Resummation of soft-collinear contributions in DVCS

Samuel Wallon

Université Pierre et Marie Curie and Laboratoire de Physique Théorique CNRS / Université Paris Sud Orsay

XXI International Workshop on Deep-Inelastic Scattering and Related Subjects (DIS 2013) April 24th 2013 Marseille

in collaboration with

- T. Altinoluk (Santiago de Compostela)
- B. Pire (CPhT-X)
- L. Szymanowski (NCBJ, Warsaw)

JHEP 1210 (2012) 049 [arXiv:1207.4609 [hep-ph]]

[arXiv:1206.3115 [hep-ph]]

Introduction	One-loop analysis	Two-loop order	All-loop analysis	Conclusions
0000	000000000000	00	0000	
DV/CS and	TCS at NLO			

One-loop contributions to the coefficient function

Belitsky, Mueller, Niedermeier, Schafer, Phys.Lett.B474, 2000 Pire, Szymanowski, Wagner Phys.Rev.D83, 2011

$$\mathcal{A}^{\mu\nu} = g_T^{\mu\nu} \int_{-1}^1 dx \left[\sum_q^{n_F} T^q(x) F^q(x) + T^g(x) F^g(x) \right]$$

(symmetric part of the factorised amplitude)

Resummations effects are expected

(

• The renormalized quark coefficient functions T^q is

 F^q

$$T^{q} = C_{0}^{q} + C_{1}^{q} + C_{coll}^{q} \log \frac{|Q^{2}|}{\mu_{F}^{2}}$$

$$C_{0}^{q} = e_{q}^{2} \left(\frac{1}{x - \xi + i\varepsilon} - (x \to -x) \right)$$

$$C_{1}^{q} = \frac{e_{q}^{2} \alpha_{S} C_{F}}{4\pi (x - \xi + i\varepsilon)} \left[\log^{2} \left(\frac{\xi - x}{2\xi} - i\varepsilon \right) + \dots \right] - (x \to -x)$$

• Usual collinear approach: single-scale analysis w.r.t. Q^2

• Consider the invariants S and U:

$$\begin{split} \mathcal{S} &= \quad \frac{x-\xi}{2\xi} \, Q^2 \quad \ll \quad Q^2 \quad \text{ when } x \to \xi \\ \mathcal{U} &= -\frac{x+\xi}{2\xi} \, Q^2 \quad \ll \quad Q^2 \quad \text{ when } x \to -\xi \end{split}$$

 \Rightarrow two scales problem; threshold singularities to be resummed

analogous to the log(1-x) resummation for DIS coefficient functions

Soft-collinear resummation effects for the coefficient function

- The resummation is made easier when using the axial gauge $p_1\cdot A=0$ $(p_\gamma\equiv p_1)$
- The dominant diagram are ladder-like

resummed formula (for DVCS), for
$$x \to \xi$$
 :

$$T^{q})^{\text{res}} = \left(\frac{e_{q}^{2}}{x-\xi+i\epsilon}\left\{\cosh\left[D\log\left(\frac{\xi-x}{2\xi}-i\epsilon\right)\right]\right.\\\left.-\frac{D^{2}}{2}\left[9+3\frac{\xi-x}{x+\xi}\log\left(\frac{\xi-x}{2\xi}-i\epsilon\right)\right]\right\}\\\left.+C_{coll}^{q}\log\frac{Q^{2}}{\mu_{F}^{2}}\right) - (x \to -x) \quad \text{with} \quad D = \sqrt{\frac{\alpha_{s}C_{F}}{2\pi}}$$

T. Altinoluk, B. Pire, L. Szymanowski, S. W. JHEP 1210 (2012) 49; [arXiv:1206.3115]

Introduction	One-loop analysis	Two-loop order	All-loop analysis	Conclusions
0000	000000000000	00	0000	
Kinematics,	gauge, etc			

ullet We expand any momentum in the Sudakov basis $p_1,\ p_2$:

$$k = \alpha \, {\pmb p_1} + \beta \, {\pmb p_2} + k_\perp$$

ullet p_2 is the light-cone direction of the two incoming and outgoing partons

$$p_1^2 = p_2^2 = 0$$
, $2p_1 \cdot p_2 = s = \frac{Q^2}{2\xi}$

• Momenta of the incoming and outgoing photons:

$$q_{\gamma^*} = p_1 - 2\,\xi\,p_2\,,\qquad p_1 \equiv q_\gamma$$

- The extraction of soft-collinear singularities in the limit $x \to \pm \xi$ is easier in the light-like gauge $p_1 \cdot A = 0$: in this gauge, gluon physical degrees of freedom are manifest and helicity conservation at each vertex implies that collinear singularities only arise in ladder-like diagrams
- K_n is the contribution of a n-loop ladder to the CF :

$$K_n = -\frac{1}{4}e_q^2 \left(-i\,C_F\,\alpha_s\frac{1}{(2\pi)^2}\right)^n I_n$$

• The issue related to the $i\epsilon$ prescription is solved by computing the CF in the unphysical region $\xi > 1$. After analytical continuation to the physical region $0 \le \xi \le 1$, the physical prescription is then obtained through the shift $\xi \to \xi - i\epsilon$.

