Mueller Navelet jets at LHC: A pure (NLL) BFKL scenario? ... What else? DGLAP? MPI?

Samuel Wallon

Université Pierre et Marie Curie and Laboratoire de Physique Théorique CNRS / Université Paris Sud Orsay

MPI@TAU

Tel Aviv, October 17th 2012

in collaboration with

B. Ducloué (LPT), D. Colferai (Firenze), F. Schwennsen (DESY),

L. Szymanowski (SINS, Varsaw)

D. Colferai; F. Schwennsen, L. Szymanowski, S.W. JHEP 1012:026 (2010) 1-72 [arXiv:1002.1365 [hep-ph]] B. Ducloué, L. Szymanowski, S.W., in preparation

Introduction	MN jets at full NLL×	Practical implementation	Results	MN jets within MPI
00000	000	0000000	00000000000	00000000000000
Motivations				

- One of the important longstanding theoretical questions raised by QCD is its behaviour in the perturbative Regge limit $s\gg -t$
- Based on theoretical grounds, one should identify and test suitable observables in order to test this peculiar dynamics

hard scales: $M_1^2, M_2^2 \gg \Lambda_{QCD}^2$ or $M_1'^2, M_2'^2 \gg \Lambda_{QCD}^2$ or $t \gg \Lambda_{QCD}^2$ where the *t*-channel exchanged state is the so-called hard Pomeron

What kind of observable?

- perturbation theory should be applicable: selecting external or internal probes with transverse sizes $\ll 1/\Lambda_{QCD}$ (hard γ^* , heavy meson $(J/\Psi, \Upsilon)$, energetic forward jets) or by choosing large t in order to provide the hard scale.
- governed by the *"soft"* perturbative dynamics of QCD

and not by its collinear dynamics
$$m = 0$$

 $g \neq 0$
 $m = 0$

 \implies select semi-hard processes with $s\gg p_{T\,i}^2\gg \Lambda_{QCD}^2$ where $p_{T\,i}^2$ are typical transverse scale, all of the same order.

Some examples of processes

- inclusive: DIS (HERA), diffractive DIS, total $\gamma^*\gamma^*$ cross-section (LEP, ILC)
- semi-inclusive: forward jet and π^0 production in DIS, Mueller-Navelet double jets, diffractive double jets, high p_T central jet, in hadron-hadron colliders (Tevatron, LHC)
- exclusive: exclusive meson production in DIS, double diffractive meson production at e^+e^- colliders (ILC), ultraperipheral events at LHC (Pomeron, Odderon)

QCD in the perturbative Regge limit

• Small values of α_S (perturbation theory applies due to hard scales) can be compensated by large $\ln s$ enhancements. \Rightarrow resummation of $\sum_n (\alpha_S \ln s)^n$ series (Balitski, Fadin, Kuraev, Lipatov)

Introduction	MN jets at full NLLx	Practical implementation	Results	MN jets within MPI
000000	000	0000000	00000000	0000000000000000000000
higher orde	er corrections			

- Higher order corrections to BFKL kernel are known at NLL order (Lipatov Fadin; Camici, Ciafaloni), now for arbitrary impact parameter $\alpha_S \sum_n (\alpha_S \ln s)^n$ resummation
- impact factors are known in some cases at NLL
 - $\gamma^* \to \gamma^*$ at t=0 (Bartels, Colferai, Gieseke, Kyrieleis, Qiao; Balitski, Chirilli)
 - forward jet production (Bartels, Colferai, Vacca)
 - $\gamma_L^*
 ightarrow
 ho_L$ in the forward limit (Ivanov, Kotsky, Papa)

note: for exclusive processes, some transitions may start at twist 3, for which almost nothing is known

- The first computation of the $\gamma_T^*\to\rho_T$ twist 3 transition at LL has been performed only recently
 - I. V. Anikin, D. Y. Ivanov, B. Pire, L. Szymanowski and S. W.
 - Phys. Lett. B 688:154-167, 2010; Nucl. Phys. B 828:1-68, 2010.
- $\bullet\,$ successfull phenomenological application to H1 and ZEUS data for $\rho-{\rm meson}\,$ electroproduction
 - I. V. Anikin, A. Besse, D. Y. Ivanov, B. Pire, L. Szymanowski and S. W. Phys. Rev. D 84 (2011) 054004
- first dipole model suitable to saturation effects studies at twist 3 A. Besse, L. Szymanowski and S. W. arXiv :1204.2281 [hep-ph]

