Hard exclusive processes: some basics about theory

Samuel Wallon

Laboratoire de Physique Théorique Université Paris Sud Orsay

PHOTON 09, May 14th, 2009

イロト イポト イヨト イヨト 三日

- A tremendous effort is being performed to extract exclusive data. They are now coming with increasing precision (DVCS, meson production, polarized experiments, ...) at moderate and high energy
- Since a decade, there have been much theoretical developpements in hard exclusive processes.
 - \bullet form factors, Distribution Amplitudes \rightarrow Generalized Distribution Amplitudes
 - DVCS → Generalized Parton Distributions, Transition Distribution Amplitudes
- The key tool is the collinear factorization

Extensions from GPD

• starting from usual DVCS, one allows initial hadron \neq final hadron example:

Pire, Szymanowski '05

which can be further extended by replacing the outoing γ by any hadronic state Amplitude = Transition Distribution Amplitude \bigotimes CF \bigotimes DA (soft) Lansberg, Pire, Szymanowski '06 (see talk of J-P.Lansberg)

$\rho-\text{electroproduction}$

Two steps for factorization

• momentum factorization: use Sudakov decomposition

 $\int d^4k \ S(k, k + \Delta) \ H(q, k, k + \Delta) = \int dk^- \int dk^+ d^2k_\perp \ S(k, k + \Delta) \ H(q, k^-, k^- + \Delta^-)$ • supplement with Fierz identity in spinor + color space

 $\Rightarrow \qquad \mathcal{M} = \operatorname{GPD} \otimes \mathsf{Hard} \mathsf{ part}$

Müller et al. '91 - '94; Radyushkin '96; Ji '97

< □ > < ⑦ > < ミ > < ミ > ミ のへへ 6/36

 ρ – meson production: from the wave function to the DA

What is a ρ -meson in QCD?

It is described by its wave function Ψ which reduces in hard processes to its Distribution Amplitude

 $\int d^{4}\ell \ M(q, \ell, \ell - p_{\rho})\Psi(\ell, \ell - p_{\rho}) = \int d\ell^{+} \ M(q, \ell^{+}, \ell^{+} - p_{\rho}^{+}) \ \int d\ell^{|k_{\perp}^{+}| < \mu_{F}^{2}} d^{2}\ell_{\perp} \Psi(\ell, \ell - p_{\rho})$ Hard part DA $\Phi(u, \mu_{F}^{2})$ (see Chernyak, Zhitnitsky '77; Brodsky, Lepage '79; Efremov, Radyushkin '80; ... in the case of form-factors studies)

Introduction *p*−**electroproduction** Generic results for DAs The specific case of QCD at large s Collinear factorization in the Light
0000000000 00000 00000 00000 00000

ho-electroproduction

ho-meson production: factorization with a GPD and a DA

Two-particles DAs

 $\int d\ell^- \int d\ell_\perp \Rightarrow$ one deal with non-local correlators between fields separated by a light-like distance z (along p_2 , conjugated to + direction by Fourier transf.)

$$\langle 0|\bar{u}(z)\gamma_{\mu}d(-z)|\rho^{-}(P,\lambda)\rangle = f_{\rho}m_{\rho} \left[p_{\mu}\frac{e^{(\lambda)} \cdot z}{p \cdot z} \int_{0}^{1} du \, e^{i(u-\bar{u})p \cdot z} \phi_{\parallel}(u,\mu_{F}^{2}) \right. \\ \left. + e^{(\lambda)}_{\perp\mu} \int_{0}^{1} du \, e^{i(u-\bar{u})p \cdot z} g^{(v)}_{\perp}(u,\mu_{F}^{2}) - \frac{1}{2} z_{\mu} \frac{e^{(\lambda)} \cdot z}{(p \cdot z)^{2}} m_{\rho}^{2} \int_{0}^{1} du \, e^{i(u-\bar{u})p \cdot z} g_{3}(u,\mu_{F}^{2}) \right]$$

