Contenu partonique

Factorisation

Les distributions généralisées de partons 000000 Un nouvel accès aux GPD

Accès aux distributions généralisées de partons via de nouvelles observables

Laboratoire de Physique des 2 Infinis Samuel Wallon

Laboratoire de Physique des 2 Infinis Irène Joliot-Curie

CNRS / Université Paris Saclay

Orsay

et

Sorbonne Université

Café Théorie

19 juin 2020

IJCLab

en collaboration avec:

B. Pire (CPhT, Palaiseau), R. Boussarie (BNL, Brookhaven),

L. Szymanowski (NCBJ, Warsaw), G. Duplančić, K. Passek-Kumerički (IRB, Zagreb)

Contenu partonique	Factorisation	Les distributions généralisées de partons	Un nouvel accès aux GPD
00000	000000	000000	0000
L'interaction for La liberté asymptotique	te P		

Liberté asymptotique et confinement

couplage $\alpha_s(Q) \ll 1$ (Q = énergie typique) pour $Q \gg \Lambda_{QCD} \simeq 200 \ MeV$ soit distance $\sim 1/Q \ll 1$ fm

Contenu partonique	Factorisation	Les distributions généralisées de partons	Un nouvel accès aux GPD
00000	000000	000000	0000
Contenu partonio Sondes électromagnétiq	ue: quarks, g	uons	

Voir l'intérieur d'un proton avec une sonde électromagnétique

les détails visibles sont directement reliés à la longueur d'onde de la sonde utilisée

Contenu partonique	Factorisation	Les distributions généralisées de partons	Un nouvel accès aux GPD
00000	0000000	000000	0000
Le contenu en qu	iark et gluon o	du proton	

Retour sur l'expérience historique: DIS

La diffusion profondément inélastique

 $s_{\gamma^* p} = (q_{\gamma}^* + p_p)^2 = 4 E_{\text{c.m.}}^2$ $Q^2 \equiv -q_{\gamma^*}^2 > 0$ $x_B = \frac{Q^2}{2 p_p \cdot q_{\gamma}^*} \simeq \frac{Q^2}{s_{\gamma^* p}}$

modèle de Bjorken-Feynman 1969

• x_B = fraction de l'énergie-impulsion du proton transportée par le quark • 1/Q = résolution transverse de la sonde électromagnétique $\ll 1/\Lambda_{QCD}$

Les différents régimes gouvernant le contenu perturbatif du proton

Accéder aux distributions multidimensionnelles en quark et gluons pour les hadrons? Information 5-dimensionnelle

Que faire avec QCD?

```
exemple: diffusion Compton
source de \gamma^* = faisceau d'e^{\pm}, de \mu^-
```


• Objectif: décrire M (amplitude de diffusion) en séparant:

- des quantités non-calculables perturbativement $lpha_s \sim 1$
 - discrétisation de QCD sur un réseau 4-d: simulations numériques
 - correspondance AdS/QCD
- ullet des quantités calculables perturbativement $lpha_s\ll 1$

Contenu partonique	Factorisation	Les distributions généralisées de partons	Un nouvel accès aux GPD
	000000		
Les outils théoriq Factorisation courte dist	UES tance/longue distan	ce	

Factorisation

- Objectif: réduire le processus à l'interaction d'un petit nombre de *partons* (quarks, gluons), malgré le confinement
- Ceci est possible si le processus est gouverné par des phénomènes à courte distance (d ≪ 1 fm)
 ⇒ α_s ≪ 1 : méthodes perturbatives
- Il faut pour cela heurter un hadron suffisamment violemment

Exemple: facteur de forme du proton (collision élastique $e^-p \rightarrow e^-p$

 τ interaction électromagnétique $\sim \tau$ temps de vie du parton après l'interaction $\ll \tau$ temps caractéristique de l'interaction forte

on parle alors de processus dur.