Mueller Navelet jets

- Consider two jets (hadron paquet within a narrow cone) separated by a large rapidity, i.e. each of them almost fly in the direction of the hadron "close" to it, and with very similar transverse momenta
- in a pure LO collinear treatment, these two jets should be emitted back to back at leading order: $\Delta \phi \pi = 0$ ($\Delta \phi = \phi_1 \phi_2 =$ relative azimutal angle) and $k_{\perp 1} = k_{\perp 2}$. There is no phase space for (untagged) emission between them

Mueller Navelet jets at LL BFKL

- in LL BFKL ($\sim \sum (\alpha_s \ln s)^n$), emission between these jets \longrightarrow strong decorrelation between the relative azimutal angle jets, incompatible with $p\bar{p}$ Tevatron collider data
- a collinear treatment at next-to-leading order (NLO) can describe the data
- important issue: non-conservation of energy-momentum along the BFKL ladder.
 A LL BFKL-based Monte Carlo combined with e-m conservation improves dramatically the situation (Orr and Stirling)

Mueller Navelet jets at NLL BFKL

 $\times G(\mathbf{k}_1, \mathbf{k}_2, \hat{s})$

MAN

0000 0000

 $\mathbf{k}_{J,2}, \phi_{J,2}, x_{J,2}$

 k_2, ϕ_2

 $\times \Phi(\mathbf{k}_{J,2}, x_{J,2}, \mathbf{k}_2)$

with $\Phi(\mathbf{k}_{J,2}, x_{J,2}, \mathbf{k}_2) = \int dx_2 f(x_2) V(\mathbf{k}_2, x_2)$ $f \equiv \mathsf{PDF}$ $x_J = \frac{|\mathbf{k}_J|}{\sqrt{s}} e^{y_J}$

Introduction	MN jets at full NLLx	Practical implementation	Results	MN jets within MPI
000000	000	000000	0000000000000000	000000000000000000000000000000000000000
Master formu	las			

Angular coefficients

$$\mathcal{C}_{\boldsymbol{m}} \equiv \int \mathrm{d}\phi_{J,1} \,\mathrm{d}\phi_{J,2} \,\cos\left(\boldsymbol{m}(\phi_{J,1} - \phi_{J,2} - \pi)\right)$$
$$\times \int \mathrm{d}^{2}\mathbf{k}_{1} \,\mathrm{d}^{2}\mathbf{k}_{2} \,\Phi(\mathbf{k}_{J,1}, x_{J,1}, -\mathbf{k}_{1}) \,G(\mathbf{k}_{1}, \mathbf{k}_{2}, \hat{s}) \,\Phi(\mathbf{k}_{J,2}, x_{J,2}, \mathbf{k}_{2}).$$

• $m = 0 \implies$ cross-section

$$\frac{\mathrm{d}\sigma}{\mathrm{d}|\mathbf{k}_{J,1}|\,\mathrm{d}|\mathbf{k}_{J,2}|\,\mathrm{d}y_{J,1}\,\mathrm{d}y_{J,2}} = \mathcal{C}_0$$

• $m > 0 \implies$ azimutal decorrelation

$$\langle \cos(\mathbf{m}\varphi) \rangle \equiv \langle \cos\left(\mathbf{m}(\phi_{J,1} - \phi_{J,2} - \pi)\right) \rangle = \frac{\mathcal{C}_{\mathbf{m}}}{\mathcal{C}_{0}}$$

Rely on LL BFKL eigenfunctions

- LL BFKL eigenfunctions: $E_{n,\nu}(\mathbf{k}_1) = \frac{1}{\pi\sqrt{2}} \left(\mathbf{k}_1^2\right)^{i\nu \frac{1}{2}} e^{in\phi_1}$
- ullet decompose Φ on this basis
- use the known LL eigenvalue of the BFKL equation on this basis:

$$\omega(n,\nu) = \bar{\alpha}_s \chi_0\left(|n|, \frac{1}{2} + i\nu\right)$$

with $\chi_0(n,\gamma) = 2\Psi(1) - \Psi\left(\gamma + \frac{n}{2}\right) - \Psi\left(1 - \gamma + \frac{n}{2}\right)$ $(\Psi(x) = \Gamma'(x)/\Gamma(x), \bar{\alpha}_s = N_c \alpha_s / \pi)$