twists: 2 (ρ_{L}) + 3 (ρ_{\perp}) + 4 $p = p_{1}, P = p_{\rho}$

 $\langle 0|\bar{u}(z)\gamma_{\mu}\gamma_{5}d(-z)|\rho^{-}(P,\lambda)\rangle = \frac{1}{2} \left[f_{\rho} - f_{\rho}^{T} \frac{m_{u}+m_{d}}{m_{\rho}} \right] m_{\rho}\epsilon_{\mu}^{\ \nu\alpha\beta} e_{\perp\nu}^{(\lambda)} p_{\alpha}z_{\beta} \int_{0}^{1} du \, e^{i\xi p \cdot z} g_{\perp}^{(a)}(u,\mu_{F}^{2})$ twists: 3 (ρ_{\perp}) normalization: from local limit

$$\begin{split} \langle 0|\bar{u}(0)\gamma_{\mu}d(0)|\rho^{-}(P,\lambda)\rangle &= f_{\rho}m_{\rho}e_{\mu}^{(\lambda)}, \qquad \langle 0|\bar{u}(0)\sigma_{\mu\nu}d(0)|\rho^{-}(P,\lambda)\rangle = if_{\rho}^{T}(e_{\mu}^{(\lambda)}P_{\nu} - e_{\nu}^{(\lambda)}P_{\mu}) \\ \\ \mathsf{A}|| \text{ four functions } \phi &= \{\phi_{\parallel}, g_{\perp}^{(v)}, g_{\perp}^{(a)}, g_{3}\} \text{ are normalized as } \int_{0}^{1}du\,\phi(u) = 1 \,. \end{split}$$

$\rho-{\rm electroproduction}$ Chiral-even DA: the hard part

with quark GPDs

with gluonic GPDs

Introduction <u>p-electroproduction</u> Generic results for DAs The specific case of QCD at large s Collinear factorization in the Light

ho-electroproductionSelection rules and factorization status

- chirality = helicity for a particule, chirality = -helicity for an antiparticule
- for massless quarks: QED and QCD vertices = chiral even (no chirality flip during the interaction)
 - \Rightarrow the total helicity of a $q\bar{q}$ produced by a γ^* should be 0
 - \Rightarrow helicity of the $\gamma^* = L_z^{q \bar{q}}$ (z projection of the $q \bar{q}$ angular momentum)
- in the pure collinear limit (i.e. twist 2), $L_z^{q \bar{q}} = 0 \Rightarrow \gamma_L^*$
- at t = 0, no source of orbital momentum from the proton coupling ⇒ helicity of the meson = helicity of the photon
- in the collinear factorization approach, $t \neq 0$ change nothing from the hard side \Rightarrow the above selection rule remains true
- thus: 2 transitions possible (s-channel helicity conservation (SCHC)):
 - $\gamma_L^* \to \rho_L$ production: QCD factorization holds at t=2 at any order (i.e. LL, NLL, etc...)

Collins, Frankfurt, Strikman '97

• $\gamma^*_T
ightarrow
ho_T$ production: QCD factorization has problems at t=3

Mankiewicz-Piller '00
$$\int_{0}^{1} \frac{du}{u}$$
 or $\int_{0}^{1} \frac{du}{1-u}$ diverge (end-point singularity)

 $\rho-$ electroproduction

Some solutions to factorization breaking? Add contribution of 3-particle DAs for ho_T

addition of 3-particle DAs for ρ Anikin, Teryaev '03 (not enough for ρ_T)

Chiral-even three-particle DAs of ρ

$$G_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu} - g[A_{\mu}, A_{\nu}]$$

$$\langle 0|\bar{u}(z)g\,\widetilde{G}_{\mu\nu}(vz)\gamma_{\alpha}\gamma_{5}d(-z)|\rho^{-}(P,\lambda)\rangle = f_{\rho}m_{\rho}p_{\alpha}[p_{\nu}e_{\perp\mu}^{(\lambda)} - p_{\mu}e_{\perp\nu}^{(\lambda)}]\,\mathcal{A}(v,pz)$$

