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Introduction
Exclusive p-production

Our studies attempt to describe exclusive processes involving the production of
p-mesons in diffraction-type experiment. We choose ¢ = ., for simplicity.
2 v (q) +77(a") — pr(p1) + p(p2) process in
et e” — et e pr(p1) + p(p2) with double tagged lepton at ILC
s () + P — pr(p1) + P at HERA

H1 p electroproduction (preliminary)
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Exclusive p-production

Polarization effects in v* P — p P at HERA

Taal /[ Tool
F @® Hlpprel
@ one can experimentally measure all 1 4 e
spin density matrix elements 0754 a
o5 ® @ .
9 at t = tmin one can experimentally distinguish 0.25 é‘ ‘+
vi — pr : dominates  (twist 2 dominance) 0 |t|l[GeV2]
N7 — pr:  sizable (twist 3)
[Tyl / [Tool
F ® Hilpprel
1 A Hlgprel
@ S-channel helicity conservation: 0.75 &
F o,
. _ o5F ®
= pr (= Too) %,
VYo = pr, 0B®F
0 20
Dominate with respect to all other transitions. Q% [GeV]
Experimentally, v — pr is dominated (from X. Janssen (H1),
DIS 2008)

by v7(—y = pr(—) and vy = pry (= Ti1)
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Introduction
Exclusive p-production

The processes with vector particle such as rho—meson probe deeper into the
fine features of QCD.

It deserves theoretical developpement to describe HERA data in its special
kinematical range:

@ large s4+p = small-x effects expected, within k;-factorization

@ large Q% = hard scale = perturbative approach and collinear factorization
= the p can be described through its chiral even Distribution Amplitudes

pL  twist 2
pT twist 3

The main ingredient is the v* — p impact factor

@ For pr, special care is needed: a pure 2-body description would violate
gauge invariance.
@ We show that:

o Including in a consistent way all twist 3 contributions, i.e. 2-body and
3-body correlators, gives a gauge invariant impact factor

@ Our treatment is free of end-point singularities and does not violates the
QCD factorization
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Impact factor for exclusive processes
Theoretical motivations

QCD in perturbative Regge limit

@ In this limit, the dynamics is dominated by gluons (dominance of spin 1
exchange in ¢ channel)

@ BFKL (and extensions: NLL, saturations effects, ...) is expected to
dominate with respect to Born order at large relative rapidity.

_, reggeon

Born order: BFKL ladder:

effective vertex



Impact factor for exclusive processes
[ I}

Impact factor for exclusive processes
k1 factorization

y*~* — pp as an example
@ Use Sudakov decomposition k = api + Bp2 + ki (92 = p3 =0, 2p1 - pa = )
o write d'k = £ dadBd’k.

o t—channel gluons with non-sense polarizations (¢%?, = 2 py, 320%™ = 2 py)
dominate at large s
I1 (illustration for 2-body case)

(§O<<aqu“1r :>seta:0andfdﬁ

p(p1+71)
c><

= set 3 =0and [da

7 (q1)

p(m —7r1)
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Impact factor for exclusive processes
k1 factorization

impact representation k = Eucl. < k; = Mink.

—r+k)

vy

d*k * o * o
M—i / PE g @=e®h) gy _ ) @7 (02)=08) (_
is Gn2E (r — B (k,r — k) (
The 77 7(q)g(k1) — pr,r g(k2) impact factor is normalized as

q{/*ﬂp(k PR 7 /_ D|sc,{S"’ gﬂpg(]g)7

with k= (¢ + k)2 = Bs — Q% — k?
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Impact factor for exclusive processes
Gauge invariance within subleading twists

Gauge invariance

@ QCD gauge invariance (probes are colorless)
= impact factor should vanish when k — Oorr —k — 0

@ In the following we will restrict ourselve to the case t = t.in, i.6. tor =0

K 2 2
kIZ%p2+kl

2
ko = %pz +ki,

This kinematics takes into account skewedness effects along po
t = tmin = restriction to the transitions

0 — 0 (twist 2)
{ (+or-) — (+or-) (twist3)

@ At twist 3 level (for v7 — pr transition), gauge invariance is a non trivial
statement which requires 2 and 3 body correlators
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Collinear factorization
Light-Cone Collinear approach