Introduction	One-loop analysis	Two-loop order	All-loop analysis	Conclusions
0000	000000000000000000000000000000000000000	00	0000	
Full one-loc	op analysis			

• analyzing the one-loop diagrams

- no approximations!
- reduce the number of denominators in order to simplify the calculation.
- aims (we now assume $x \to +\xi$):
 - to understand which diagrams give contribution at order $rac{lpha_s\,\log^2(\xi-x)}{(x-arepsilon)}$
 - identify the part of the phase space that is responsible for this contribution

Introduction Or	ne-loop an alysis	Two-loop order	All-loop analysis	Conclusions
0000 00	0000000000	00	0000	

Self energy diagram

numerator for S.E. diagram :

 $(\text{Num})_{\text{S.E.}} = \text{tr} \bigg\{ \frac{\not p_2}{\gamma_{\perp}^{\sigma}} \big[\not p_1 + (x - \xi) \not p_2 \big] \gamma^{\nu} \big[\not p_1 + (x - \xi) \not p_2 - \not k \big] \gamma^{\mu} \big[\not p_1 + (x - \xi) \not p_2 \big] \gamma_{\perp \sigma} \bigg\} \\ \times \bigg\{ g_{\mu\nu} - \frac{k_{\mu} p_{1\nu} + k_{\nu} p_{1\mu}}{k \cdot p_1} \bigg\} .$

- a simple algebra shows that (Num)_{gauge} = 0 ⇒ S.E. diagram is the same in Feynman gauge and in light-like gauge.
- In Feynman gauge S.E. diagram gives only single log's!
 [B. Pire, L. Szymanowski, J. Wagner, Phys.Rev. D83 (2011) 034009]
- S.E. diagram does not contribute to $[\log^2(\xi x)]/(x \xi)$ terms!

 Introduction
 One-loop analysis
 Two-loop order
 All-loop analysis
 Conclusions

 0000
 00000000000
 00
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000

• Right Vertex:

$$I_{\rm R.V.} = -\frac{s}{2} \int d\alpha \, d\beta \, d_2 \underline{k} \, 8s \frac{\underline{k}^2}{\beta} (\beta + x - \xi) \frac{1}{s(x - \xi)} \frac{1}{\left[k + (x - \xi)p_2\right]^2} \frac{1}{k^2} \frac{1}{\left[k + p_1 + (x - \xi)p_2\right]^2}$$

The $g_{\mu\nu}$ part of the box diagram reads

$$(\text{Num})_{\text{box } g_{\mu\nu}} = -2 \operatorname{tr} \left\{ \left[\not\!\!\!\! / \!\!\! / \, + (x+\xi) \not\!\!\! / p_2 \right] \not\!\!\! / \!\!\! / _2 \left[\not\!\!\! / \!\!\! / \, + (x-\xi) \not\!\!\! / p_2 \right] \gamma_{\perp}^{\sigma} \left[\not\!\!\! / \, \!\! / \, \!\! / \, + p_1 + (x-\xi) \not\!\!\! / p_2 \right] \gamma_{\perp\sigma} \right\}$$

Noting that p_2 can be written as (Ward identity)

$$p_2^{\mu} = rac{1}{2\xi} \left(\left[k + (x+\xi)p_2
ight] - \left[k + (x-\xi)p_2
ight]
ight)^{\mu}$$

one gets

$$(\text{Num})_{\text{box } g_{\mu\nu}} = -\frac{8}{\xi} \left[k + (x+\xi)p_2 \right]^2 \left\{ k_{\perp}^2 - (\beta+x-\xi)\frac{s}{2} \right\} + \frac{8}{\xi} \left[k + (x-\xi)p_2 \right]^2 \left\{ k_{\perp}^2 - (\beta+x+\xi)\frac{s}{2} + \xi\alpha s \right\}$$

Introduction	One-loop analysis	Two-loop order	All-loop analysis	Conclusions
0000	000000000000	00	0000	
Right vertex.	left vertex and box	x diagram		

The gauge part of the numerator for the box diagram reads

Using the fact that $p_2^2=0,$ then one can write $k o k + (x\pm\xi)p_2$ inside the trace and gets

$$(\text{Num})_{\text{box}} = 8 \left[k + (x - \xi) p_2 \right]^2 \left\{ \frac{1}{\xi} \left[k_{\perp}^2 - (\beta + x + \xi) \frac{s}{2} + \xi \alpha s \right] + \frac{s}{\beta} (1 + \alpha) (\beta + x + \xi) \right\} - 8 \left[k + (x + \xi) p_2 \right]^2 \left\{ \frac{1}{\xi} \left[k_{\perp}^2 - (\beta + x - \xi) \frac{s}{2} \right] - \frac{s}{\beta} (1 + \alpha) (\beta + x - \xi) \right\}$$