+
$$f_{\rho}m_{\rho}^{3}\frac{e^{(\lambda)}\cdot z}{pz}[p_{\mu}g_{\alpha\nu}^{\perp} - p_{\nu}g_{\alpha\mu}^{\perp}]\,\widetilde{\Phi}(v,pz) + f_{\rho}m_{\rho}^{3}\frac{e^{(\lambda)}\cdot z}{(pz)^{2}}p_{\alpha}[p_{\mu}z_{\nu} - p_{\nu}z_{\mu}]\,\widetilde{\Psi}(v,pz)$$

$$\langle 0|\bar{u}(z)gG_{\mu\nu}(vz)i\gamma_{\alpha}d(-z)|\rho^{-}(P)\rangle = f_{\rho}m_{\rho}p_{\alpha}[p_{\nu}e_{\perp\mu}^{(\lambda)} - p_{\mu}e_{\perp\nu}^{(\lambda)}] \mathcal{V}(v,pz)$$

$$+ f_{\rho}m_{\rho}^{3}\frac{e^{(\lambda)}\cdot z}{pz}[p_{\mu}g_{\alpha\nu}^{\perp} - p_{\nu}g_{\alpha\mu}^{\perp}]\Phi(v,pz) + f_{\rho}m_{\rho}^{3}\frac{e^{(\lambda)}\cdot z}{(pz)^{2}}p_{\alpha}[p_{\mu}z_{\nu} - p_{\nu}z_{\mu}]\Psi(v,pz)$$

twists: 3 + 4

$$\mathcal{A}(v, pz) = \int \mathcal{D}\underline{\alpha} \, e^{-ipz(\alpha_u - \alpha_d + v\alpha_g)} \mathcal{A}(\underline{\alpha})$$

 $\underline{\alpha}$ is the set of three mom. fractions $\underline{\alpha} = \{\alpha_d, \alpha_u, \alpha_g\}$

$$\int \mathcal{D}\underline{\alpha} \equiv \int_0^1 d\alpha_d \int_0^1 d\alpha_u \int_0^1 d\alpha_g \,\delta(1 - \sum \alpha_i)$$

Ball, Braun, Koike, Tanaka '98

ho-electroproduction

Some solutions to factorization breaking? Transverse momenta ℓ_{\perp} as a regulator

Improved collinear approximation

- \bullet keep a transverse ℓ_{\perp} dependency in the $q,\,\bar{q}$ momenta, used to regulate end-point singularities
- soft and collinear gluon exchange between the valence quark are responsible for large double-logarithmic effects which exponentiate
- this is made easier when using the impact parameter space b_\perp conjugated to $\ell_\perp \Rightarrow$ Sudakov factor

$\exp[-S(u,b,Q)]$

- S diverges when $b_{\perp} \sim O(1/\Lambda_{QCD})$ (large transverse separation, i.e. small transverse momenta) or $u \sim O(\Lambda_{QCD}/Q)$ Botts, Sterman '89 \Rightarrow regularization of end-point singularities for $\pi \to \pi \gamma^*$ and $\gamma \gamma^* \pi^0$ form factors, based on the factorization approach Li, Sterman '92
- combining this perturbative resummation tail effect with an ad-hoc non-perturbative gaussian ansatz for the DAs

$\exp[-a^2 |k_{\perp}^2|/(u\bar{u})]$

which gives back the usual asymptotic DA $6u\bar{u}$ when integrating over k_{\perp} \Rightarrow practical tools for phenomenology of meson electroproduction Goloskokov, Kroll '05 Introduction p-electroproduction Generic results for DAs The specific case of QCD at large s Collinear factorization in the Light

ho-electroproduction Chiral-odd sector: Chiral-even versus chiral-odd DAs

Chirality

Define

$$q_{\pm}(z) \equiv \frac{1}{2}(1 \pm \gamma^5)q(z)$$
 $q(z) = q_{+}(z) + q_{-}(z)$

Chiral-even:

conserve chirality

$$ar{q}_{\pm}(z)\gamma^{\mu}q_{\pm}(-z)$$
 or $ar{q}_{\pm}(z)\gamma^{\mu}\gamma^{5}q_{\pm}(-z)$

Chiral-odd:

change chirality

$$\bar{q}_{\pm}(z) \cdot 1 \cdot q_{\mp}(-z), \quad \bar{q}_{\pm}(z) \cdot \gamma^5 \cdot q_{\mp}(-z) \quad \text{or} \quad \bar{q}_{\pm}(z)[\gamma^{\mu}, \gamma^{\nu}]q_{\mp}(-z)$$