@ The impact factor can be written as

<I>:/d4l~-~tr[H(l~~) S(1---))

hard part soft part

9 At the 2-body level:
Saall) = / a2 ™ (p(p)(0) (2)]0),

@ H and S are related by [ d'l and by the summation over spinor indices



Collinear factorization
(] elelo)

Collinear factorization
Light-Cone Collinear approach: (2-body case)

1 - Momentum factorization (1)

@ Use Sudakov decomposition in the form (p =p1, n =2p2/s =>p-n=1)

Iy = Ypp + li + (I-p)ny, y=1-n
scaling: 1 1/Q 1/Q?
@ decompose H (k) around the p direction:
0H(l .
H(l)=H(yp) + az() (l=yplat... with (l—yp)a~Ia
@ li=yp

& In Fourier space, the twist 3 term /2 turns into a derivative of the soft
term
= one will deal with [ d*z e™""*(p(p)[4)(0)i 0,.1(2)|0)
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Collinear factorization
Light-Cone Collinear approach: (2-body case)

1 - Momentum factorization (2)

@ write
d'l — d'16(y—1-n) dy

o [d"15(y —1-n) is then absorbed in the soft term:

(a2, 01 Bag) / d15(y —1-n) / dhz e (p()[(0) (1, i 01 )b(2)|0)

X — 1AL . ANT
o romrpensy = [ 2™ (a6 6 - am) (pw)lw ) (1. 1 0.)3()]0)

= [ E e emIO) i 0.)50m)0)

o [ dy performs the longitudinal momentum factorization
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Collinear factorization
Light-Cone Collinear approach: (2-body case)

2 - Spinorial (and color) factorization

@ Use Fierz decomposition of the Dirac (and color) matrices 1(0) ¢(z) and

w(0)i du B(z):

@ ® has now the simple factorized form:
@= [ do {tr(Hyg(op) 1) Shi(0) + (01 Hoglo ) T) 0. S(0)}

T' = ~* and v* ~5 matrices

dX

st) = [ e )5 0m) Pu(0)0)
0155(a) =[Sm0 B0

9 choose axial gauge condition for gluons, i.e. n- A =0 = no Wilson line
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Collinear factorization
Light-Cone Collinear approach: (3-body case)

Factorization of 3-body contributions

@ 3-body contributions start at genuine twist 3
= no need for Taylor expansion

@ Momentum factorization goes in the same way as for 2-body case

@ Spinorial (and color) factorization is similar:
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Collinear factorization
Parametrization of vacuum—to-rho-meson matrix elements (DAs): 2-body correlators

2-body non-local correlators pL it

kinematical twist 3 (WW)
P genuine twist 3

@ vector correlator genuine + kinematical twist 3

(PIB)7010) Z o £y [01(4) (€ m)pu + pa() ;|

@ axial correlator

(o) 9(2)357u1(0)[0) Z my friwa(y) €pnss € ps s

@ vector correlator with transverse derivative

—

(p(D)[D(2)7u i 02 (0)|0) £ my fr 0] (y) pres”

@ axial correlator with transverse derivative
-

(p(P)[D(2)y57 i D (0)]0) Z my fri 05 (y) P €arss €x' P s,

where y (§ = 1 — y) = momentum fraction along p = p; of the quark (antiquark) and

gfgl dyexp[iyp - 2], with 2 = An

= 5 2-body DAs
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Collinear factorization

Parametrization of vacuum—to—rho-meson matrix elements: 3-body correlators

3-body non-local correlators genuine twist 3

@ vector correlator

(p(0)|[9(21) 7 g AL (22)9(0)[0) 2 my, £ B(yr, o) puel

@ axial correlator
n T Z: A - «T
(p(P) W (21)75719 A (22)1(0)|0) = my f5' i D(y1,y2) Puarss €X s s,
where y1, 2, y2 — y1 = quark, antiquark, gluon momentum fraction
Fo 1 1 . . .
and = [dy1 [dyz expliyip- 21 +i(y2 —y1)p- 22], with 212 = An
0 0

= 2 3-body DAs
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Collinear factorization
Equations of motion

Equations of motion twist 2
kinematical twist 3 (WW)

genuine twist 3
genuine + kinematical twist 3

@ Dirac equation leads to

g —

<l(¢ (0)"/}(0))@ 'J}ﬁ(z» =0 ('L Du: ( au +9A,u)
@ Apply the Fierz decomposition to the above 2 and 3-body correlators