 \implies box diagram = right + left vertices:

 Introduction
 One-loop analysis
 Two-loop order
 All-loop analysis
 Conclusions

 0000
 0000000000
 00
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000

Right vertex, left vertex and box diagram

Combining right vertex, left vertex and box diagram

 $I_{\rm box\,+\,L.V.\,+\,R.V.} = I_{\rm E.L.V.} + I_{\rm E.R.V.}$

$$\begin{split} I_{\rm E.L.V.} &= -\frac{s}{2} \int d\alpha \, d\beta \, d_2 \underline{k} \, 8 \bigg\{ \frac{1}{\xi} \bigg[\underline{k}^2 + (\beta + x + \xi) \frac{s}{2} - \xi \alpha s \bigg] - \frac{s}{\beta} (1 + \alpha) (\beta + x + \xi) + \frac{k^2}{\beta} \frac{(\beta + x + \xi)}{(x - \xi)} \bigg\} \\ &\times \frac{1}{k^2} \frac{1}{\left[k + (x + \xi) p_2 \right]^2} \frac{1}{\left[k + p_1 + (x - \xi) p_2 \right]^2} \end{split}$$

$$I_{\text{E.R.V.}} = -\frac{s}{2} \int d\alpha \, d\beta \, d_2 \underline{k} \, (-8) \left\{ \frac{1}{\xi} \left[\underline{k}^2 + (\beta + x - \xi) \frac{s}{2} \right] + \frac{s}{\beta} (1 + \alpha) (\beta + x - \xi) - \frac{\underline{k}^2}{\beta} \frac{(\beta + x - \xi)}{(x - \xi)} \right\} \\ \times \frac{1}{k^2} \frac{1}{\left[k + p_1 + (x - \xi) p_2 \right]^2} \frac{1}{\left[k + (x - \xi) p_2 \right]^2}$$

Introduction	One-loop analysis	Two-loop order	All-loop analysis	Conclusions
	000000000000			
Loop integration	on			

$I_{\rm E.L.V.}$

- Write $d^4k = \frac{s}{2} d\alpha \, d\beta \, d^2 \, k_{\perp} \qquad (k_{\perp}^2 = -\underline{k}^2)$
- \bullet We use Cauchy integration to integrate over α
- There are two contributions :
 - cutting the gluonic line $\rightarrow \alpha_g = \frac{k^2}{s\beta}$
 - $\bullet\,$ cutting the fermionic line $\to \alpha_f = \frac{k^2}{s(\beta+x+\xi)}$
- distribution of the poles in α sets the integration region of β :

$$I_{\rm E.L.V.} = -2\pi i \bigg[\int_0^{\xi-x} d\beta \int_0^\infty d_N \underline{k} \; Res_{\alpha_g} + \int_{-\xi-x}^{\xi-x} d\beta \int_0^\infty d_N \underline{k} \; Res_{\alpha_f} \bigg]$$

- integration over \underline{k} is performed by using dimensional regularization: $N=2-\epsilon_{UV}=2+\epsilon_{IR}$
- \bullet the ultraviolet divergence in \underline{k} integral is taken into account by renormalization
- the IR divergent part is absorbed by the DGLAP-ERBL evolution kernel
- We are only interested in the finite part, which is reminiscent of the IR soft and collinear divergencies

Introduction	One-loop analysis	Two-loop order	All-loop analysis	Conclusions
	000000000000000000000000000000000000000			
Loop integr	ation			

IE.L.V.: the gluonic pole contribution [dominates]

The integration over \underline{k} gives

$$I_{\text{E.L.V.},\text{g}} = 4 \frac{2\pi i}{x-\xi} \int_0^{\xi-x} d\beta \left[\frac{\beta}{\xi(x+\xi)} - \frac{1}{(x+\xi)} + \frac{(\beta+x+\xi)}{(x+\xi)(x-\xi)} - \frac{(\beta+x+\xi)}{2\xi(\beta+x-\xi)} \right] \Gamma(\epsilon_{UV}) \\ \times \left[\frac{s\beta(\beta+x-\xi)}{x-\xi} \right]^{\epsilon_{IR}}$$

- We are only interested in terms that contribute to $\frac{\log^2(\xi-x)}{(x-\xi)}$ terms
- These corresponds to most singular terms, at the limits of β integration.
- For $I_{\rm E.L.V.}$
 - $\frac{1}{\beta}$ terms that are singular at 0
 - $\frac{1}{\beta + x \xi}$ terms that are singular at ξx
- There are no $\frac{1}{\beta}$ terms in $I_{\mathrm{E.L.V.,g}}$
- For $\frac{1}{\beta+x-\xi}$ type of singularity, the contribution is

$$I_{\text{E.L.V.,g}} = -4 \frac{2\pi i}{x - \xi} \frac{1}{2!} \log^2(\xi - x)$$

Actually, this contributions originates from the box diagram term

[backup]

this term is less singular than the term we are looking for

 $I_{\rm E.L.V., f} =$

 $I_{\rm E.L.V., f} \sim 4 \frac{2\pi i}{x - \xi} \frac{1}{2!} \log^2(2\xi)$

no contribution from $I_{E.R.V.}$

[backup]