• \implies master formula:

$$\mathcal{C}_m = (4 - 3\,\delta_{m,0}) \int \mathrm{d}\nu \, C_{m,\nu}(|\mathbf{k}_{J,1}|, x_{J,1}) \, C^*_{m,\nu}(|\mathbf{k}_{J,2}|, x_{J,2}) \left(\frac{\hat{s}}{s_0}\right)^{\omega(m,\nu)}$$

with $C_{m,\nu}(|\mathbf{k}_J|, x_J) = \int \mathrm{d}\phi_J \,\mathrm{d}^2 \mathbf{k} \,\mathrm{d}x \,f(x) V(\mathbf{k}, x) E_{m,\nu}(\mathbf{k}) \cos(m\phi_J)$

- at NLL, same master formula: just change $\omega(m,\nu)$ and V (although $E_{n,\nu}$ are not anymore eigenfunctions)
- one may improve the NLL BFKL kernel by imposing its compatibility with DGLAP in the (anti)collinear limit (poles in $\gamma = 1/2 + i\nu$ plane) Salam; Ciafaloni, Colferai note: NLL vertices are free of γ poles

Introduction	MN jets at full NLLx	Practical implementation	Results	MN jets within MPI
000000	000	0000000	00000000000000	000000000000000000000000000000000000000
Numerical im	plementation			

In practice: two codes have been developed

A Mathematica code, exploratory

D. Colferai, F. Schwennsen, L. Szymanowski, S. W. JHEP 1012:026 (2010) 1-72 [arXiv:1002.1365 [hep-ph]]

- ${\scriptstyle \bullet }$ jet cone-algorithm with R=0.5
- MSTW 2008 PDFs (available as *Mathematica* packages)
- $\mu_R = \mu_F$ (in MSTW 2008 PDFs); we take $\mu_R = \mu_F = \sqrt{|\mathbf{k}_{J,1}| |\mathbf{k}_{J,2}|}$
- two-loop running coupling $lpha_s(\mu_R^2)$
- we use a ν grid (with a dense sampling around 0)
- we use Cuba integration routines (in practice Vegas): precision 10^{-2} for 500.000 max points per integration
- mapping $|{f k}|=|{f k}_J|\tan(\xi\pi/2)$ for ${f k}$ integrations $\Rightarrow [0,\infty[\rightarrow[0,1]$
- although formally the results should be finite, it requires a special grouping of the integrand in order to get stable results
 14 minimal stable basic blocks to be evaluated numerically
- rather slow code

Introduction	MN jets at full NLLx	Practical implementation	Results	MN jets within MPI
		0000000	00000000000	
Numerical in	nplementation			

A Fortran code, $\simeq 20$ times faster

- Check of our *Mathematica* based results
- Detailled check of previous mixed studies (NLL Green's function + LL jet vertices)
- Allows for k_J integration in a finite range
- Stability studies (PDFs, etc...) made easier
- ullet Comparison with the recent small R study of D. Yu. Ivanov, A. Papa
- Azimuthal distribution
- More detailled comparison with NLO DGLAP: NEW CONCLUSIONS
- Problems remain with ν integration for low Y (<4). To be fixed!
- B. Ducloué, L. Szymanowski, S.W., in preparation

Experimental data is integrated over some range, $k_{J\mathsf{min}} \leq k_J = |\mathbf{k}_J|$

Growth of the cross section with increasing $k_{J\max}$:

 \Rightarrow need to integrate up to $k_{J\rm max}\sim 60~{\rm GeV}$

A consistency check of stability of $|\mathbf{k}_J|$ integration have been made:

- consider the simplified NLL Green's function + LL jet vertices scenario
- the integration $\int_{k_{I,min}}^{\infty} dk_J$ can be performed analytically
- comparison with integrated results of Sabio Vera, Schwennsen is safe

Introduction	MN jets at full NLLx	Practical implementation	Results	MN jets within MPI
000000	000	00000000	00000000000	000000000000000000000000000000000000000
Integration o	ver k			

