Photoproduction of a $\pi \rho_T$ pair with a large invariant mass and Transversity Generalized Parton Distribution

Samuel Wallon

Laboratoire de Physique Théorique Université Paris Sud Orsay

DIS10, XVIII International Workshop on Deep Inelastic Scattering and Related Subjects Firenze, April 22th 2010

Phys. Lett. in press, arXiv:1001.4491 [hep-ph].

in collaboration with

M. E. Beiyad (CPhT, Palaiseau and LPT, Orsay), B. Pire (CPhT, Palaiseau),

M. Segond (Leipzig) and L. Szymanowski (SINS, Varsaw)

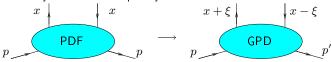
Transversity of the nucleon using hard processes

What is transversity?

• Transverse spin content of the proton:

$$\begin{array}{ccc} |\uparrow\rangle_{(x)} & \sim & |\rightarrow\rangle + |\leftarrow\rangle \\ |\downarrow\rangle_{(x)} & \sim & |\rightarrow\rangle - |\leftarrow\rangle \\ \text{spin along } x & \text{helicity states} \end{array}$$

- ullet Observable sensible to helicity flip thus give access to transversity $\Delta_T q(x)$. Very poorly known
- Transversity GPDs are completely unknown

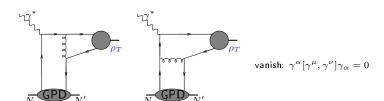


- For massless (anti)particles, chirality = (-)helicity
- Transversity is thus a chiral-odd quantity
- Since QCD and QED are chiral even, the chiral odd quantities which one want to measure should appear in pairs

Transversity of the nucleon using hard processes: using a two body final state process?

How to get access to transversity?

- the dominant DA of ho_T is of twist 2 and chiral odd $([\gamma^\mu,\gamma^
 u]$ coupling)
- unfortunately $\gamma^* N^{\uparrow} \rightarrow \rho_T N' = 0$
 - this is true at any order, because this would require a transfer of helicity of 2 from photon: impossible!
 - lowest order diagrammatic argument:



Transversity of the nucleon using hard processes: using a two body final state process?

Can one circumvent this vanishing?

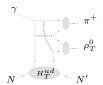
- this vanishing is true only a twist 2
- at twist 3 this process does not vanish
- however processes involving twist 3 DAs may face problems with factorization (end-point singularities)
- the problem of classification of twist 3 chiral-odd GPDs is still open (Pire, Szymanowski, S.W., in preparation, in the spirit of our Light-Cone Collinear Factorization framework: Anikin, Ivanov, Pire, Szymanowski,
 - S. W. see talk in Session Small-x, diffraction and VM in DIS and hadron colliders)

Our process: $\gamma N o \pi^+ ho_T^0 N'$

$$\gamma N \to \pi^+ \rho_T^0 N'$$
 gives access to transversity

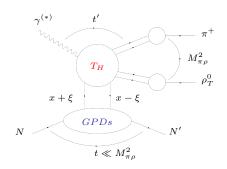
$$N \stackrel{GPDs}{\longrightarrow} N$$

a typical non-vanishing diagram:



• these processes with 3 body final state can give access to all GPDs. $M_{\pi\rho}^2$ plays the role of γ^* in usual DVCS, and can be scanned.

Master formula based on leading twist 2 factorization



$$\mathcal{A} = \frac{1}{\sqrt{2}} \int_{-1}^{1} dx \int_{0}^{1} dv \int_{0}^{1} dz \; (T^{u}(x, v, z) - T^{d}(x, v, z))$$

$$\times \quad (H^{u}_{T}(x, \xi, t) - H^{d}_{T}(x, \xi, t)) \Phi_{\pi}(z) \Phi_{\rho}(v) + \cdots$$

Non pertubative matrix elements

One needs to encode the matrix elements of two kinds of chiral-odd operator:

• transversity GPDs (twist-2 level):

$$\int \frac{dz^{-}}{4\pi} e^{ixP^{+}z^{-}} \langle p_{2}, \lambda_{2} | \bar{\psi}_{q} \left(-\frac{1}{2}z^{-} \right) i\sigma^{+i}\psi \left(\frac{1}{2}z^{-} \right) | p_{1}, \lambda_{1} \rangle$$

$$= \frac{1}{2P^{+}} \bar{u}(p_{2}, \lambda_{2}) \left[H_{T}^{q}(x, \xi, t) i\sigma^{+i} + \tilde{H}_{T}^{q}(x, \xi, t) \frac{P^{+}\Delta^{i} - \Delta^{+}P^{i}}{M_{N}^{2}} \right]$$

$$+ E_{T}^{q}(x, \xi, t) \frac{\gamma^{+}\Delta^{i} - \Delta^{+}\gamma^{i}}{2M_{N}} + \tilde{E}_{T}^{q}(x, \xi, t) \frac{\gamma^{+}P^{i} - P^{+}\gamma^{i}}{M_{N}} \left[u(p_{1}, \lambda_{1}) \right]$$

- for $\Delta_{\perp}=0$ each above factors vanishes except for H_T^q which thus dominates in the small t domain
- in the forward limit it is the only transversity GPD which survives: $H_T^q(x,0,0) = \Delta_T q(x)$ (quark transversity distribution)
- transversity DAs (twist-2 level):

$$\langle 0|\bar{u}(0)\sigma^{\mu\nu}u(x)|\rho^0(p,s)\rangle = \frac{i}{\sqrt{2}}(\sigma^\mu_\rho p^\nu - \sigma^\nu_\rho p^\mu)f^\perp_\rho \int_0^1 du\ e^{-iup\cdot x}\ \phi_\perp(u)$$

Kinematics

- use a Sudakov basis : light-cone vectors p, n with $2p \cdot n = s$
- assume the following kinematics:
 - \bullet Δ^{μ}_{\perp} small
 - M^2 , m_{π}^2 , $m_{\rho}^2 \ll M_{\pi\rho}^2$
- initial state particle momenta:

$$q^{\mu} = n^{\mu}, \ p_1^{\mu} = (1 + \xi)p^{\mu} + \frac{M^2}{s(1+\xi)}n^{\mu}$$

$$\gamma^{(*)}$$
 t'
 π^{+}

 $x + \xi$

GPDs $N'(p_2)$ $N(p_1)$

 T_H

 $t \ll M_{\pi o}^2$

• final state particle momenta:

$$p_{2}^{\mu} = (1 - \xi)p^{\mu} + \frac{M^{2} + \vec{\Delta}_{t}^{2}}{s(1 - \xi)}n^{\mu} + \Delta_{\perp}^{\mu}$$

$$p_{\pi}^{\mu} = \alpha n^{\mu} + \frac{(\vec{p}_{t} - \vec{\Delta}_{t}/2)^{2} + m_{\pi}^{2}}{\alpha s}p^{\mu} + p_{\perp}^{\mu} - \frac{\Delta_{\perp}^{\mu}}{2}$$

$$p_{\rho}^{\mu} = \alpha_{\rho} n^{\mu} + \frac{(\vec{p}_{t} + \vec{\Delta}_{t}/2)^{2} + m_{\rho}^{2}}{\alpha_{\rho} s}p^{\mu} - p_{\perp}^{\mu} - \frac{\Delta_{\perp}^{\mu}}{2}$$

Pertinent physical parameters

• Total center-of-mass energy squared of the γ -N system

$$S_{\gamma N} = (q + p_1)^2$$

• Hard scale: invariant squared mass of the (π^+, ρ^0) system

$$M_{\pi\rho}^2 = (p_{\pi} + p_{\rho})^2 \simeq -u' = -(p_{\rho} - q)^2$$

 $\simeq -t' = -(p_{\pi} - q)^2 \simeq -p_{\perp}^2$

• Transferred squared momentum: $t = (p_2 - p_1)^2$ small t

$$M_{\pi\rho}^{2}$$
 $x + \xi$
 $x - \xi$
 $M_{\pi\rho}^{2}$
 $N(p_{1})$
 $t \ll M_{\pi\rho}^{2}$

 $\gamma^{(*)}$

• Skewedness: $\xi = \frac{\tau}{2-\tau}$

with
$$au=rac{M_{\pi
ho}^2}{S_{\rm SN}-M_{\odot}^2}$$
 (generalized Bjorken variable for Drell Yan)

Computation of the hard part

Typical Feynman diagrams (62 in total)