Contenu partonique	Factorisation	Les distributions généralisées de partons	Un nouvel accès aux GPD	
	000000			
Les outils théoriques Factorisation courte distance/longue distance				
		Eactorisation		

Factorisation

- Il faut pour cela une échelle dure:
 - Virtualité de la sonde électromagnétique
 - diffusion élastique $e^{\pm} \; p \to e^{\pm} \; p$
 - diffusion profondément inélastique (DIS) $e^\pm \, p \to e^\pm \, X$
 - diffusion Compton virtuelle (DVCS) $e^{\pm} p \rightarrow e^{\pm} p \gamma$
 - diffusion profondément inélastique semi-inclusive (SIDIS)

$$e^{\pm} p \rightarrow e^{\pm}$$
 hadron $p X$

- Energie totale dans le centre de masse en annihilation $e^+e^- \to X$
- Production d'un méson lourd
- amplitude = convolution du contenu partonique du hadron avec une amplitude perturbative

HERA (H1, ZEUS, HERMES), JLab, COMPASS ... LHC ... EIC

000000	Factorisation 00000€0	Les distributions generalisees de partons	OOOO		
Factorisation Factorisation collinéaire: exemple de l'électroproduction d'un méson					

 Γ , Γ' : matrices de Dirac compatibles avec les nombres quantiques: C, P, T, chiralité

Structure similaire pour un échange gluonique

Contenu partonique	Factorisation	Les distributions généralisées de partons	Un nouvel accès aux GPD
000000	000000	00000	0000
Les GPD Interprétation physique			

Interprétation physique des GPD

Emission et réabsorption d'un antiquark ~ PDFs pour des antiquarks region DGLAP-II Emission d'un quark et émission d'un antiquark ~ échange d'un méson région ERBL Emission et réabsorption d'un quark ~ PDFs d'un quarks région DGLAP-I

Contenu partonique	Factorisation	Les distributions généralisées de partons	Un nouvel accès aux GPD
000000	000000	00000	0000
Les GPD les GPD de twist 2			

Classification des GPD de twist 2 (quarks)

- Pour les quarks, il faut distinguer les échanges
 - sans flip d'hélicité (matrices Γ' chirales-paires): 4 GPD chiral-paires:

$$\begin{split} & H^{q} \xrightarrow{\xi=0,t=0} \mathsf{PDF}\; q, \, E^{q}, \, \tilde{H}^{q} \xrightarrow{\xi=0,t=0} \mathsf{PDF}\; \mathsf{polarisées}\; \Delta q, \, \tilde{E}^{q} \\ & F^{q} = \frac{1}{2} \int \frac{dz^{+}}{2\pi} \, e^{ixP^{-}z^{+}} \left\langle p' \right| \bar{q}(-\frac{1}{2}z) \, \gamma^{-}q(\frac{1}{2}z) \left| p \right\rangle \Big|_{z^{-}=0, \, z_{\perp}=0} \\ & = \frac{1}{2P^{-}} \left[H^{q}(x,\xi,t) \, \bar{u}(p')\gamma^{-}u(p) + E^{q}(x,\xi,t) \, \bar{u}(p') \frac{i \, \sigma^{-\alpha} \Delta_{\alpha}}{2m} u(p) \right], \\ & \tilde{F}^{q} = \frac{1}{2} \int \frac{dz^{+}}{2\pi} \, e^{ixP^{-}z^{+}} \left\langle p' \right| \bar{q}(-\frac{1}{2}z) \, \gamma^{-}\gamma_{5} \, q(\frac{1}{2}z) \left| p \right\rangle \Big|_{z^{-}=0, \, z_{\perp}=0} \\ & = \frac{1}{2P^{-}} \left[\tilde{H}^{q}(x,\xi,t) \, \bar{u}(p')\gamma^{-}\gamma_{5}u(p) + \tilde{E}^{q}(x,\xi,t) \, \bar{u}(p') \frac{\gamma_{5} \, \Delta^{-}}{2m} u(p) \right]. \end{split}$$

$$\begin{array}{l} H_T^q \xrightarrow{\xi=0,t=0} \text{PDF quark de transversite} \quad \Delta_T q, \ E_T^q, \ \tilde{H}_T^q, \ \tilde{E}_T^q \\ \frac{1}{2} \int \frac{dz^+}{2\pi} e^{ixP^-z^+} \langle p' | \ \bar{q}(-\frac{1}{2}z) \ i \ \sigma^{-i} \ q(\frac{1}{2}z) \ | p \rangle \Big|_{z^-=0, \ z_\perp=0} \\ = \frac{1}{2P^-} \overline{u}(p') \left[H_T^q \ i \ \sigma^{-i} + \ \tilde{H}_T^q \ \frac{P^-\Delta^i - \Delta^-P^i}{m^2} + E_T^q \ \frac{\gamma^-\Delta^i - \Delta^-\gamma^i}{2m} + \ \tilde{E}_T^q \ \frac{\gamma^-P^i - P^-\gamma^i}{m_{16/24}} \right]$$

a succ flip d'hélicité (mat Γ' chirales impaires): 4 CPDs chirales impaires:

Contenu partonique	Factorisation	Les distributions généralisées de partons	Un nouvel accès aux GPD
000000	000000	00000	0000
Les GPD les GPD de twist 2			

Classification des GPD de twist 2 (gluons)

- de même, pour les gluons:
 - 4 GPD gloniques sans flip d'hélicité:

$$\begin{array}{l} H^g \xrightarrow{\xi=0,t=0} \mathsf{PDF} \ x \ g \\ E^g \\ \tilde{H}^g \xrightarrow{\xi=0,t=0} \mathsf{PDF} \ \mathsf{polarisée} \ x \ \Delta g \end{array}$$

• 4 GPD gluoniques avec flip d'hélicité:

 $\begin{array}{c} H_T^g \\ E_T^g \\ \tilde{H}_T^g \\ \tilde{E}_T^g \end{array}$

(pas de limite vers l'avant se réduisant aux PDF gluoniques ici: un changement d'hélicité de 2 unités ne peut être compensé par une cible de spin 1/2)

- test de la factorisation (et de l'universalité des distributions non perturbatives)
- complémentarité des processus afin d'extraire les GPD
- nécessité de contrôler les corrections radiatives (NLO) et les corrections en puissance (ex: DVMP en π^0)
- le secteur de la transversité est particulièrement difficile d'accès
- l'extension aux noyaux est très prometteuse
- il est essentiel d'étendre le domaine cinématique: en ξ , en t, en Q^2 : JLab, COMPASS, ... LHC en UPC, EIC

• contenu en spin transverse du proton:

- Les observables sensibles au renversement d'hélicité donnent donc accès à la transversité $\Delta_T q(x)$. Très mal connu expérimentalement.
- Les GPDs de transversité sont quasi inconnues expérimentalement.

- Pour des (anti)particles sans masse, chiralité = (-)hélicité
- Donc transversité = quantité chirale impaire
- QCD et QED conservent (dans la limite de masse nulle) la chiralité (γ^μ, γ^μγ⁵). Les quantités impaires sous la chiralité (1, γ⁵, [γ^μ, γ^ν]) que l'on souhaite mesurer doivent donc apparaître par paires

- Comment accéder aux GPD de transversité?
- la DA dominante du ρ_T est de twist 2 et chiral impaire (couplage $[\gamma^{\mu}, \gamma^{\nu}]$)
- malheureusement $\gamma^* N \to \rho_T N' = 0$
 - annulation valable à tous les ordres: transfert impossible de 2 unités d'hélicité de la part du photon.

 argument diagrammatique à l'ordre Born:

 $\gamma^{\alpha}[\gamma^{\mu},\gamma^{\nu}]\gamma_{\alpha}\to 0$

[Diehl, Gousset, Pire], [Collins, Diehl]

Passer de 2 à 3 particules dans l'état final pour accéder aux GPDs

• Processus actuellement utilisés pour accéder aux GPDs JLab@12GeV, COMPASS-II

Une nouvelle classe de processus pour accéder aux GPDs de chiralité paire

Processus avec 3 particules dans l'état final: un accès aux GPD de chiralité paire

- Test d'universalité de la factorisation colinéaire
- Nouvelle ensemble d'observables pour extraire les GPD
- Très prometteur à JLab@12 GeV: $6 \, 10^4 \rho_L$ pour 100 jours ($\mathcal{L} = 100 \, \mathrm{nb^{-1}s^{-1}}$)

Une nouvelle classe de processus pour accéder aux GPDs de chiralité impaire

Processus avec 3 particules dans l'état final: un accès aux GPD de chiralité impaire

- GPD de chiralité **impaire** (au twist 2)
- Accès à la transversité de spin
- Très prometteur à JLab@12 GeV: $8 \, 10^3 \rho_{\rm T}$ pour 100 jours ($\mathcal{L} = 100 \, {\rm nb}^{-1} {\rm s}^{-1}$)

Processus avec 3 particules dans l'état final: projets

- asymétries de polarisation (γ initial et/ou cible)
- phénoménologie: JLab@12GeV, LHC en UPC et EIC
- contributions gluoniques