Energy-momentum conservation issues

- BFKL does not preserve energy-momentum conservation
- This violation is expected to be smaller at higher order in perturbation theory, i.e. NLL versus LL
- In practice: avoid to use all the available collider energy: $Y_{J,i} \ll \cosh^{-1} \frac{x_i E}{k_{J,i}}$ \rightarrow A lower k_J means a larger validity domain : a k_J as small as possible is preferable
- With only a lower cut on k_J , one has to integrate over regions where the BFKL approach may not be valid anymore : $k_J = 60 \text{ GeV} \rightarrow Y_{J,i} \ll 7.3$
- For this reason it would be nice to have a measurement with also an upper cut on transverse momentum, $k_{J\min} \leq k_J \leq k_{J\max}$ note: large cross-sections \Rightarrow narrow bining in k_J is only a detector issue
- A measure with a k_{Jmin} of 35 GeV seems to be possible Going down to 20 GeV would probably require a dedicated trigger
- note that:
 - k_J integration reduces the Y domain between jets
 - x_i integration weighted by PDFs reduces the Y domain between jets

Checks: fixed R versus small R limit

Comparison between the exact R and approximated small R treatments

• Energy-momentum conservation not satisfied by BFKL-like approaches \Rightarrow validity restricted to $Y_{J,i} \ll \cosh^{-1} \frac{x_i E}{k_{I,i}}$: $Y = Y_1 + Y_2 \ll 8.4$ for $x \sim 1/3$

Cross-section: stability with respect to s_0 and $\mu_R = \mu_F$ changes

Cross-section: PDF errors

Relative variation of the cross section when using other PDF sets than MSTW 2008 (full NLL approach)

(very similar values for the LL computation)

LL → NLL vertices change results dramatically: ⟨cos φ⟩ now flat and large
 The (anti)collinear resummation effects are not very sizable at full NLL this is a good sign of stability of this full NLL-BFKL treatment

Azimuthal correlation $\langle \cos \varphi \rangle$: more on the (anti)collinear resummation effects

 $|\mathbf{k}_{J,1}| = |\mathbf{k}_{J,2}| = 35 \,\text{GeV} \qquad 0 < Y_1, Y_2 < 4.7$

NLL vertices + NLL resum. (all n) Green's fun.

Azimuthal correlation $\langle \cos \varphi \rangle$: stability with respect to s_0 and $\mu_R = \mu_F$

(here only the full NLL approach is shown)

24 / 46

Azimuthal correlation $\langle \cos \varphi \rangle$: PDF errors

Relative variation of $\langle \cos \varphi \rangle$ when using other PDF sets than MSTW 2008 (full NLL approach)

• LL \rightarrow NLL vertices change results dramatically

• The (anti)collinear resummation effects are not very sizable at full NLL this is a good sign of stability of this full NLL-BFKL treatment

Azimuthal correlation $\langle \cos \varphi \rangle$: stability with respect to s_0 and $\mu_R = \mu_F$

(here only the full NLL approach is shown)

Azimuthal correlation

Azimuthal correlation: stability with respect to s_0 and $\mu_R = \mu_F$

(here only the full NLL approach is shown)

 $\langle \cos 2\varphi \rangle / \langle \cos \varphi \rangle$

Azimuthal correlation: PDF errors

Relative variation of $\frac{\langle \cos 2\phi \rangle}{\langle \cos \phi \rangle}$ when using other PDF sets than MSTW 2008 (full NLL approach)

Azimuthal distribution

Computing $\langle \cos(n\phi)\rangle$ up to large values of n gives access to the angular distribution

$$\frac{1}{\sigma}\frac{d\sigma}{d\phi} = \frac{1}{2\pi}\left\{1 + 2\sum_{n=1}^{\infty}\cos\left(n\phi\right)\left\langle\cos\left(n\phi\right)\right\rangle\right\}$$

This is a quantity accessible at experiments like ATLAS and CMS

Full NLL treatment predicts :

- Less decorrelation for same \boldsymbol{Y}
- Slower decorrelation with increasing Y

 $0 < Y_1 < 4.7$ $0 < Y_2 < 4.7$ integrating on the bin: $6 < Y = Y_1 + Y_2 < 9.4$

NLL vert. + NLL resum. Green's fun.

The predicted φ distribution within full NLL treatment is stable

0.3

0.2

0.1

⁰ ص

0.3

0.2

0.1

0

-3 -2

NLL vert. + NLL Green's fun.