Introduction	One-loop analysis	Two-loop order	All-loop analysis	Conclusions
0000	0000000000000	00	0000	
Full one-loop a	analysis: summary			

The only contribution to $[\log^2(\xi - x)]/x - \xi$ terms comes from the box diagram in the case of cutting the gluonic line around $\beta + x - \xi \approx 0$ in the phase space

The precision of our calculation does not permit us to fix the multiplicative coefficient a of $(\xi - x)$ under logarithm, i.e. our result can be equivalently written as

$$I_{\text{one loop}}^{\text{dominant}} \approx -4 \frac{2\pi i}{x-\xi} \frac{1}{2!} \log^2[a(\xi-x)]$$

- The coefficient a is fixed to $\frac{1}{2\xi}$ by comparing the $\log^2(\xi-x)$ terms in the exact NLO result.
- The shift $\xi \to \xi i\epsilon$ correctly takes into account the imaginary part.

our final formula reads:

$$I_{\text{one loop}}^{\text{dominant}} \approx -4 \frac{2\pi i}{x - \xi + i\epsilon} \frac{1}{2!} \log^2 \left[\frac{\xi - x}{2\xi} - i\epsilon \right]$$

 Introduction
 One-loop analysis
 Two-loop order
 All-loop analysis
 Conclusions

 0000
 000000000000
 00
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 00000
 0000
 0000

One-loop in semi-eikonal approximation

Aim : obtain the same result by using eikonal techniques on the left fermionic line of the box diagram

dominant momentum flow along p_2 direction

The corresponding integral
$$\rightarrow I_1 = \frac{s}{2} \int d\alpha_1 \, d\beta_1 \, d_2 \underline{k}_1 \, (\text{Num})_1 \frac{1}{L_1^2} \frac{1}{S^2} \frac{1}{R_1^2} \frac{1}{k_1^2}$$

with
$$(\text{Num})_1 = \text{tr} \{ \not p_2 \gamma_\mu [k_1 + (x - \xi) \not p_2] \theta [k_1 + (x + \xi) \not p_2] \gamma_\nu \} d^{\mu\nu}$$

and
$$L_1^2 = \left[k_1 + (x+\xi)p_2\right]^2$$
, $S^2 = \left[k_1 + p_1 + (x-\xi)p_2\right]^2$, $R_1^2 = \left[k_1 + (x-\xi)p_2\right]^2$

• use eikonal coupling on the left quark line and treat the gluon as soft with respect to this quark \Rightarrow in the quark numerator L_1 :

$$[k_1 + (x+\xi)p_2] \rightarrow (x+\xi)p_2$$

• gluon is soft w.r.t. s-channel fermionic line $\Rightarrow \alpha_1 \ll 1$.

 $\theta = \gamma_{\perp}^{\sigma} [\not\!\!\! k_1 + \not\!\!\! p_1 + (x - \xi) \not\!\!\! p_2] \gamma_{\sigma \perp} \rightarrow -2 \not\!\!\! p_1$

Introduction	One-loop analysis	Two-loop order	All-loop analysis Conclusions
0000	00000000000000	00	0000
A 1 1	and the second		

One-loop in semi-eikonal approximation

The dominant contribution comes from the gluon pole.

on mass shell:
$$d^{\mu\nu} = -\sum_{\lambda} \epsilon^{\mu}_{(\lambda)} \epsilon^{\nu}_{(\lambda)}$$

The numerator becomes

$$(\text{Num})_1 = -2(x+\xi) \sum_{\lambda} \text{tr} \{ \not p_2 \gamma_{\mu} [\not k_1 + (x-\xi) \not p_2] \not p_1 \not p_2 \not \xi_{(\lambda)} \} (-\epsilon^{\mu}_{(\lambda)})$$

- Sudakov decomposition of $\epsilon^{\mu}_{(\lambda)}$ in p_1 gauge $\rightarrow \epsilon^{\mu}_{(\lambda)} = \epsilon^{\mu}_{\pm(\lambda)} 2 \frac{\epsilon_{\pm(\lambda)} \cdot k_{\pm 1}}{\beta_{1s}} p_1^{\mu}$
- Summing over the polarizations $\rightarrow \sum_{\lambda} \epsilon_{\perp(\lambda)} \cdot k_{\perp 1} \epsilon^{\mu}_{(\lambda)} = \left(-k^{\mu}_{\perp 1} + 2\frac{k^{2}_{\perp 1}}{\beta_{1}s}p^{\mu}_{1}\right)$

$$\begin{split} (\mathrm{Num})_1 &= \frac{2(x+\xi)}{\beta_1} \quad \left[\begin{array}{c} \frac{2(x-\xi)}{\beta_1} + 1 \end{array} \right] 4 \, s \frac{k^2}{k_1^2} \\ & \swarrow \quad & \swarrow \quad & \swarrow \quad & \swarrow \quad \\ \text{left eikonal coupling} \quad \text{right eikonal coupling} \quad \text{non eikonal correction} \end{split}$$