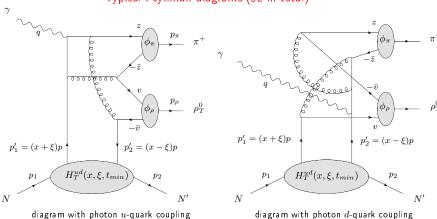
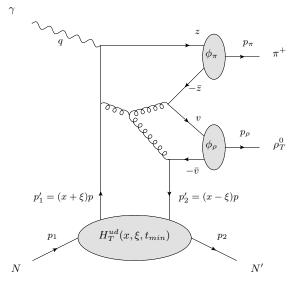


diagram with photon d-quark coupling



representative diagram with a 3 gluon vertex

$$\mathcal{A}_{H_{T}^{q}} = (N_{\lambda_{1}\lambda_{2}}^{\perp} \cdot \epsilon_{\rho \pm})(p_{\perp} \cdot \epsilon_{\gamma \perp})A + (N_{\lambda_{1}\lambda_{2}}^{\perp} \cdot \epsilon_{\gamma \perp})(p_{\perp} \cdot \epsilon_{\rho \pm})B$$

$$+ (N_{\lambda_{1}\lambda_{2}}^{\perp} \cdot p_{\perp})(\epsilon_{\gamma \perp} \cdot \epsilon_{\rho \pm})C$$

$$- (N_{\lambda_{1}\lambda_{2}}^{\perp} \cdot p_{\perp})(p_{\perp} \cdot \epsilon_{\gamma \perp})(p_{\perp} \cdot \epsilon_{\rho \pm})D$$

with

- ullet $A,\,B,\,C,\,D$ scalar functions of $S_{\gamma N},\,-u'$ and $M_{\pi\rho}^2$
- ullet $\epsilon^{\mu}_{\gamma\perp}$ the transverse polarization of the on-shell photon

$$\bullet N_{\lambda_1 \lambda_2}^{\perp \mu} = \frac{2i}{p \cdot n} g_{\perp}^{\mu \nu} \bar{u}(p_2, \lambda_2) / \gamma_{\nu} \gamma^5 u(p_1, \lambda_1)$$

Rich spin structure of $\mathcal{A}_{H^q_T}$: access to the spin density matrix of $\rho^0_T,$ polarization asymmetries, . . .

A model based on Double Distribution

Realistic Parametrization of H_T^q

 GPDs can be represented in terms of Double Distribution (Radyushkin) based on Schwinger representation of a toy model for GPDs which has the structure of a triangle diagram in scalar ϕ^3 theory

$$H_T^q(x,\xi,t=0) = \int_{-1}^1 d\beta \int_{-1+|\beta|}^{1-|\beta|} d\alpha \, \delta(\beta+\xi\alpha-x) \, f_T^q(\beta,\alpha)$$

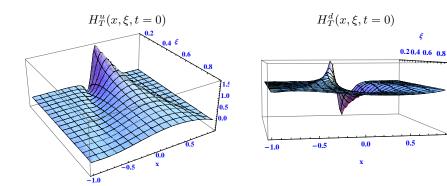
- ansatz for these Double Distribution (Radyushkin):
 - $f_T^q(\beta, \alpha) = \Pi(\beta, \alpha) \Delta_T q(\beta)$
 - $\Delta_T q(x)$: chiral-odd PDF (Anselmino et al.)
 - $\Pi(\beta,\alpha) = \frac{3}{4} \frac{(1-\beta)^2 \alpha^2}{(1-\beta)^3}$ profile function $(f_T^q(\beta,0) = \Delta_T q(\beta))$
- ansatz for the t-dependence:

$$H_T^q(x,\xi,t) = H_T^q(x,\xi,t=0) \times F_H(t)$$

with $F_H(t)=rac{C^2}{(t-C)^2}$ a standard dipole form factor $(C=.71~{
m GeV})$

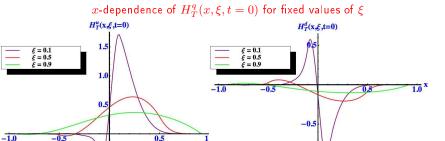
Plots of our model for transversity GPD

x and ξ -dependence of $H_T^q(x,\xi,t=0)$

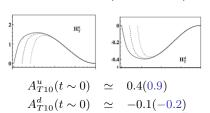


-0.2

Plots of our model for transversity GPD



Same order of magnitude but significant differences with other parametrizations (Pincetti et al.) and lattice calculations (Göckeler et al.)



