Introduction

Collinear factorizations

A few applications Problems

QCD at large s

Beyond leading twist C

Conclusion

Some recent developments in the theory of hard exclusive processes

Samuel Wallon

Université Pierre et Marie Curie and Laboratoire de Physique Théorique CNRS / Université Paris Sud Orsay

LPTHE

April 12th 2013

Exclusive processes are theoretically challenging

How to deal with QCD?

example: Compton scattering

- Aim: describe *M* by separating:
 - quantities non-calculable perturbatively some tools:
 - Discretization of QCD on a 4-d lattice: numerical simulations

• AdS/CFT \Rightarrow AdS/QCD : $AdS_5 \times S^5 \leftrightarrow$ QCD Polchinski, Strassler '01 for some issues related to Deep Inelastic Scattering (DIS): B. Pire, L. Szymanowski, C. Roiesnel, S. W. Phys.Lett.B670 (2008) 84-90 for some issues related to Deep Virtual Compton Scattering (DVCS): C. Marquet, C. Roiesnel, S. W. JHEP 1004:051 (2010) 1-26

pertubatively calculable quantities

• We will here focus on theory and phenomenology of exclusive processes for which the dynamics is governed by QCD in the perturbative regime

Exclusive processes are phenomenologically challenging

Key question of QCD:

how to obtain and understand the tri-dimensional structure of hadrons in terms of quarks and gluons?

Can this be achieved using hard exclusive processes?

- The aim is to reduce the process to interactions involving a small number of *partons* (quarks, gluons), despite confinement
- This is possible if the considered process is driven by short distance phenomena ($d \ll 1\,{
 m fm}$)

 $\implies \alpha_s \ll 1$: Perturbative methods

 One should hit strongly enough a hadron Example: electromagnetic probe and form factor

 τ electromagnetic interaction $\sim \tau$ parton life time after interaction $\ll \tau$ caracteristic time of strong interaction

To get such situations in exclusive reactions is very challenging phenomenologically: the cross sections are very small

Introduction	Collinear factorizations	A few applications	Problems	QCD at large s	Beyond leading twist	Conclusion
	0000000000	000000000000000000000000000000000000000	00	000000000	000000000000	
Introductio	n ses in OCD					

Hard processes in QCD

• This is justified if the process is governed by a hard scale:

- virtuality of the electromagnetic probe in elastic scattering $e^{\pm} p \rightarrow e^{\pm} p$ in Deep Inelastic Scattering (DIS) $e^{\pm} p \rightarrow e^{\pm} X$ in Deep Virtual Compton Scattering (DVCS) $e^{\pm} p \rightarrow e^{\pm} p \gamma$
- $\bullet\,$ Total center of mass energy in $e^+e^- \to X$ annihilation
- $t ext{-channel}$ momentum exchange in meson photoproduction $\gamma\,p o M\,p$
- A precise treatment relies on factorization theorems
- The scattering amplitude is described by the convolution of the partonic amplitude with the non-perturbative hadronic content

Introduction	Collinear factorizations	A few applications	Problems	QCD at large s	Beyond leading twist	Conclusion
Introduc	tion					

The partonic point of view... and its limitations

• Counting rules:

$$F_n(q^2) \simeq \frac{C}{(Q^2)^{n-1}}$$
 $n =$ number of minimal constituents:
 $\begin{cases} meson: n = 2 \\ baryon: n = 3 \end{cases}$

Brodsky, Farrar '73

• Large angle (i.e. $s \sim t \sim u$ large) elastic processes $h_a h_b \rightarrow h_a h_b$

e.g. :
$$\pi\pi o \pi\pi$$
 or $p\,p o p\,p$

$$\frac{d\sigma}{dt} \sim \left(\frac{\alpha_S(p_{\perp}^2)}{s}\right)^{n-2} n = \# \text{ of external fermionic lines } (n = 8 \text{ for } \pi\pi \to \pi\pi)$$

Brodsky, Lepage '81

Other contributions might be significant, even at large angle: e.g. $\pi\pi o \pi\pi$

Landshoff '74 mecanism: $\frac{d\sigma_L}{dt} \sim \left(\frac{1}{s}\right)^5$ absent with at least one $\gamma^{(*)}$ (point-like coupling)= / 58