QCD conserves chirality $\Longrightarrow \mathcal{A} \sim (Ch.odd)_1 \otimes (Ch.odd)_2$

chiral-odd objects appear in pairs

ho-electroproduction

Chiral-odd two-particles DAs

$$\sigma_{\mu\nu} \equiv \frac{i}{2} [\gamma_{\mu}, \gamma_{\nu}]$$

$$\begin{aligned} \langle 0|\bar{u}(z)\sigma_{\mu\nu}d(-z)|\rho^{-}(P,\lambda)\rangle &= if_{\rho}^{T} \left[\left(e_{\perp\mu}^{(\lambda)}p_{\nu} - e_{\perp\nu}^{(\lambda)}p_{\mu}\right) \int_{0}^{1} du \, e^{i\xi p \cdot z} \phi_{\perp}(u,\mu^{2}) \right. \\ &+ \left(p_{\mu}z_{\nu} - p_{\nu}z_{\mu}\right) \frac{e^{(\lambda)} \cdot z}{(p \cdot z)^{2}} m_{\rho}^{2} \int_{0}^{1} du \, e^{i\xi p \cdot z} h_{\parallel}^{(t)}(u,\mu^{2}) \\ &+ \frac{1}{2} (e_{\perp\mu}^{(\lambda)}z_{\nu} - e_{\perp\nu}^{(\lambda)}z_{\mu}) \frac{m_{\rho}^{2}}{p \cdot z} \int_{0}^{1} du \, e^{i\xi p \cdot z} h_{3}(u,\mu^{2}) \right] \\ \langle 0|\bar{u}(z)d(-z)|\rho^{-}(P,\lambda)\rangle &= \\ &- i \left(f_{\rho}^{T} - f_{\rho} \frac{m_{u} + m_{d}}{m_{\rho}}\right) (e^{(\lambda)} \cdot z) m_{\rho}^{2} \int_{0}^{1} du \, e^{i\xi p \cdot z} h_{\parallel}^{(s)}(u,\mu^{2}) \end{aligned}$$

twists:

•
$$\phi_{\perp}$$
 of ρ_T is twist-2
• $h_{\parallel}^{(s)}$ and $h_{\parallel}^{(t)}$ of ρ_L are twist-3
• h_3 of ρ_T is twist-4

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

 ρ -electroproduction Chiral-odd DAs

Chiral-odd three-particles DAs

$$\begin{aligned} \langle 0|\bar{u}(z)\sigma_{\alpha\beta}\,g\,G_{\mu\nu}(vz)d(-z)|\rho^{-}(P,\lambda)\rangle \\ &= \int_{\rho}^{T}m_{\rho}^{2}\frac{e^{(\lambda)}\cdot z}{2(p\cdot z)}[p_{\alpha}p_{\mu}g_{\beta\nu}^{\perp}-p_{\beta}p_{\mu}g_{\alpha\nu}^{\perp}-p_{\alpha}p_{\nu}g_{\beta\mu}^{\perp}+p_{\beta}p_{\nu}g_{\alpha\mu}^{\perp}]\,\mathcal{T}(v,pz) \\ &+4 \text{ DAs involving }\rho_{T} \end{aligned}$$

twists:

- \mathcal{T} of ρ_L is twist 3
- the 4 DA of ρ_T are twist 4

$$\langle 0|\bar{u}(z)g\,G_{\mu\nu}(vz)d(-z)|\rho^{-}(P,\lambda)\rangle = if_{\rho}^{T}m_{\rho}^{2}[e_{\perp\mu}^{(\lambda)}p_{\nu} - e_{\perp\nu}^{(\lambda)}p_{\mu}]\,S(v,pz)$$

$$\langle 0|\bar{u}(z)ig\,\widetilde{G}_{\mu\nu}(vz)\gamma_{5}d(-z)|\rho^{-}(P,\lambda)\rangle = if_{\rho}^{T}m_{\rho}^{2}[e_{\perp\mu}^{(\lambda)}p_{\nu} - e_{\perp\nu}^{(\lambda)}p_{\mu}]\,\widetilde{S}(v,pz)$$

twists: S and \widetilde{S} of ho_T are twist 4

ho-electroproduction Accessing GPD of transversity with $ho_T-electroproduction$

Electroproduction of ρ_T on linearly polarized N

with the chiral-odd $\langle
ho_T | \bar{q} \, \sigma^{\mu
u} \, q | 0
angle$ DA

AND

with the chiral-odd $\langle p'\uparrow |\bar{q}\,\sigma^{\mu\nu}\,q|p\uparrow\rangle$ GPD

Result: $\mathcal{A} = 0$ at the leading twist 2!!! since $\gamma^{\alpha} [\gamma^{\mu}, \gamma^{\nu}] \gamma_{\alpha} = 0$

Can we avoid the vanishing of \mathcal{M} at the leading twist 2?