Unpolarized differential cross section

Differential Cross Section and Physical Cuts

60

 $(-t)_{min}$

$$\left. \frac{d\sigma}{dt \, du' \, dM_{\pi\rho}^2} \right|_{t=t_{min}} = \frac{|\mathcal{M}|^2}{32 S_{\gamma N}^2 M_{\pi\rho}^2 (2\pi)^3}$$

 Validity of the factorization of the partonic amplitude:

$$-t', -{\color{red} u'} > \Lambda^2 \gg \Lambda^2_{QCD}$$
 with $\Lambda \sim 1~{
m GeV}$

 Suppress final states interactions (to justify factorization):

$$M_{\pi N'}^2,~M_{\rho N'}^2 > M_R^2 ~{\rm with}~M_R^2 = 2~{\rm GeV^2}$$

- Cuts over -u' and $M_{\pi N'}^2$
 - $\Rightarrow (-u')_{min(res.)}(t, S_{\gamma N}, M_{\pi o}^2)$
- Cuts over -t' and $M_{\alpha N'}^2$ $\Rightarrow (-u')_{max}(t, S_{\gamma N}, M_{\pi o}^2).$

$$-u' = (-u')_{max}(t)$$
1.5
$$(-u')_{max}(t)$$

$$(-u')_{min}(res.)(t)$$

$$S_{\gamma N} = 20~{\rm G\,eV}^2,\, M_{\pi\rho}^2 = 3~{\rm G\,eV}^2$$

0.3

0.3

04

0.5

0.6

Differential cross section for $M_{\pi\rho}^2=6~\text{GeV}^2$

dotted: $t = t_{min}$ windows solid: $t = -.5 \text{ GeV}^2$

$$S_{\gamma N} = 20~GeV^2$$

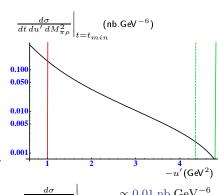
$$\frac{d\sigma}{dt~du'~dM_{\pi\rho}^2} \bigg|_{t=t_{min}} \text{(nb.GeV}^{-6}\text{)}$$

$$\frac{30}{15}$$

$$\frac{20}{15}$$

$$\frac{d\sigma}{dt~du'~dM_{\pi\rho}^2} \bigg|_{t=t_{min}} \propto 10~\text{nb.GeV}^{-6}$$

$$S_{\gamma N} = 200 \ GeV^2$$



$$\frac{d\sigma}{dt du' dM_{\pi\rho}^2} \bigg|_{t=t_{min}} \propto 0.01 \text{ nb.GeV}^{-6}$$

Predictions

$M_{\pi\rho}^2$ -dependence of the differential cross section $\frac{d\sigma}{dM^2}$

$$\frac{d\sigma}{dM_{\pi\rho}^2} = \int_{-0.5}^{t_{min}} dt \int_{-u'_{min}}^{-u'_{max}} d(-u') F_H^2(t) \times \left. \frac{d\sigma}{dt \, du' dM_{\pi\rho}^2} \right|_{t=t_{min}}$$

$$\frac{d\sigma}{dM_{\pi\rho}^2} = \int_{-0.5} dt \int_{-u'_{min}} d(-u') \ F_H^2(t) \times \frac{d\sigma}{dt \ du' dM_{\pi\rho}^2} \Big|_{t=t_{min}}$$

$$\frac{d\sigma}{dM_{\pi\rho}^2} \text{ (nb.GeV}^{-2}\text{)}$$

$$\frac{d\sigma}{dM_{\pi\rho}^2} \text{ (nb.GeV}^{-2}\text{)}$$

$$\frac{\partial \sigma}{\partial M_{\pi\rho}^2} \text{ (nb.GeV}^{-2}\text{)}$$

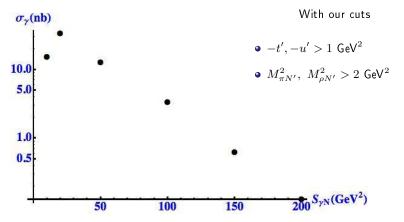
$$\frac{\partial \sigma}{\partial M_{\pi\rho}^2} \text{ (nb.GeV}^{-2}\text{)}$$

$$S_{\gamma N} = 20 \ GeV^2$$

$$S_{\gamma N} = 200 \ GeV^2$$

$$\sigma(S_{\gamma N}=20~{
m GeV}^2)\simeq$$
 33 nb $\sigma(S_{\gamma N}=200~{
m GeV}^2)\simeq$ 0.1 nb