Introduction	Collinear factorizations	A few applications	Problems	QCD at large s	Beyond leading twist	Conclusion
	0000000000	000000000000000000000000000000000000000	00	000000000	000000000000	
Introductic DIS	n					

Accessing the perturbative proton content using inclusive processes no $1/Q \ {\rm suppression}$

example: DIS

• x_B = proton momentum fraction carried by the scattered quark • 1/Q = transverse resolution of the photonic probe $\ll 1/\Lambda_{QCD}$

Introduction	Collinear factorizations	A few applications	Problems	QCD at large s	Beyond leading twist	Conclusion
	0000000000	000000000000000000000000000000000000000	00	000000000	000000000000	
Introductic DIS	on					

The various regimes governing the perturbative content of the proton

• "usual" regime: x_B moderate ($x_B \gtrsim .01$): Evolution in Q governed by the QCD renormalization group (Dokshitser, Gribov, Lipatov, Altarelli, Parisi equation)

$$\frac{\sum_{n} (\alpha_s \ln Q^2)^n + \alpha_s \sum_{n} (\alpha_s \ln Q^2)^n + \cdots}{\text{LLQ}}$$
 NLLQ

• perturbative Regge limit: $s_{\gamma^*p} \to \infty$ i.e. $x_B \sim Q^2/s_{\gamma^*p} \to 0$ in the perturbative regime (hard scale Q^2) (Balitski Fadin Kuraev Lipatov equation)

$$\frac{\sum_{n} (\alpha_s \ln s)^n + \alpha_s \sum_{n} (\alpha_s \ln s)^n + \cdots}{\text{LLs}}$$
 NLLs

From inclusive to exclusive processes

Experimental effort

- Inclusive processes are not 1/Q suppressed (e.g. DIS); Exclusive processes are suppressed
- Going from inclusive to exclusive processes is difficult

• High luminosity accelerators and high-performance detection facilities HERA (H1, ZEUS), HERMES, JLab@6 GeV (Hall A, CLAS), BaBar, Belle, BEPC-II (BES-III) future: LHC, COMPASS-II, JLab@12 GeV, LHeC, EIC, ILC

- What to do, and where?
 - Proton form factor: JLab@6 GeV future: PANDA (timelike proton form factor through $p\bar{p}\to e^+e^-)$
 - e^+e^- in $\gamma^*\gamma$ single-tagged channel: Transition form factor $\gamma^*\gamma \to \pi$, exotic hybrid meson production BaBar, Belle, BES,...
 - Deep Virtual Compton Scattering (GPD) HERA (H1, ZEUS), HERMES, JLab@6 GeV future: JLab@12GeV, COMPASS-II, EIC, LHeC
 - Non exotic and exotic hybrid meson electroproduction (GPD and DA), etc... NMC (CERN), E665 (Fermilab), HERA (H1, ZEUS), COMPASS, HERMES, CLAS (JLab)
 - TDA (PANDA at GSI)
 - TMDs (BaBar, Belle, COMPASS, ...)
 - Diffractive processes, including ultraperipheral collisions LHC (with or without fixed targets), ILC, LHeC

Theoretical efforts

Very important theoretical developments during the last decade

• Key words:

DAs, GPDs, GDAs, TDAs ... TMDs

- Fundamental tools:
 - At medium energies:

JLab, HERMES, COMPASS, BaBar, Belle, PANDA, EIC

collinear factorization

At asymptotical energies:

HERA, Tevatron, LHC, LHeC, ILC (EIC and COMPASS at the boundary)

 k_T -factorization

We will now explain and illustrate these concepts, and discuss issues and possible solutions...

Müller et al. '91 - '94; Radyushkin '96; Ji '97

10/58

11 / 58

Extensions from DVCS

 Starting from usual DVCS, one allows: initial hadron ≠ final hadron (in the same octuplet): transition GPDs

Even less diagonal:

baryonic number (initial state) \neq baryonic number (final state) \rightarrow TDA Example:

Pire, Szymanowski '05

which can be further extended by replacing the outoing γ by any hadronic state

Amplitude = Transition Distribution Amplitude
$$\otimes$$
 CF \otimes DA
(soft) (hard) (soft)
Lansberg, Pire, Szymanowski '06

 $\int d^4k \ S(k, \, k + \Delta) \ H(q, \, k, \, k + \Delta) = \int dk^- \int dk^+ d^2k_\perp \ S(k, \, k + \Delta) \ H(q, \, k^-, \, k^- + \Delta^-)$