<ロト < 合 ト < 言 ト < 言 ト こ の Q (ペ 17 / 36

Our proposition for JLab and Compass

M. El Beiyad, B. Pire, M.Segond, L.Szymanowski, S. W., in preparation イロト イヨト イヨト

18/36

Generic results for DAs Gauge invariance: application to exotic hybrids mesons

• The above non-local correlators fullfill gauge invariance:

 $\langle 0|\bar{\Psi}(z)\gamma_{\mu}\Psi(-z)|\rho\rangle$

should be understood as

$$\langle 0|\bar{\Psi}(z)\gamma_{\mu}[z, -z]\Psi(-z)|
ho\rangle$$

where [,] is a Wilson line along p_2

- Thus, even at twist 2, gluons are there, although hidden!
- Taylor expansion with respect to z involves the covariant derivative D_{μ} \Rightarrow this can be used for studying hard electroproduction of exotic (non $q\bar{q}$ quantum numbers) hybrids mesons $|q\bar{q}g\rangle$ with $J^{PC} = 1^{-+}$
- Thus, γ*p→H⁰p is not suppressed: it is twist 2. Expected order of magnitude of the cross-section comparable with ρ-electroproduction. Anikin, Pire, Szymanowski, Teryaev, S.W. '04, '05 Tests at JLab, Compass ? n.b.: H⁰ could be the π₁(1400) candidate
- same conclusion for the process $\gamma\gamma^* \to H^0$ with the advantage of avoiding the mixing with GPD ibid. '06 Tests at BaBar, BELLE, Bepc-II ?

Introduction _p−electroproduction Generic results for DAs The specific case of QCD at large s Collinear factorization in the Light

Generic results for DAs Equations of motion

Equations of motion

• Dirac equation leads to

$$\langle i(\vec{D}(0)\psi(0))_{lpha}\,\bar{\psi}_{eta}(z)
angle = 0 \qquad (i\,\,ec{D}_{\mu} = i\,\,ec{\partial}_{\,\mu} + A_{\mu})$$

• Apply the Fierz decomposition to the above 2 and 3-body correlators

$$-\langle\psi(x)\,ar\psi(z)
angle=rac{1}{4}\langlear\psi(z)\gamma_\mu\psi(x)
angle\gamma_\mu+rac{1}{4}\langlear\psi(z)\gamma_5\gamma_\mu\psi(x)
angle\gamma_\mu\gamma_5.$$

• \Rightarrow Equation of motion which relates the various 2 and 3-body DAs.

Generic results for DAs Renormalization group equations

Back to the factorization of the process in term of a DA:

$$\mathcal{M}(Q^2) = \Phi^*(x,\mu_F^2) \otimes T_H(x,Q^2,\mu_F^2).$$

The DA $\Phi(u, \mu_F^2)$ satisfies the Efremov-Radyushkin,Brodsky-Lepage equation:

$$\mu_F^2 \frac{\partial}{\partial \mu_F^2} \Phi(x, \mu_F^2) = V(x, u, \mu_F^2) \otimes \Phi(u, \mu_F^2) ,$$

- \bullet the full conformal group SO(4,2) is defined as transformations which only change the scale of the metric
- $Q^2 \to \infty$: hadron states are replaced by a bunch of partons that are collinear to p_1 , which thus lives along $p_2 \Rightarrow z$ variable only
- transformations which map the light-ray in p_2 direction into itself = collinear subgroup of the full conformal group SO(4, 2)= $SL(2, \mathbb{R})$:
 - translations $z \rightarrow z + c$
 - dilatation $z
 ightarrow \lambda z$
 - special conformal transformation

$$z \to z' = \frac{z}{1 + 2 \, a \, z}$$

- algebra of $SL(2,\mathbb{R}) = O(2,1)$
- one remaining additional generator commutes with the 3 previous one: the collinear-twist operator

Introduction p-electroproduction Generic results for DAs The specific case of QCD at large s Collinear factorization in the Light