 $S_{\gamma N}$ -dependence of the differential cross section σ



Very sizable rates

- denote $\Gamma_T^\mu(Q^2,\; \nu)$ the quasi real (transverse) photon flux ($E_\mu=160$ GeV).
- ullet Total cross section for the muoproduction $\mu N o \mu \pi^+
 ho_T^0 N'$

$$\sigma_{\mu} = \int_{0.02}^{1} dQ^{2} \int_{16}^{144} d\nu \ \Gamma_{T}^{\mu}(Q^{2}, \nu) \ \sigma_{\gamma^{*}N \to \pi^{+}\rho_{T}^{0}N'}(Q^{2}, \nu) \simeq 0.25 \text{ pb}$$

ullet Experimental rate: For a muon beam luminosity of 2.5 $10^{32}~{
m cm}^{-2}.{
m s}^{-1}$,

$$R \simeq 6~10^{-2}~\text{Hz}$$

Very sizable

• CLAS12 Hall B:

with a photon (7 - 10.5 GeV) flux $N_{\gamma} \sim 5~10^7$ photons/s

Experimental rate: $R \sim$ 0.1 Hz

- Hall D (12 GeV)
 - ullet photon (8 9 GeV) flux $N_{\gamma} \sim 10^8$ photons/s
 - number of protons per surface unit $N_p \sim 1.27~{
 m b}^{-1}$ (target : liquid hydrogen (30 cm))

Experimental rate: $R = \sigma imes N_{\gamma} imes N_{p} \sim$ 5 Hz

Conclusion

- Photoproduction of a $\pi \rho_T^0$ pair with a large hard scale $M_{\pi \rho}^2$ sensitive to the transversity GPDs even for unpolarized target and at twist-2 level
- ullet Parametrization of the dominant chiral-odd GPD H_T^q based on double distribution
- Promising way to get informations on the generalized chiral-odd quark content of the nucleon:
 large enough rates to extract transversity GPDs, at COMPASS and
- Possibility to access to :

JLab@12 GeV

- ullet spin density matrix of ho_T^0
- spin asymmetries
- ullet chiral-even GPDs H and $ilde{H}$ with ho_L^0 El Beiyad, Pire, Szymanowski, S.W. in preparation
- Such processes with 3 body final state are also promising for non transversity GPD measurement, on top of the now standard DVCS based studies

BACKUP

Transverse polarization of ho_T^0

$$\epsilon_{\pm}^{\mu}(p_{\rho}) = \left(\frac{\vec{p}_{\rho} \cdot \vec{\epsilon}_{\pm}}{m_{\rho}}, \ \vec{\epsilon}_{\pm} + \frac{\vec{p}_{\rho} \cdot \vec{\epsilon}_{\pm}}{m_{\rho}(E_{\rho} + m_{\rho})} \vec{p}_{\rho}\right)$$

$$\Rightarrow 2\bar{\alpha} \frac{\vec{p}_{t} \cdot \vec{\epsilon}_{\pm}}{\bar{\alpha}^{2}s + \vec{p}_{t}^{2}} \left(p^{\mu} + n^{\mu}\right) + \left(0, \vec{\epsilon}_{\pm}\right)$$

$$\Rightarrow 2\bar{\alpha} \frac{\vec{p}_{t} \cdot \vec{\epsilon}_{\pm}}{\bar{\alpha}^{2}s + \bar{p}_{t}^{2}} \left[1 - \frac{\vec{p}_{t}^{2}}{\bar{\alpha}^{2}s}\right] p^{\mu} + 2 \frac{\vec{p}_{t} \cdot \vec{\epsilon}_{\pm}}{\bar{\alpha}^{2}s + \bar{p}_{t}^{2}} p_{T}^{\mu} + \left(0, \vec{\epsilon}_{\pm}\right)$$

Transversity PDFs

$$\Delta_T u(x) = 7.5 * 0.5 * (1 - x)^5 (x * u(x) + x * \Delta u(x))
\Delta_T \bar{u}(x) = 7.5 * 0.5 * (1 - x)^5 (x * \bar{u}(x) + x * \Delta \bar{u}(x))
\Delta_T d(x) = 7.5 * (-0.6) * (1 - x)^5 (x * d(x) + x * \Delta d(x))
\Delta_T \bar{d}(x) = 7.5 * (-0.6) * (1 - x)^5 (x * \bar{d}(x) + x * \Delta \bar{d}(x))$$

Polarized PDFs

$$\Delta u(x) = \sqrt{x} u(x)
\Delta \bar{u}(x) = -0.3 x^{0.4} \bar{u}(x)
\Delta d(x) = -0.7 \sqrt{x} d(x)
\Delta \bar{d}(x) = -0.3 x^{0.4} \bar{d}(x)$$