• Quantum numbers factorization (Fierz identity spinors + color)

 \Rightarrow $\mathcal{M} = \operatorname{GPD} \otimes \mathsf{Hard} \mathsf{ part}$

Müller et al. '91 - '94; Radyushkin '96; Ji '97

Introduction	Collinear factorizations	A few applications	Problems	QCD at large s	Beyond leading twist	Conclusion
	0000000000	000000000000000000000000000000000000000	00	000000000	00000000000	
Collinear	factorization	ove function to th				

What is a ρ -meson in QCD?

It is described by its wave function Ψ which reduces in hard processes to its Distribution Amplitude

 $\int d^{4}\ell \ M(q,\,\ell,\,\ell-p_{\rho})\Psi(\ell,\,\ell-p_{\rho}) = \int d\ell^{+} \ M(q,\,\ell^{+},\,\ell^{+}-p_{\rho}^{+}) \ \int d\ell^{-} \int^{|\ell_{\perp}^{2}| < \mu_{F}^{2}} d^{2}\ell_{\perp} \Psi(\ell,\,\ell-p_{\rho})$ $\mathsf{Hard part} \qquad \mathsf{DA} \ \Phi(u,\mu_{F}^{2})$

(see Chernyak, Zhitnitsky '77; Brodsky, Lepage '79; Efremov, Radyushkin '80; ... in the case of form-factors studies)

Collins, Frankfurt, Strikman '97; Radyushkin '97

The building blocks

 Γ , Γ' : Dirac matrices compatible with quantum numbers: C, P, T, chirality

Similar structure for gluon exchange

Introduction	Collinear factorizations	A few applications	Problems	QCD at large s	Beyond leading twist	Conclusion
	00000000000	000000000000000000000000000000000000000	00	000000000	000000000000	
Collinear Twist 2 GP	r factorization ^{Ds}					

Physical interpretation for GPDs

Emission and reabsoption of an antiquark ~ PDFs for antiquarks DGLAP-II region $\begin{array}{l} \mbox{Emission of a quark and} \\ \mbox{emission of an antiquark} \\ \mbox{cmeson exchange} \\ \mbox{ERBL region} \end{array}$

 $\begin{array}{l} \mbox{Emission and reabsoption} \\ \mbox{of a quark} \\ \mbox{\sim PDFs for quarks} \\ \mbox{$DGLAP-1$ region} \end{array}$

Introduction	Collinear factorizations	A few applications	Problems	QCD at large s	Beyond leading twist	Conclusion
	0000000000	0000000000000000000	00	000000000	000000000000	
Collinea Twist 2 GP	r factorization _{Ds}					

Classification of twist 2 GPDs

- For quarks, one should distinguish the exchanges
 - without helicity flip (chiral-even Γ' matrices): 4 chiral-even GPDs: $H^q \xrightarrow{\xi=0,t=0}$ PDF $q, E^q, \tilde{H}^q \xrightarrow{\xi=0,t=0}$ polarized PDFs $\Delta q, \tilde{E}^q$ $F^q = \frac{1}{2} \int \frac{dz^+}{2\pi} e^{ixP^-z^+} \langle p' | \bar{q}(-\frac{1}{2}z) \gamma^- q(\frac{1}{2}z) | p \rangle \Big|_{z^-=0, z_\perp=0}$ $= \frac{1}{2P^-} \left[H^q(x,\xi,t) \bar{u}(p')\gamma^-u(p) + E^q(x,\xi,t) \bar{u}(p') \frac{i \sigma^{-\alpha} \Delta_{\alpha}}{2m} u(p) \right],$ $\tilde{F}^q = \frac{1}{2} \int \frac{dz^+}{2\pi} e^{ixP^-z^+} \langle p' | \bar{q}(-\frac{1}{2}z) \gamma^- \gamma_5 q(\frac{1}{2}z) | p \rangle \Big|_{z^-=0, z_\perp=0}$ $= \frac{1}{2P^-} \left[\tilde{H}^q(x,\xi,t) \bar{u}(p')\gamma^- \gamma_5 u(p) + \tilde{E}^q(x,\xi,t) \bar{u}(p') \frac{\gamma_5 \Delta^-}{2m} u(p) \right].$