Cross-section: NLO versus NLL BFKL

dots = based on the NLO DGLAP parton generator Dijet (thanks to M. Fontannaz)

- Putting (almost) the same scale, exactly the same cuts, we get a noticeable difference between NLO DGLAP and NLL BFKL for 4.5 < Y < 8.5: σ_{NLO} > σ_{NLL BFKL}
- This result is rather stable w.r.t s_0 and μ choices.

Azimuthal correlation $\langle \cos \varphi \rangle$: NLO versus NLL BFKL

Azimuthal correlation: $\langle \cos \varphi \rangle$

- $\bullet\,$ Putting (almost) the same scale, exactly the same cuts, we get a difference between NLO DGLAP and NLL BFKL for 4.5 < Y < 8.5
- This difference is washed-out because of s_0 and μ dependency: $\langle \cos \varphi \rangle_{\text{NLO}} \sim \langle \cos \varphi \rangle_{\text{NLL BFKL}}$

Azimuthal correlation $\langle \cos 2\varphi \rangle$: NLO versus NLL BFKL

Azimuthal correlation: $\langle \cos 2\varphi \rangle$

 $\bullet\,$ Putting (almost) the same scale, exactly the same cuts, we get a difference between NLO DGLAP and NLL BFKL for 4.5 < Y < 8.5

• This difference is washed-out because of s_0 and μ dependency: $\langle \cos 2\varphi \rangle_{\rm NLO} \sim \langle \cos 2\varphi \rangle_{\rm NLL \, BFKL}$

Azimuthal correlation $\langle \cos 2\varphi \rangle / \langle \cos \varphi \rangle$: NLO versus NLL BFKL

Azimuthal correlation $\langle \cos 3\varphi \rangle / \langle \cos 2\varphi \rangle$: NLO versus NLL BFKL

 $\langle \cos 3\varphi \rangle / \langle \cos 2\varphi \rangle$

Introduction MN jets at full NLLx Practical implementation Results MN jets within MPI

Can Mueller-Navelet jets be a manifestation of multiparton interactions?

MN jets in the single partonic model

MN jets in MPI

- $\bullet\,$ The twist counting is not easy for MPI kinds of contributions at small x
- k_{⊥1,2} are not integrated ⇒ MPI may be competitive, and enhanced by small-x resummation
- Interference terms are not governed by BJKP (this is not a fully interacting 3-reggeons system) (for BJKP, α_P < 1 ⇒ suppressed)

Introduction	MN jets at full NLLx	Practical implementation	Results MN jets within MPI
000000	000	0000000	000000000000000000000000000000000000000
Conclusion			

- We have deepen our complete NLL analysis of Mueller-Navelet jets
- The effect of NLL jets corrections is dramatic, similar to the NLL Green function corrections
- For the cross-section:
 - makes prediction much more stable with respect to variation of parameters (factorization scale, scale s₀ entering the rapidity definition, PDFs)
 - sizeably below NLO DGLAP
- Surprisingly small decorrelation effect:
 - ullet very close to NLO DGLAP for $\langle \cos arphi
 angle$ and $\langle \cos 2 arphi
 angle$
 - ${\scriptstyle \bullet}$ very flat in rapidity Y
 - still rather dependent on these parameters
- Collinear improved NLL BFKL and pure NLL leads to very similar result when summing over *n* (new)
- The φ distr. is very strongly peaked around 0 and stable w.r.t. Y (new)
- For $\langle \cos 2\varphi \rangle / \langle \cos \varphi \rangle$ and $\langle \cos 3\varphi \rangle / \langle \cos 2\varphi \rangle$ the differences between NLL BFKL and NLO DGLAP are sizable, and stable w.r.t. to scale choices
- MPI processes could mix with the standard BFKL ladder-like exchange picture
- Mueller Navelet jets provide much more complicate observables then expected

backup •00000000000

Jet vertex: LL versus NLL

 $\mathbf{k},\mathbf{k}'=\mathsf{Euclidian}$ two dimensional vectors

Jet vertex: jet algorithms

Jet algorithms

- a jet algorithm should be IR safe, both for soft and collinear singularities
- the most common jet algorithm are:
 - k_t algorithms (IR safe but time consuming for multiple jets configurations)
 - cone algorithm (not IR safe in general; can be made IR safe at NLO: Ellis, Kunszt, Soper)

backup 0000000000

Jet vertex: jet algorithms

Cone jet algorithm at NLO (Ellis, Kunszt, Soper)