• After Cauchy integration over α_1 and considering only the $1/(\beta + x - \xi)$ type of singularities one gets

$$I_1 = -4\frac{2\pi i}{x-\xi} \int_0^{\xi-x} d\beta_1 \int_0^\infty d_N \underline{k}_1 \frac{1}{(\beta_1+x-\xi)} \frac{1}{\underline{k}_1^2 - (\beta_1+x-\xi)s}$$

• The integration over \underline{k} and β leads to

dominant momentum flow along p_2 direction

- The log² terms we are resumming arise from soft-collinear singularities :
 - Dominance of on-shell gluons contributions
 - Strong ordering in $|\underline{k}_i|$ and β_i

 $|\underline{k}_2| \gg |\underline{k}_1| \quad \text{and} \quad x \sim \xi \gg |\beta_1| \sim |x - \xi| \gg |x - \xi + \beta_1| \sim |\beta_2| \quad \text{and} \quad 1 \gg |\alpha_2| \gg |\alpha_1|$

 Other diagrams which are not ladder-like or do not respect this strong ordering are suppressed [backup]

 L_1

Using eikonal coupling on the left fermionic line, the numerator is given as

$$(\operatorname{Num})_{2} = -4s \underbrace{\frac{-2\underline{k}_{1}^{2}(x+\xi)}{\beta_{1}} \left[1 + \frac{2(x-\xi)}{\beta_{1}}\right]}_{\text{gluon 1}} \underbrace{\frac{-2\underline{k}_{2}^{2}(x+\xi)}{\beta_{2}} \left[1 + \frac{2(\beta_{1}+x-\xi)}{\beta_{2}}\right]}_{\text{gluon 2}}$$

and the propagators

$$\begin{array}{rcl} L_1^2 &=& \alpha_1(x+\xi)s &, & R_1^2=-\underline{k}_1^2+\alpha_1(\beta_1+x-\xi)s &, & S^2=-\underline{k}_2^2+(\beta_1+\beta_2+x-\xi)s\\ L_2^2 &=& \alpha_2(x+\xi)s &, & R_2^2=-\underline{k}_2^2+\alpha_2(\beta_1+\beta_2+x-\xi)s \,, \end{array}$$

After integrating over α_1 and α_2 and using the properties of dimensional regularization

$$I_{2} = -4\frac{(2\pi i)^{2}}{x-\xi} \int_{0}^{\xi-x} d\beta_{1} \int_{0}^{\xi-x-\beta_{1}} d\beta_{2} \frac{1}{\beta_{1}+x-\xi} \frac{1}{\beta_{1}+\beta_{2}+x-\xi} \\ \times \int_{0}^{\infty} d_{N} \underline{k}_{2} \int_{\underline{k}_{2}^{\infty}}^{\infty} d_{N} \underline{k}_{1} \frac{1}{\underline{k}_{1}^{2}} \frac{1}{\underline{k}_{2}^{2}-(\beta_{1}+\beta_{2}+x-\xi)s}$$

Integrating over β_i and \underline{k}_i and using the matching condition, the final result is

$$I_{2}^{\text{fin.}} = -4\frac{(2\pi i)^{2}}{x-\xi+i\epsilon}\frac{1}{4!}\log^{4}\left[\frac{\xi-x}{2\xi}-i\epsilon\right]$$

Computation of the *n*-loop ladder-like diagram

Generalisation of the 1- and 2-loop diagrams

 $x \sim \xi \gg |\beta_1| \sim |x - \xi| \gg |x - \xi + \beta_1| \sim |\beta_2| \gg \cdots \gg |x - \xi + \beta_1 + \beta_2 - \cdots + \beta_{n-1}| \sim |\beta_n|$

- eikonal coupling on the left
- coupling on the right goes beyond eikonal
- Integral for *n*-loop:

$$I_n = \left(\frac{s}{2}\right)^n \int d\alpha_1 \, d\beta_1 \, d_2 \underline{k}_1 \cdots \int d\alpha_n \, d\beta_n \, d_2 \underline{k}_n \, \, (\text{Num})_n \frac{1}{L_1^2} \cdots \frac{1}{L_n^2} \frac{1}{S^2} \frac{1}{R_1^2} \cdots \frac{1}{R_n^2} \frac{1}{k_1^2} \cdots \frac{1}{k_n^2}$$

