal stable basic blocks to be evaluated numerically

The effect of NLL vertex correction is very sizeable, comparable with NLL Green's function effects \neg

Cross-section: stability with respect to $\mu_R = \mu_F$ and s_0 changes

pure LL LL vertices + improved collinear NLL Green's function NLL vertices + NLL Green's function NLL vertices + improved collinear NLL Green's function

Cross-section: PDF and Monte Carlo errors

pure LL LL vertices + improved collinear NLL Green's function NLL vertices + NLL Green's function NLL vertices + improved collinear NLL Green's function

Relative effect of the PDF errors

Relative effect of the Monte Carlo errors

Practical implementation of the computation 0000000

Results: symmetric configuration $(|\mathbf{k}_{J,1}| = |\mathbf{k}_{J,2}| = 35 \,\text{GeV})$

Azimuthal correlation

 $\bullet~LL \rightarrow NLL$ vertices change results dramatically

• At NLL, the decorrelation is very close to LL DGLAP type of Monte Carlo

Practical implementation of the computation

Results: symmetric configuration $(|\mathbf{k}_{J,1}| = |\mathbf{k}_{J,2}| = 35 \,\text{GeV})$

Azimuthal correlation: dependency with respect to $\mu_R = \mu_F$ and s_0 changes

Effect of changing $\mu_R = \mu_F$ by factors 2 (thick) and 1/2 (thin)

Effect of changing $\sqrt{s_0}$ by factors 2 (thick) and 1/2 (thin)

- $\langle \cos \varphi
 angle$ is still rather $\mu_R = \mu_F$ and s_0 dependent
- collinear resummation can lead to $\langle \cos \varphi
 angle > 1(!)$ for small $\mu_R = \mu_F$
- based on NLL double-p production (Ivanov, Papa) one can expect that small scales are disfavored (Caporale, Papa, Sabio Vera)

Results

Motivation	for asymmetric configuration	S	
000000	00000000	000000	0000000
Introduction	A full NLLx example: Mueller-Navelet jets	Practical implementation of the computation	Results

• Initial state radiation (unseen) produces divergencies if one touches the collinear singularity $\mathbf{q}^2 \to 0$

- they are compensated by virtual corrections
- this compensation is in practice difficult to implement when for some reason this additional emission is in a "corner" of the phase space (dip in the differential cross-section)
- \bullet this is the case when $\mathbf{p}_1+\mathbf{p}_2 \rightarrow 0$
- this calls for a resummation of large remaing logs \Rightarrow Sudakov resummation

- since these resummation have never been investigated in this context, one should better avoid that region
- note that for BFKL, due to additional emission between the two jets, one may expect a less severe problem (at least a smearing in the dip region |p₁| ~ |p₂|)

- this may however not mean that the region $|\mathbf{p}_1| \sim |\mathbf{p}_2|$ is perfectly trustable even in a BFKL type of treatment
- we now investigate a region where NLL DGLAP is under control

Azimuthal correlation: $\langle \cos \varphi \rangle$

Both NLL and improved NLL results are almost flat in Y

• no significant difference between NLL BFKL and NLO DGLAP

Same conclusions:

- ullet Both NLL and improved NLL results are almost flat in Y
- no significant difference between NLL BFKL and NLO DGLAP

Azimuthal correlation: dependency with respect to $\mu_R = \mu_F$ and s_0 changes

pure LL LL vertices + imp. collinear NLL Green's fn. NLL vertices + NLL Green's fn. NLL vertices + imp. collinear NLL Green's fn.

Effect of changing $\mu_R = \mu_F$ by factors 2 (thick) and 1/2 (thin)

Effect of changing $\sqrt{s_0}$ by factors 2 (thick) and 1/2 (thin) Again:

- $\langle \cos \varphi \rangle$ is still rather $\mu_R = \mu_F$ and s_0 dependent
- $\bullet\,$ collinear resummation can lead to $\langle \cos \varphi \rangle > 1 (!)$ for small $\mu_R = \mu_F$

Ratio of azimuthal correlations $\langle \cos 2\varphi \rangle / \langle \cos \varphi \rangle$

This is the only observable which might still differ noticeably between NLL BFKL and NLO DGLAP scenarii

Introduction	A full NLLx example:	Mueller-Navelet jets
000000	00000000	

Practical implementation of the computation 0000000

Results

Conclusion

- We have performed for the first time a complete NLL analysis of Mueller-Navelet jets
- the correction due to NLL jets corrections have a dramatic effect, similar to the NLL Green function corrections
- for the cross-section:
 - it makes the prediction much more stable with respect to variation of parameters (factorization scale, scale s_0 entering the rapidity definition, Parton Distribution Functions)
 - it is close to NLO DGLAP (although surprisingly a bit below!)
- the decorrelation effect is very small:
 - it is very close to NLO DGLAP
 - ${\scriptstyle \bullet}\,$ it is very flat in rapidity Y
 - it is still rather dependent on these parameters
- pure NLL BFKL and collinear improved NLL BFKL leads to similar results
- collinear improved NLL BFKL faces some puzzling behaviour for the azimuthal correlation
- except for $\langle \cos 2\varphi \rangle / \langle \cos \varphi \rangle$, there is almost no difference between NLL BFKL and NLO DGLAP based observables
- Mueller Navelet jets are thus probably not such a conclusive observable to see the perturbative Regge effect of QCD
- to compare with data, a serious study of Sudakov type of effects is still missing, both in DGLAP and BFKL approaches < □ > <