Generic results for DAs Collinear conformal invariance: Applications

- the light-cone operators which enters the definition of DAs can be expressed in terms of a basis of conformal operators
- conformal transformations commute with exact Equations Of Motion (EOM are not renormalized) \Rightarrow EOM can be solved exactly (with an expansion in terms of the conformal spin n + 2). Ex.: twist 2 DA for ρ_L :

$$\phi_{\parallel}(u,\,\mu_0) = 6u\bar{u}\sum_{n=0}^{\infty}a_n^{\parallel}(\mu)\,C_n^{3/2}(u-\bar{u}) \qquad C_n^{3/2} = {\sf Gegenbauer \ polynomial}$$

Ohrndorf '82; Braun, Filyanov '90 but $a_n^{\parallel}(\mu)$ are unpredicted • the Leading Order renormalization of the conformal operators is diagonal in the conformal spin (counterterms are tree level at this accuracy \Rightarrow they respect the conformal symetry of the classical theory)

$$\phi_{\parallel}(u,\,\mu) = 6u\bar{u}\sum_{n=0}^{\infty} a_n^{\parallel}(\mu_0) \left(\frac{\alpha_s(\mu)}{\alpha_s(\mu_0)}\right)^{\gamma_n^{(0)}/\beta_0} C_n^{3/2}(u-\bar{u}) \stackrel{\mu \to \infty}{\longrightarrow} 6u\bar{u} \text{ asymp. DA}$$

with the anomalous dimensions $\gamma_n^{(0)} = C_F\left(1 - \frac{2}{(n+1)(n+2)} + 4\sum_{m=2}^{n+1} \frac{1}{m}\right)$

at Next to Leading Order conformal symetry is broken; studying conformal anomalies provides the NLO anomalous dimensions and corresponding ERBL kernels Belitsky, Freund, Müller '99 '00

QCD in perturbative Regge limit

- In this limit, the dynamics is dominated by gluons (dominance of spin 1 exchange in t channel)
- BFKL (and extensions: NLL, saturations effects, ...) is expected to dominate with respect to Born order at large relative rapidity.

The specific case of QCD at large s

 $\gamma^*\,\gamma^* \to \rho\,\rho$ as an example

- Use Sudakov decomposition $k = \alpha p_1 + \beta p_2 + k_\perp$ $(p_1^2 = p_2^2 = 0, 2p_1 \cdot p_2 = s)$
- ullet write $d^4k=rac{s}{2}\,dlpha\,deta\,d^2k_\perp$
- *t*-channel gluons with non-sense polarizations ($\epsilon_{NS}^{up} = \frac{2}{s} p_2$, $\epsilon_{NS}^{down} = \frac{2}{s} p_1$) dominate at large *s*

 $\Phi^{\gamma^*(q_1) \to \rho(p_1^{
ho})}: \ \gamma^*_{L,T}(q)g(k_1) \to \rho_{L,T} \, g(k_2) \text{ impact factor}$

QCD gauge invariance:

• probes are colorless

 \Rightarrow impact factor should vanish when $\underline{k} \rightarrow 0$ or $\underline{r} - \underline{k} \rightarrow 0$

At twist 3 level (for γ_T^{*} → ρ_T transition), gauge invariance is a non trivial statement which requires 2 and 3 body correlators

The specific case of QCD at large sPhenomenological applications: Data for meson production at HERA

Recently, a whole bunch of very nice results, with high precision, have been obtained, in particular for vector mesons with detailled polarization studies.

(see the talk of S. Kananov)

example: $\gamma^*_{L,T}(q) + P \rightarrow \rho_{L,T}(p_1) + P$

This process was studied by H1 and ZEUS

- the total cross-section strongly decreases with $Q^2\,$
- dramatic increase with $W^2 = s_{\gamma^* P}$ (transition from soft to hard regime governed by Q^2)

イロト イヨト イヨト イヨト

(from X. Janssen (H1), DIS 2008)

Introduction p-electroproduction Generic results for DAs The specific case of QCD at large s Collinear factorization in the Light

The specific case of QCD at large sPhenomenological applications: meson production at HERA

Production of mesons in diffraction-type experiment at HERA

- the safe case: J/Ψ production factorizes ($u \sim 1/2$: non-relativistic limit for a bound state) combined with k_T -factorization Ryskin '93; Frankfurt, Koepf, Strikman '98; Ivanov, Kirschner, Schäfer, Szymanowski '00; Motyka, Enberg, Poludniowski '02
- exclusive vector meson photoproduction at large t (=hard scale):