• with helicity flip (chiral-odd Γ' mat.): 4 chiral-odd GPDs: $H_T^q \xrightarrow{\xi=0,t=0}$ quark transversity PDFs $\Delta_T q, E_T^q, \tilde{H}_T^q, \tilde{E}_T^q$

$$\begin{split} &\frac{1}{2} \int \frac{dz^{+}}{2\pi} e^{ixP^{-}z^{+}} \langle p' | \,\bar{q}(-\frac{1}{2}z) \, i \, \sigma^{-i} \, q(\frac{1}{2}z) \, | p \rangle \Big|_{z^{-}=0, \, z_{\perp}=0} \\ &= \frac{1}{2P^{-}} \bar{u}(p') \left[H_{T}^{q} \, i \sigma^{-i} + \tilde{H}_{T}^{q} \, \frac{P^{-}\Delta^{i} - \Delta^{-}P^{i}}{m^{2}} + \frac{E_{T}^{q}}{2m} \frac{\gamma^{-}\Delta^{i} - \Delta^{-}\gamma^{i}}{2m} + \tilde{E}_{T}^{q} \, \frac{\gamma^{-}P^{i} - P^{-}\gamma^{i}}{m} \right] \end{split}$$

Introduction	Collinear factorizations	A few applications	Problems	QCD at large s	Beyond leading twist	Conclusion
	000000000	000000000000000000000000000000000000000				
Collinear Twist 2 GP	r factorization ^{Ds}					

Classification of twist 2 GPDs

- analogously, for gluons:
 - 4 gluonic GPDs without helicity flip:

$$\begin{array}{l} H^g \xrightarrow{\xi=0,t=0} \mathsf{PDF} \ x \ g \\ \hline E^g \\ \tilde H^g \xrightarrow{\xi=0,t=0} \mathsf{polarized} \ \mathsf{PDF} \ x \ \Delta g \\ \hline \tilde E^g \end{array}$$

• 4 gluonic GPDs with helicity flip:

 $\begin{array}{c} H_T^g \\ E_T^g \\ \tilde{H}_T^g \\ \tilde{E}_T^g \end{array}$

(no forward limit reducing to gluons PDFs here: a change of 2 units of helicity cannot be compensated by a spin 1/2 target)

Introduction	Collinear factorizations	A few applications	Problems	QCD at large s	Beyond leading twist	Conclusion
	0000000000	• 00000 00000000	00	000000000	000000000000	
A few ap	oplications of an exotic hybrid m	eson in hard proce	sses			

Quark model and meson spectroscopy

• spectroscopy: $\vec{J} = \vec{L} + \vec{S}$; neglecting any spin-orbital interaction $\Rightarrow S, L =$ additional quantum numbers to classify hadron states

$$\vec{J}^2 = J(J+1), \quad \vec{S}^2 = S(S+1), \quad \vec{L}^2 = L(L+1),$$

with $J = \left|L - S\right|, \cdots, L + S$

• In the usual quark-model: meson = $q\bar{q}$ bound state with

$$C = (-)^{L+S}$$
 and $P = (-)^{L+1}$

Thus:

$$\begin{array}{lll} S=0\,, & L=J, & J=0,\,1,\,2,\ldots\,: & J^{PC}=0^{-+}(\pi,\eta),\,1^{+-}(h_1,b_1),\,2^{-+},\,3^{+-},\,\ldots \\ S=1\,, & L=0\,, & J=1\,: & J^{PC}=1^{--}(\rho,\omega,\phi) \\ & L=1\,, & J=0,\,1,\,2\,: & J^{PC}=0^{++}(f_0,a_0),\,1^{++}(f_1,a_1),\,2^{++}(f_2,a_2) \\ & L=2\,, & J=1,\,2,\,3\,: & J^{PC}=1^{--},\,2^{--},\,3^{--} \end{array}$$

• \Rightarrow the exotic mesons with $J^{PC}=0^{--}, 0^{+-}, 1^{-+}, \cdots$ are forbidden

Introduction	Collinear factorizations	A few applications	Problems	QCD at large s	Beyond leading twist	Conclusion		
	00000000000	000000000000000000000000000000000000000	00	000000000	0000000000000			
A few applications Production of an exotic hybrid meron in hard processes								

Experimental candidates for light hybrid mesons (1)

three candidates:

- $\pi_1(1400)$
 - GAMS '88 (SPS, CERN): in $\pi^- p \rightarrow \eta \pi^0 n$ (through $\eta \pi^0 \rightarrow 4\gamma$ mode) M= 1406 \pm 20 MeV $\Gamma = 180 \pm 30$ MeV
 - E852 '97 (BNL): $\pi^- p \rightarrow \eta \pi^- p$ M=1370 ± 16 MeV $\Gamma = 385 \pm 40$ MeV

• VES '01 (Protvino) in $\pi^- Be \rightarrow \eta \pi^- Be$, $\pi^- Be \rightarrow \eta' \pi^- Be$, $\pi^- Be \rightarrow b_1 \pi^- Be$ M = 1316 ± 12 MeV $\Gamma = 287 \pm 25$ MeV but resonance hypothesis ambiguous

• Crystal Barrel (LEAR, CERN) '98 '99 in $\bar{p}n \rightarrow \pi^- \pi^0 \eta$ and $\bar{p}p \rightarrow 2\pi^0 \eta$ (through $\pi\eta$ resonance) M=1400 \pm 20 MeV $\Gamma = 310 \pm 50$ MeV and M=1360 \pm 25 MeV $\Gamma = 220 \pm 90$ MeV

Introduction	Collinear factorizations	A few applications	Problems	QCD at large s	Beyond leading twist	Conclusion
		000000000000000000000000000000000000000				
A few ap	plications of an exotic hybrid me	eson in hard proce	sses			

Experimental candidates for light hybrid mesons (2)

- $\pi_1(1600)$
 - E852 (BNL): in peripheral $\pi^- p \rightarrow \pi^+ \pi^- \pi^- p$ (through $\rho \pi^- \mod 0$) '98 '02, M = 1593 ± 8 MeV $\Gamma = 168 \pm 20$ MeV $\pi^- p \rightarrow \pi^+ \pi^- \pi^- \pi^0 \pi^0 p$ (in **b**₁(1235) $\pi^- \rightarrow (\omega \pi^0) \pi^- \rightarrow (\pi^+ \pi^- \pi^0) \pi^0 \pi^-$ '05 and **f**₁(1285) π^- '04 modes), in peripheral $\pi^- p$ through $\eta' \pi^-$ '01 M = 1597 ± 10 MeV $\Gamma = 340 \pm 40$ MeV but E852 (BNL) '06: no exotic signal in $\pi^- p \rightarrow (3\pi)^- p$ for a larger sample of data!
 - VES '00 (Protvino): in peripheral $\pi^- p$ through $\eta'\pi^-$ '93, '00, $\rho(\pi^+\pi^-)\pi^-$ '00, $b_1(1235)\pi^- \to (\omega\pi^0)\pi^-$ '00
 - Crystal Barrel (LEAR, CERN) '03 $\bar{p}p \rightarrow b_1(1235)\pi\pi$
 - COMPASS '10 (SPS, CERN): diffractive dissociation of π^- on Pb target through Primakov effect $\pi^-\gamma \rightarrow \pi^-\pi^-\pi^+$ (through $\rho\pi^-$ mode) M = 1660 \pm 10 MeV $\Gamma = 269 \pm 21$ MeV
- $\pi_1(2000):$ seen only at E852 (BNL) '04 '05 (through $f_1(1285)\pi^-$ and $b_1(1235)\pi^-)$

Introduction	Collinear factorizations	A few applications	Problems	QCD at large s	Beyond leading twist	Conclusion				
	0000000000	000000000000000000000000000000000000000	00	000000000	000000000000					
A few ap	A few applications									

What about hard processes?

- Is there a hope to see such states in hard processes, with high counting rates, and to exhibit their light-cone wave-function?
- hybrid mesons = $q\bar{q}g$ states T. Barnes '77; R. L. Jaffe, K. Johnson, and Z. Ryzak, G. S. Bali
- popular belief: $H = q\bar{q}g \Rightarrow$ higher Fock-state component \Rightarrow twist-3 \Rightarrow hard electroproduction of H versus ρ suppressed as 1/Q
- This is not true!! Electroproduction of hybrid is similar to electroproduction of usual ρ -meson: it is twist 2 dominated
 - I. V. Anikin, B. Pire, O. V. Teryaev, L. Szymanowski, S.W. '04