• Numerator:

$$(\text{Num})_{2} = -4s \underbrace{\frac{-2\underline{k}_{1}^{2}(x+\xi)}{\beta_{1}} \left[1 + \frac{2(x-\xi)}{\beta_{1}}\right]}_{\text{gluon 1}} \underbrace{\frac{-2\underline{k}_{2}^{2}(x+\xi)}{\beta_{2}} \left[1 + \frac{2(\beta_{1}+x-\xi)}{\beta_{2}}\right]}_{\text{gluon 2}} \cdots \underbrace{\frac{-2\underline{k}_{n}^{2}(x+\xi)}{\beta_{n}} \left[1 + \frac{2(\beta_{n-1}+\dots+\beta_{1}+x-\xi)}{\beta_{n}}\right]}_{\text{gluon n}}_{\text{gluon n}}$$

Propagators:

$$\begin{split} L_1^2 &= \alpha_1(x+\xi)s \ , \qquad R_1^2 = -\underline{k}_1^2 + \alpha_1(\beta_1 + x - \xi)s \ , \\ L_2^2 &= \alpha_2(x+\xi)s \ , \qquad R_2^2 = -\underline{k}_2^2 + \alpha_2(\beta_1 + \beta_2 + x - \xi)s \ , \\ \vdots \\ L_n^2 &= \alpha_n(x+\xi)s \ , \qquad R_n^2 = -\underline{k}_n^2 + \alpha_n(\beta_1 + \dots + \beta_n + x - \xi)s \ , \end{split}$$

 $\begin{array}{c|cccc} & & & & & & & \\ \hline \ & & & & & \\ \hline \ & \\ \hline \ & & \\ \hline \ & & \\ \hline \ & \\ \hline$

Final step

$$I_n = -4\frac{(2\pi i)^n}{x-\xi} \int_0^{\xi-x} d\beta_1 \cdots \int_0^{\xi-x-\beta_1-\cdots-\beta_{n-1}} d\beta_n \frac{1}{\beta_1+x-\xi} \cdots \frac{1}{\beta_1+\cdots+\beta_n+x-\xi}$$
$$\times \int_0^\infty d_N \underline{k}_n \cdots \int_{\underline{k}_2^2}^\infty d_N \underline{k}_1 \frac{1}{\underline{k}_1^2} \cdots \frac{1}{\underline{k}_{n-1}^2} \frac{1}{\underline{k}_n^2 - (\beta_1+\cdots+\beta_n+x-\xi)s}$$

integration over \underline{k}_i and eta_i leads to our final result :

$$I_n^{\text{fin.}} = -4\frac{(2\pi i)^n}{x-\xi+i\epsilon} \frac{1}{(2n)!} \log^{2n} \left[\frac{\xi-x}{2\xi} - i\epsilon\right]$$

Resummation :

remember that
$$K_n=-rac{1}{4}e_q^2\left(-i\,C_F\,lpha_srac{1}{(2\pi)^2}
ight)^n I_n$$

$$\left(\sum_{n=0}^{\infty} K_n\right) - (x \to -x) = \frac{e_q^2}{x - \xi + i\epsilon} \cosh\left[D\log\left(\frac{\xi - x}{2\xi} - i\epsilon\right)\right] - (x \to -x)$$

where
$$D=\sqrt{rac{lpha_s C_F}{2\pi}}$$
 23/25

Introduction	One-loop analysis	Two-loop order	All-loop analysis	Conclusions
0000	0000000000000	00	0000	
Resummed fo	rmula			

Inclusion of our resummed formula into the NLO coefficient function

The inclusion procedure is not unique and it is natural to propose two choices:

 $\bullet\,$ modifying only the Born term and the \log^2 part of the C_1^q and keeping the rest of the terms untouched :

$$\begin{split} (T^q)^{\text{res1}} &= \left(\frac{e_q^2}{x-\xi+i\epsilon} \bigg\{ \cosh\left[D\log\left(\frac{\xi-x}{2\xi}-i\epsilon\right)\right] - \frac{D^2}{2} \bigg[9 + 3\frac{\xi-x}{x+\xi}\log\left(\frac{\xi-x}{2\xi}-i\epsilon\right)\bigg] \bigg\} \\ &+ C_{coll}^q \log\frac{Q^2}{\mu_F^2} \bigg) - (x \to -x) \end{split}$$

 \bullet the resummation effects are accounted for in a multiplicative way for C_0^q and C_1^q :

$$\begin{split} (T^q)^{\mathrm{res2}} &= \left(\frac{e_q^2}{x-\xi+i\epsilon}\cosh\left[D\log\left(\frac{\xi-x}{2\xi}-i\epsilon\right)\right] \left[1-\frac{D^2}{2}\left\{9+3\frac{\xi-x}{x+\xi}\log\left(\frac{\xi-x}{2\xi}-i\epsilon\right)\right\}\right] \\ &+ C_{coll}^q\log\frac{Q^2}{\mu_F^2}\right) - (x \to -x) \end{split}$$

These resummed formulas differ through logarithmic contributions which are beyond the precision of our study.