— @) FE) = FHER @)+ FErm @) .
@ = 2 Equations of motion:
Grea(yr) + g1 palyr) + 91 (1) + @aly)
+ [ s [ Bl )+ G Dl )] =0 and (1 )

9 In WW approximation: genuine twist 3 =0i.e. B=D =0

[y — )i " (v) — eV (y)]

N[

aly) =

T =3ly—9) e () — " ()]

AN
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Collinear factorization
n—independence

A minimal set of DAs

@ The non-perturbative correlators cannot be obtained from perturbative

QCD ()
@ one should reduce them to a minimal set before using any model

9 this can be achieved by using an additional condition:

independence of the full amplitude with respect to the light-cone vector n
n enters 3 places:

o light-cone direction of z: z = An
o definition of pp polarization: ep - n =0
o axial gauge: n- A=0
= we prove that 3 independent Distribution Amplitudes are needed:
7 - 2 (=nb of equations of motion) - 2 (=nb of eq. from n-ind. cond.)

o1(y) «— 2 body twist 2 correlator
B(y1, y2) <« 3 body genuine twist 3 vector correlator
D(y1, y2) <« 3 body genuine twist 3 axial correlator
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Collinear factorization
n—independence

n—independence in practice

@ pr polarization: eZT =e;, —pue -n keeping n-p=1

ki
@ for the full factorized amplitude:

dA
=H =
A ® S dnr 0
@ rewrite hard terms in one single form, of 2-body type: use Ward identities
Example: hard 3-body — hard 2-body

tr [Hsp(y1,y2) p” B] Byi, y2) =

(tr [Ha(y1) Pl — tr [Ha(y2) P1) B(y1, v2) »

Y1 — Y2
Y1 Y1 Y2
(y1 — y2) puu = )
T— yo 15y 1=y
@ thus, symbolically,
ds
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Collinear factorization
n—independence

Constraints from n—independence  twist 2
kinematical twist 3 (WW)

genuine twist 3
genuine + kinematical twist 3

@ vector correlators

d _
d—yl%(yl)— w1(y1) + 3(y1)

1
dyz

_Cg’ _%92
Y2 — Y1
0

(B(y1,y2) + B(y2,91))
@ axial correlators

1

d d
Z=A(n) = ealn) = G [ == (D(y1,42) + Dly2,11))
Y1 Y2 —
0
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Collinear factorization
A set of independent non-perturbative correlators

twist 2

kinematical twist 3 (WW)
genuine twist 3

genuine + kinematical twist 3

Solution

@ the set of 4 equations (2 EOM + 2 n-independence relations) can be
solved analytically

@ 7 — 3 independent DAs
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Computation and results
Computation of the hard part

2-body diagrams

@ without derivative

N

} twist 2 (vf — pL)

% 3 twist 3 (vp — pr)

9 practical trick for computing 91 H : use the Ward identity

- = ® where —=——=
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Computation and results
Computation of the hard part

3-body diagrams

o

@ “abelian” type
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Computation and results
Recall:

~i — pr impact factor

:2692fp 6ab k2

VL —PL (2 du ¢ N
E)==0"an. | WV poie

pure twist 2 Scaling (from p-factorization point of view)
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Computation and results
Results:

~4 — pr impact factor:

Spin Non-Flip/Flip separation appears

VTP (k2) = O P (k) T, + D07 (K) T,

where

Ty =—(ey-€) and Ty = (e IZ)z(e k) + (Wf )
+ —+

[N

non-flip transitions { flip transitions { *
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Computation and results
Results:

pure twist 3 Scaling (from p-factorization point of view)
P Tf*)pl (k2)

_ _eg mpfp sab {72 / v (E2+2Q2y1(1*y1))k2

[(2y1 — 1) e (1) + ¢4 (v )]