- Should partons $(|\mathbf{p}_1|, \phi_1, y_1)$ and $(\mathbf{p}_2|, \phi_2, y_2)$ combined in a single jet? $|\mathbf{p}_i| =$ transverse energy deposit in the calorimeter cell i of parameter $\Omega = (y_i, \phi_i)$ in $y - \phi$ plane
- ullet define transverse energy of the jet: $p_J = |\mathbf{p}_1| + |\mathbf{p}_2|$

jet axis:

$$\Omega_{c} \begin{cases} y_{J} = \frac{|\mathbf{p}_{1}| y_{1} + |\mathbf{p}_{2}| y_{2}}{p_{J}} \\ \phi_{J} = \frac{|\mathbf{p}_{1}| \phi_{1} + |\mathbf{p}_{2}| \phi_{2}}{p_{J}} \end{cases}$$

parton₁
$$(\Omega_1, |\mathbf{p}_1|)$$

cone axis (Ω_c) $\Omega = (y_i, \phi_i)$ in $y - \phi$ plane
parton₂ $(\Omega_2, |\mathbf{p}_2|)$

If distances $|\Omega_i - \Omega_c|^2 \equiv (y_i - y_c)^2 + (\phi_i - \phi_c)^2 < R^2$ (i = 1 and i = 2) \implies partons 1 and 2 are in the same cone Ω_c combined condition: $|\Omega_1 - \Omega_2| < \frac{|\mathbf{p}_1| + |\mathbf{p}_2|}{max(|\mathbf{p}_1|, |\mathbf{p}_2|)}R$

Jet vertex: LL versus NLL and jet algorithms

LL jet vertex and cone algorithm

 $\mathbf{k},\mathbf{k}'=\mathsf{Euclidian}$ two dimensional vectors

backup 00000000000

Jet vertex: LL versus NLL and jet algorithms

NLL jet vertex and cone algorithm

 $\mathbf{k},\mathbf{k}'=\mathsf{Euclidian}$ two dimensional vectors

Mueller-Navelet jets at NLL and finiteness

Using a IR safe jet algorithm, Mueller-Navelet jets at NLL are finite

• UV sector:

- ullet the NLL impact factor contains UV divergencies $1/\epsilon$
- they are absorbed by the renormalization of the coupling: $\alpha_S \longrightarrow \alpha_S(\mu_R)$
- IR sector:
 - PDF have IR collinear singularities: pole $1/\epsilon$ at LO
 - these collinear singularities can be compensated by collinear singularities of the two jets vertices and the real part of the BFKL kernel
 - the remaining collinear singularities compensate exactly among themselves
 - soft singularities of the real and virtual BFKL kernel, and of the jets vertices compensates among themselves

This was shown for both quark and gluon initiated vertices (Bartels, Colferai, Vacca)

BFKL Green's function at NLL

NLL Green's function: rely on LL BFKL eigenfunctions

- NLL BFKLkernel is not conformal invariant
- LL $E_{n,\nu}$ are not anymore eigenfunction
- this can be overcome by considering the eigenvalue as an operator with a part containing $\frac{\partial}{\partial \nu}$
- it acts on the impact factor

$$\omega(n,\nu) = \bar{\alpha}_{s}\chi_{0}\left(|n|,\frac{1}{2}+i\nu\right) + \bar{\alpha}_{s}^{2}\left[\chi_{1}\left(|n|,\frac{1}{2}+i\nu\right) - \frac{\pi b_{0}}{2N_{c}}\chi_{0}\left(|n|,\frac{1}{2}+i\nu\right)\left\{-2\ln\mu_{R}^{2} - i\frac{\partial}{\partial\nu}\ln\frac{C_{n,\nu}(|\mathbf{k}_{J,1}|,x_{J,1})}{C_{n,\nu}(|\mathbf{k}_{J,2}|,x_{J,2})}\right\}\right],$$

$$2\ln\frac{|\mathbf{k}_{J,1}|\cdot|\mathbf{k}_{J,2}|}{\mu_{R}^{2}}$$

LL substraction and s_0

- one sums up $\sum (\alpha_s \ln \hat{s}/s_0)^n + \alpha_s \sum (\alpha_s \ln \hat{s}/s_0)^n$ $(\hat{s} = x_1 x_2 s)$
- at LL s₀ is arbitrary
- natural choice: $s_0 = \sqrt{s_{0,1}\,s_{0,2}}\,\,\,s_{0,i}$ for each of the scattering objects
 - possible choice: $s_{0,i} = (|\mathbf{k}_J| + |\mathbf{k}_J \mathbf{k}|)^2$ (Bartels, Colferai, Vacca)
 - ${\boldsymbol{\bullet}}$ but depend on ${\bf k},$ which is integrated over
 - \hat{s} is not an external scale $(x_{1,2}$ are integrated over)
 - we prefer