Introduction	One-loop analysis	Two-loop order	All-loop analysis	Conclusions
0000	000000000000	00	0000	
Conclusions				

- The resummation of soft-collinear gluon radiation effects allowed us to get a close all-order formula that modifies significantly the coefficient function in the specific region x near $\pm \xi$.
- Our analysis can be used for the gluon coefficient function [In progress].
- The measurement of the phenomenological impact of this procedure on the data analysis needs further analysis with the implementation of modeled generalized parton distributions [backup].
- Our analysis could and should be applied to other processes: TCS [done], exclusive meson production, form factors... [In progress].
- A formulation of resummation in our exclusive case in terms of (conformal) moments is not yet available. This would generalize analogous resummation of inclusive DIS cross-section which were performed in terms of Mellin moments.
- Our one-loop treatment involves a non-symmetric treatment for gluon emission. This whole result can presumably be obtained based on the Low theorem (known for the Bremsstrahlung in QED) [F. Low 1958 PRD]: the classical radiation should be fully extracted from the elastic amplitude (in our case the Born order hand-bag diagram) [In progress]

Loop integration

$I_{{ m E.L.V.}}$: the fermionic pole contribution

The integration over \underline{k} gives

$$I_{\text{E.L.V.,f}} = 4 \frac{2\pi i}{(x+\xi)2\xi} \int_{-\xi-x}^{\xi-x} d\beta \left\{ (\beta+x+\xi) \left[\frac{1}{\xi} + \frac{1}{x-\xi} + \frac{(x+\xi)}{(x-\xi)} \frac{1}{(\beta+x-\xi)} \right] - 1 \right\} \Gamma(\epsilon_{UV}) \times \left[\frac{s(\beta+x+\xi)(\beta+x-\xi)}{2\xi} \right]^{\epsilon_{IR}}$$

• There are no $\frac{1}{\beta + x + \xi}$ type of terms!

For $\frac{1}{\beta+x-\xi}$ type of singularity, the contribution is

$$I_{\rm E.L.V., f} = 4 \frac{2\pi i}{x - \xi} \frac{1}{2!} \log^2(2\xi)$$

this term is less singular than the term we are looking for

Loop integration

 $I_{\rm E.R.V.}$

• gluonic contribution
$$\rightarrow \alpha_g = \frac{k^2}{s\beta}$$
 fermionic contribution $\rightarrow \alpha_f = \frac{k^2}{s(\beta+x-\xi)}$
 $I_{\text{E.R.V.}} = -2\pi i \left[\int_0^{\xi-x} d\beta \int_0^{\infty} d_N \underline{k} \operatorname{Res}_{\alpha_g} + \int_{-\xi-x}^{\xi-x} d\beta \int_0^{\infty} d_N \underline{k} \operatorname{Res}_{\alpha_f} \right]$

with

$$Res_{\alpha_g} = 4\frac{1}{(x-\xi)^2} \bigg[\frac{\beta}{\xi} + 1 - \frac{(\beta+x-\xi)}{x-\xi} - \frac{(x-\xi)}{2\xi} \bigg] \frac{1}{\underline{k}^2 + \frac{\beta(\beta+x+\xi)s}{x-\xi}} + 4\frac{1}{(x-\xi)} \bigg[\frac{1}{2\xi} + \frac{1}{\beta} \bigg] \frac{1}{\underline{k}^2}$$

$$Res_{\alpha_{f}} = -4\frac{1}{(x-\xi)} \left\{ \left[\frac{1}{\xi(\beta+x-\xi)} + \frac{1}{\beta(\beta+x-\xi)} - \frac{1}{\beta(x-\xi)} \right] + s\left(\frac{1}{2\xi} + \frac{1}{\beta}\right) \frac{1}{\underline{k}^{2}} \right\}$$

 \Rightarrow fermionic contribution vanishes

 \Rightarrow no $1/\beta$ or $1/(\beta+x-\xi)$ type of singularity in gluonic contribution

no contribution from $I_{E.R.V.}$

backup ○○●○○○○○○○

Suppressed 2-loop diagrams

Cross diagram

• The dominant contribution is provided by a strong ordering

- of transverse momenta
- of collinear momenta

$$|\underline{k}_2| \gg |\underline{k}_1|$$
 and $x \sim \xi \gg |\beta_1| \gg |\beta_2|$

• Within this ordering:

$$I = 4s(2\pi i)^2 \int_0^{\xi - x} d\beta_1 \int_0^{\xi - x - \beta_1} d\beta_2 \int_0^{\infty} d_2 \underline{k}_2 \int_0^{\underline{k}_2^2} d2 \underline{k}_1 \frac{1}{x - \xi} \frac{1}{\underline{k}_2^2(x - \xi)} \frac{1}{\underline{k}_2^2} \frac{1}{\underline{k}_2^2 - (\beta_1 + \beta_2 + x - \xi)\varepsilon} d\beta_2 \frac{1}{\xi} \frac{1}{$$

• no \underline{k}_1 dependence! \Rightarrow one less power of $\log(\xi-x)$

• this cross diagram does not generate maximal collinear singularity!