T2v2Q% 2N, y1(1—y1) (B2 + Q2y1 (1 —y1))?
1—y) K’ (2= N:/Cp)Q?
+2 [ dy1 dys [¢Y B (y1, y2)—¢2 D (v1, v vi( [
/ yr vz [43 (Wi, v2) =65 D UZ)] k2 +Q2y1 (1—wy1) [ k2 (y1 —y2+ 1)+ Q%2 y1 (1 —y2)
Ne Q? - v A {2+NC/CF
_ —2 [ dyyd B (y1,y2) +<¢3 D (y1, v —
Or 722 1 o (yQ_yl)] / v1 dyz [43 (y1,92) +¢3 D (v1 uz)} 1w
v1 Q? ( (2 Ne/Cr) y1 K B 2)
k2 +Q%y1 (1 —y1) \k2(y1 —y2+ 1) +Q%y1 (1 —y2)
+£(y1—y2)(1—y2) Q? ]}
Cr 1—y1 E2(1—y1)+ Q2 (y2 —y1) (1 —y2)
and
ab 2 2
q)'v TPT 12y _eg mpfp afa Kk Q T, B _ T,
s E)="%7%q0 an. / N T @Run )’ [P - @u - )
_ _ wk rap, _ _ v v _
4i/dy1 dyQEQ IwoTBR— [Cs D (y1,y2) (my1 +y2 — 1) + ¢3 B (y1,v2) (y1 + y2 1)]

" { (2 - N./CFp)Q® Ne Q® ”
E2(y1 —y2+1)+Q%y1 (1 —y2) Cr y2k?+Q%y1 (y2 —v1)
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Computation and results
Results:

WW limit
@ WW limit: keep only twist 2 + kinematical twist 3 terms (i.e B = D = 0)
@ The only remaining contributions come from the two-body correlators
@ non-flip transition

1
¢W’}"/’T(k2) _ —empfp st /‘dy{ (—DeT" W) +2y738 V(W) + XV (y)
0

n.f. 2\/§Q2 2 N, vy

242 (k% +2Q?

y@) ((y*y) PTWW (y) + oHZWW (l/))
v (k2 +Q2y (1 —y))?

which simplifies, using equation of motion:

/dy[(y D™ () + 2y () + oV ()] = 0

o ab 1 2k2 (k2 4+2Q%yy
@)l Ty = ele O B Chattl) [ey-DeI "W +e3 W )]
n.f. \/§Q2 2 N, } yﬂ(kz +Q2y )
9 flip transition:
ab L 2 52
YT TPT (.2 :_empfp 4 / 2k°Q 1_9 TWW TWW
nop o (ED) Q2. | B+ @ty [( Y)#y (W) +¢a (J)}
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Computation and results

Discussion:

@ The obtained results are gauge invariant:

®TTPT 0 when kE—0

o this is straightforward in the WW limit

o at the full twist 3 order:

o the Cp part of the abelian 3-body contribution cancels the 2-body
contribution after using the equation of motion

9 the N, part of the abelian 3-body contribution cancels the 3-body
non-abelian contribution

9 thus v} — pr impact factor is gauge-invariant only provided the 2 and
3-body contributions have been taken into account in a consistent way
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Computation and results

Discussion:

@ Our results are free of end-point singularities, in both WW approximation
and full twist-3 order calculation:

o the flip contribution obviously does not have any end-point singularity
because of the k2 which regulates them

o the potential end-point singularity for the non-flip contribution is spurious
since <p£(y)7 <p1T(y) vanishes at y = 0,1 as well as B(y1,y2) and D(y1,y2).
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Conclusions
1

@ We have performed a full up to twist 3 computation of the v* — p impact
factor, in the t = t,ip limit.

@ Our result respects gauge invariance. This is achieved only after including
2 and 3 body correlators.

9 It is free of end-point singularities
(this should be contrasted with standard collinear treatment, at moderate
s, where kr-factorization is NOT applicable: see Mankiewicz-Piller).

@ Phenomenological applications will be done in the near future.

@ In this talk we relied on the Light-Cone Collinear approach
(Ellis + Furmanski 4+ Petronzio; Efremov + Teryaev; Anikin + Teryaev),
which is non-covariant, but very efficient for practical computations.

@ This Light-Cone Collinear approach is systematic, and can be extended to
any process, including higher twist effects (but does not preclude potential
end-point singularities)
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2

@ Comparison with a fully covariant approach by Ball+Braun et al:
The dictionary between the two approaches within a full twist 3 treatment
is now established:

V(yi, 1 =y, y2 — 1)

B(ylva) = - )
Y2 — Y1
A 1-— —
Dy, ys) = — (Y1, 1—y2, y2 — 1)
Y2 — Y1
ei(y) = fompd)(y)
esy) = fomeg™ (),
1 Ha(®
valy) = _prmpgTy(y)

9@ We also performed calculations of the same impact factor within the
covariant approach by Ball+Braun et al: calculations proceed in quite
different way : eg. no ] ,—DAs but Wilson line effects are important !!
We got a full agreement with our approach
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