$$s_{0,1} = (|\mathbf{k}_{J,1}| + |\mathbf{k}_{J,1} - \mathbf{k}_{1}|)^{2} \rightarrow s_{0,1}' = \frac{x_{1}^{2}}{x_{J,1}^{2}} \mathbf{k}_{J,1}^{2} \\ s_{0,2} = (|\mathbf{k}_{J,2}| + |\mathbf{k}_{J,2} - \mathbf{k}_{2}|)^{2} \rightarrow s_{0,2}' = \frac{x_{2}^{2}}{x_{J,2}^{2}} \mathbf{k}_{J,2}^{2} \\ \end{cases} \begin{cases} \frac{\hat{s}}{s_{0}} \rightarrow \frac{\hat{s}}{s_{0}'} = \frac{x_{J,1} x_{J_{2}} s}{|\mathbf{k}_{J,1}| |\mathbf{k}_{J,2}|} \\ = e^{y_{J,1} - y_{J,2}} \equiv e^{y_{J,1}} \end{cases}$$

• $s_0 \rightarrow s'_0$ affects • the BFKL NLL Green function • the impact factors:

$$\Phi_{\rm NLL}(\mathbf{k}_i; s'_{0,i}) = \Phi_{\rm NLL}(\mathbf{k}_i; s_{0,i}) + \int d^2 \mathbf{k}' \, \Phi_{\rm LL}(\mathbf{k}'_i) \, \mathcal{K}_{\rm LL}(\mathbf{k}'_i, \mathbf{k}_i) \frac{1}{2} \ln \frac{s'_{0,i}}{s_{0,i}} \tag{1}$$

- numerical stabilities (non azimuthal averaging of LL substraction) improved with the choice $s_{0,i} = (\mathbf{k}_i 2\mathbf{k}_{J,i})^2$ (then replaced by $s'_{0,i}$ after numerical integration)
- (1) can be used to test $s_0 o \lambda \, s_0$ dependence

Collinear improvement at NLL

Collinear improved Green's function at NLL

- one may improve the NLL BFKL kernel for n = 0 by imposing its compatibility with DGLAP in the collinear limit Salam; Ciafaloni, Colferai
- ullet usual (anti)collinear poles in $\gamma=1/2+i\nu$ (resp. $1-\gamma)$ are shifted by $\omega/2$
- one practical implementation:
 - ullet the new kernel $\bar{\alpha}_s \chi^{(1)}(\gamma,\omega)$ with shifted poles replaces

 $\bar{\alpha}_s \chi_0(\gamma, 0) + \bar{\alpha}_s^2 \chi_1(\gamma, 0)$

• $\omega(0,\nu)$ is obtained by solving the implicit equation

$$\omega(0,\nu) = \bar{\alpha}_s \chi^{(1)}(\gamma,\omega(0,\nu))$$

for $\omega(n,\nu)$ numerically

- there is no need for any jet vertex improvement because of the absence of γ and $1-\gamma$ poles (numerical proof using Cauchy theorem "backward")
- \bullet this can be extended for all n

Motivation for asymmetric configurations

 \bullet Initial state radiation (unseen) produces divergencies if one touches the collinear singularity ${\bf q}^2 \to 0$

- they are compensated by virtual corrections
- this compensation is in practice difficult to implement when for some reason this additional emission is in a "corner" of the phase space (dip in the differential cross-section)
- this is the case when $\mathbf{p}_1 + \mathbf{p}_2
 ightarrow 0$
- this calls for a resummation of large remaing logs \Rightarrow Sudakov resummation

- since these resummation have never been investigated in this context, one should better avoid that region
- note that for BFKL, due to additional emission between the two jets, one may expect a less severe problem (at least a smearing in the dip region |p₁| ~ |p₂|)

- this may however not mean that the region $|\mathbf{p}_1| \sim |\mathbf{p}_2|$ is perfectly trustable even in a BFKL type of treatment
- we now investigate a region where NLL DGLAP is under control