Suppressed 2-loop diagrams

Ladder diagram with reverse ordering

• Left : natural ordering gives $\log^4(\xi - x)$. Maximal number of \underline{k}_i for each i

• Right : reverse ordering gives less powers of $\log^4(\xi - x)$. No $\underline{k_2}!$ \Rightarrow Second rule:

(ii) Each loop should involve a maximal number of collinear singularities, which manifest themselves as maximal powers of $1/\underline{k}_i^2$ for each *i*, after the α_i integration.

Suppressed 2-loop diagrams

Diagram with gluon coupled to the s-channel quark

- Left: $\underline{k}_2^2 \gg \underline{k}_1^2$: the number of collinear singularities originating from k_1 is not maximal \Rightarrow violates rule (ii)!
- Right: $\underline{k}_1 \gg \underline{k}_2$: the virtuality of the upper left fermionic propagator is $\underline{k}_2^2 + \Delta$ where $\Delta = -(x \xi + \beta_2)s$. This lowers the level of singularity, again leading to a suppressed contribution.
- \Rightarrow Third rule :

(iii) Any coupling of a gluon to the s-channel fermionic line leads to a suppressed contribution.

Suppressed 2-loop diagrams

Fermion self-energy diagrams

key point : s-channel fermion virtuality = $\underline{k}_1^2 + \Delta$, where $\Delta = -(x - \xi + \beta_1)s$.

 Δ does not involve $\beta_2 \Rightarrow$ reduces the power of $\log(\xi - x)$ after β_2 integration

 \Rightarrow Fourth rule :

(iv) The diagram should be sufficiently non-local in order that the s-channel fermionic line involves the whole p_2 flux.

Other suppressed diagrams (rule (ii))

violate the rule:

(ii) Each loop should involve a maximal number of collinear singularities, which manifest themselves as maximal powers of $1/\underline{k}_i^2$ for each *i*, after the α_i integration.

Suppressed 2-loop diagrams

Other suppressed diagrams (rule (iii))

violate the rule:

(iii) Any coupling of a gluon to the s-channel fermionic line leads to a suppressed contribution.

Suppressed 2-loop diagrams

Other suppressed diagrams (rule (iv))

violate the rule:

(iv) The diagram should be sufficiently non-local in order that the s-channel fermionic line involves the whole p_2 flux.

Beyond the 2-loop level

Dominance of the ladder-like diagrams

The two-loop analysis showed that only ladder-like diagrams give contribution to $\alpha_s^2 \frac{\log^4(\xi-x)}{x-\xi}$ terms.

- Beyond the 2-loop level : recursive argument.
 - at 3-loop level the only missing building block is the four-gluon vertex
 - four-gluon vertex = contraction of two 3-gluon (subleading) diagrams with one less propagator.

 \Rightarrow this kind of diagrams are also subleading

- Dress a 2-loop (or n loop) ladder diagram from the right fermionic line :
- only abelian-like diagrams are allowed
- can not end on the right fermionic line \rightarrow (local) violates rule (iv)
- can not end on the s-channel fermionic line \rightarrow violates rule (iii)
- crossing of any gluon line is not permitted \rightarrow violates rule (ii)
 - \Rightarrow Only ladder-like diagrams are allowed

Phenomenological implications

- We use a Double Distribution based model
 - S. V. Goloskokov and P. Kroll, Eur. Phys. J. C 50, 829 (2007)
- Blind integral in the whole x-range: amplitude = NLO result $\pm 1\%$
- To respect the domain of applicability of our resummation procedure:
 - ullet restrict the use of our formula to $\xi-a\gamma<|x|<\xi+a\gamma$
 - width $a\gamma$ defined through $|D\log(\gamma/(2\xi))|=1$
 - ullet theoretical uncertainty evaluated by varying a
 - a more precise treatment is beyond the leading logarithmic approximation

$$R_{a}(\xi) = \frac{\left[\int_{\xi-a\gamma}^{\xi+a\gamma} + \int_{-\xi-a\gamma}^{-\xi+a\gamma}\right] dx (C^{\text{res}} - C_{0} - C_{1}) H(x,\xi,0)}{\left|\int_{-1}^{1} dx \left(C_{0} + C_{1}\right) H(x,\xi,0)\right|}$$

 $Re[R_a(\xi)]$: black upper curves $Im[R_a(\xi)]$: grey lower curves

$$a = 1$$
 (solid)
 $a = 1/2$ (dotted)
 $a = 2$ (dashed)