 $\gamma(q) + P \to \rho_{L,T}(p_1) + P$

relying on k_T -factorization:

Forshaw, Ryskin '95; Bartels, Forshaw, Lotter, Wüsthoff '96; Forshaw, Motyka, Enberg, Poludniowski '03

- H1, ZEUS data seem to favor BFKL
- but one needs to regularize end-point singularities for ρ_T use of a quark mass $m=m_\rho/2$
- rather poor understanding of the whole spin density matrix
- exclusive vector meson electroproduction

 $\gamma_{L,T}^*(q) + P \rightarrow \rho_{L,T}(p_1) + P$ Goloskokov, Kroll '05 based on the modified collinear factorization for DA coupling and collinear factorization with GPD Introduction p−electroproduction Generic results for DAs The specific case of QCD at large s Collinear factorization in the Light

The specific case of QCD at large sPhenomenological applications: ρ -meson production at HERA and twist 3

A full twist 3 treatment of ρ -electroproduction in k_T -factorisation

- we have computed the $\gamma_T^* \rightarrow \rho_T$ impact factor at twist 3 Anikin, Ivanov, Pire, Szymanowski, S.W. to appear
- we show that:
 - Including in a consistent way all twist 3 contributions, i.e. 2-body and 3-body correlators, gives a gauge invariant impact factor
 - Our treatment is free of end-point singularities due to the presence of k_T and thus does not violates the QCD factorization
 - These points remain valid in the Wandzura-Wilczek approximation (i.e. 3-body correlators = 0, in which case twist 3 effects only arise due to kinematical effects and not from gluonic dynamical degrees of freedom)
- phenomenology remains to be done...

Exclusive $\gamma^{(*)}\gamma^{(*)}$ processes = gold place for testing QCD at large s

Proposals in order to test perturbative QCD in the large s limit (*t*-structure of the hard Pomeron, saturation, Odderon...)

- $\gamma^{(*)}(q) + \gamma^{(*)}(q') \rightarrow J/\Psi J/\Psi$ Kwiecinski, Motyka '98
- $\gamma_{L,T}^*(q) + \gamma_{L,T}^*(q') \rightarrow \rho_L(p_1) + \rho_L(p_2)$ process in $e^+ e^- \rightarrow e^+ e^- \rho_L(p_1) + \rho_L(p_2)$ with double tagged lepton at ILC

Pire, Szymanowski, S. W. '04; Pire, Szymanowski, Enberg, S. W. '06; Ivanov, Papa '06; Segond, Szymanowski, S. W. '07

conclusion: feasible at ILC (high energy and high luminosity); ${\sf BFKL}$ NLL enhancement with respect to Born and DGLAP

 What about the Odderon? C-parity of Odderon = -1 consider γ + γ → π⁺π⁻π⁺π⁻: π⁺π⁻ pair has no fixed C-parity ⇒ Odderon and Pomeron can interfere ⇒ Odderon appear linearly in the charge asymetry Pire, Schwennsen, Szymanowski, S. W. '07 see the talk of F. Schwennsen

other exclusive ultraperipheral processes: see the talk of J. Nystrand

Introduction ρ -electroproduction Generic results for DAs The specific case of QCD at large s Collinear factorization in the Light occorrection control occorrection control

Light-Cone Collinear approach versus Covariant approach

- The Light-Cone Collinear approach, which is self-consistent, while non-covariant, is very efficient for practical computations Anikin, Ivanov, Pire, Szymanowski, S.W. '09
 - inspired by the inclusive case Ellis, Furmanski, Petronzio '83; Efremov, Teryaev '84
 - axial gauge
 - parametrization of matrix element along a light-like prefered direction $z = \lambda n \ (n = 2 p_2/s).$
 - Non-local correlators are defined around this prefered direction, with contributions arising from Taylor expansion up to needed term for a given twist order computation
 - their number is then reduced to a minimal set combining EOM and *n*-independency condition
- another approach (Braun, Ball), fully covariant but less convenient when practically computing coefficient functions, can equivalently be used
- we have established the dictionnary between the two approaches
- this as been explicitly checked for the $\gamma_T^* \to \rho_T$ impact factor at twist 3 Anikin, Ivanov, Pire, Szymanowski, S.W. to appear

Collinear factorization Light-Cone Collinear approach: factorization using Taylor expansion

• Use Sudakov decomposition in the form $(p=p_1,\,n=2\,p_2/s\Rightarrow p\cdot n=1)$

$$l_{\mu} = u p_{\mu} + l_{\mu}^{\perp} + (l \cdot p) n_{\mu}, \quad u = l \cdot n$$

scaling:
$$1 \quad 1/Q \quad 1/Q^2$$

• decompose H(k) around the p direction:

$$H(\ell) = H(up) + \frac{\partial H(\ell)}{\partial \ell_{\alpha}}\Big|_{\ell=up} (\ell - up)_{\alpha} + \dots \text{ with } (\ell - up)_{\alpha} \approx \ell_{\alpha}^{\perp}$$

- twist 3 term $l_{\alpha}^{\perp} \xrightarrow{Fourier}$ derivative of the soft term: $\int d^4z \ e^{-i\ell \cdot z} \langle \rho(p) | \psi(0) \ i \ \overleftrightarrow{\partial_{\alpha^{\perp}}} \overline{\psi}(z) | 0 \rangle$
- after Fierz, this gives

• this leads to introduce 7 DAs at twist 3 (2 and 3 body DAs)

Collinear factorization n-independence

A minimal set of DAs

- The non-perturbative correlators cannot be obtained from perturbative QCD (!)
- one should reduce them to a minimal set before using any model
- this can be achieved by using an additional condition: independency of the full amplitude with respect to the light-cone vector *n*

 \Rightarrow we prove that 3 independent Distribution Amplitudes are needed:

- 7 2 (=nb of EOM) 2 (=nb of eq. from n-ind. cond.)
 - $\phi_1(y) \leftarrow 2 \text{ body twist } 2 \text{ correlator}$
 - $B(y_1, y_2) \leftarrow 3$ body genuine twist 3 vector correlator

 $D(y_1, y_2) \leftarrow 3$ body genuine twist 3 axial correlator

ペロト (部) (音) (音) (音) (音) (34/36)

Collinear factorization n-independence

٩

n-independence in practice

•
$$ho_T$$
 polarization: $e_\mu^{*T} = e_\mu^* - p_\mu \, e^* \cdot \boldsymbol{n}$ keeping $\boldsymbol{n} \cdot p = 1$

• for the full factorized amplitude:

$$\mathcal{A} = H \otimes S$$
 $\frac{d\mathcal{A}}{dn^{\mu}} = 0$, where $\frac{d}{dn^{\mu}} = \frac{\partial}{\partial n^{\mu}} + e^*_{\mu} \frac{\partial}{\partial (e^* \cdot n)}$

 rewrite hard terms in one single form, of 2-body type: use Ward identities Example: hard 3-body → hard 2-body

Introduction p-electroproduction Generic results for DAs The specific case of QCD at large s Collinear factorization in the Light

Conclusion

- since a decade, there have been much progress in the understanding of hard exclusive processes
 - at moderate energies, combined with GPD, there is now a framework starting from first principle to describe a huge number of processes
 - at high energy, the impact representation is a powerful tool for describing exclusive processes in diffractive experiments; they are and will be essential for studying QCD in the hard Regge limit (Pomeron, Odderon, saturation...)
- still, some problems remains:
 - proofs of factorization have been optained only for a very few processes (ex.: $\gamma^* p \to \gamma p$, $\gamma^*_L p \to \rho_L p$, $\gamma^* p \to J/\Psi p$)
 - for some other processes factorization is highly plausible, but not fully demonstrated at any order (ex.: processes involving TDAs)
 - some processes explicitly shows sign of breaking of factorization (ex.: $\gamma_T^* p \rightarrow \rho_T p$ which has end-point singularities at Leading Order)
 - models and results from the lattice for the non-perturbative correlators entering GPDs, DAs, GDAs, TDAs are needed, even at a qualitative level!
 - the effect of QCD evolution and renormalization/factorization scale might be relevant with the increasing precision of data
- links between theoretical and experimental communities are very fruitful
- message to experimentalists: high luminosity e^+e^- machine like BaBar, BELLE, BEPC-II are gold places for exclusive processes studies in $\gamma^*\gamma^{(*)}$ \Rightarrow it is time to realize this and to use the potential of these experiments! We need your help!