Distribution amplitude of exotic hybrid mesons at twist 2

• One may think that to produce $|q\bar{q}g\rangle$, the fields Ψ , $\bar{\Psi}$, A should appear explicitly in the non-local operator $\mathcal{O}(\Psi, \bar{\Psi}A)$

- If one tries to produce $H = 1^{-+}$ from a local operator, the dominant operator should be $\bar{\Psi}\gamma^{\mu}G_{\mu\nu}\Psi$ of twist = dimension spin = 5 1 = 4
- It means that there should be a $1/Q^2$ suppression in the production amplitude of H versus the usual ρ -production (which is twist 2 dominated)
- But collinear approach describes hard exclusive processes in terms of non-local light-cone operators, among which are the twist 2 operator

$$\bar{\psi}(-z/2)\gamma_{\mu}[-z/2;z/2]\psi(z/2)$$

where [-z/2; z/2] is a Wilson line, necessary to fullfil gauge invariance (i.e. a "color tube" between q and \bar{q}) which thus hides gluonic degrees of freedom: the needed gluon is there, at twist 2. This does not requires to introduce explicitly A!

Accessing the partonic structure of exotic hybrid mesons

• Electroproduction $\gamma^* p \rightarrow H^0 p$: JLab, COMPASS, EIC

Introduction	Collinear factorizations	A few applications	Problems	QCD at large s	Beyond leading twist	Conclusion
		000000000000000000000000000000000000000				
A few ap Spin transve	plications rsity in the nucleon					

What is transversity?

• Tranverse spin content of the proton:

$$\begin{array}{ccc} |\uparrow\rangle_{(x)} & \sim & |\rightarrow\rangle + |\leftarrow\rangle \\ |\downarrow\rangle_{(x)} & \sim & |\rightarrow\rangle - |\leftarrow\rangle \\ \text{spin along } x & & \text{helicity state} \end{array}$$

- An observable sensitive to helicity spin flip gives thus access to the transversity $\Delta_T q(x)$, which is very badly known (first data have recently been obtained by COMPASS)
- The transversity GPDs are completely unknown
- Chirality: $q_{\pm}(z) \equiv \frac{1}{2}(1 \pm \gamma^5)q(z)$ with $q(z) = q_{+}(z) + q_{-}(z)$ Chiral-even: chirality conserving $\bar{q}_{\pm}(z)\gamma^{\mu}q_{\pm}(-z)$ and $\bar{q}_{\pm}(z)\gamma^{\mu}\gamma^5q_{\pm}(-z)$ Chiral-odd: chirality reversing $\bar{q}_{\pm}(z) \cdot 1 \cdot q_{\mp}(-z), \quad \bar{q}_{\pm}(z) \cdot \gamma^5 \cdot q_{\mp}(-z)$ and $\bar{q}_{\pm}(z)[\gamma^{\mu},\gamma^{\nu}]q_{\mp}(-z)$
- For a massless (anti)particle, chirality = (-)helicity
- Transversity is thus a chiral-odd quantity
- QCD and QED are chiral even $\Rightarrow \mathcal{A} \sim (\mathsf{Ch.-odd})_1 \otimes (\mathsf{Ch.-odd})_2$

Introduction	Collinear factorizations	A few applications	Problems	QCD at large <i>s</i>	Beyond leading twist	Conclusion	
A few ap Spin transve	plications ersity in the nucleon						

How to get access to transversity?

- The dominant DA for ρ_T is of twist 2 and chiral-odd ($[\gamma^{\mu}, \gamma^{\nu}]$ coupling)
- Unfortunately $\gamma^* N^{\uparrow} \rightarrow \rho_T N' = 0$
 - this is true at any order in perturbation theory (i.e. corrections as powers of α_s), since this would require a transfer of 2 units of helicity from the proton: impossible!
 Diehl. Gousset. Pire '99: Collins. Diehl '00
 - diagrammatic argument at Born order:

Introduction	Collinear factorizations	A few applications	Problems	QCD at large s	Beyond leading twist	Conclusion
				00000000		
A few a	oplications					
Spin transv	ersity in the nucleon					

Can one circumvent this vanishing?

- This vanishing is true only a twist 2
- At twist 3 this process does not vanish
- However processes involving twist 3 DAs may face problems with factorization (end-point singularities: see later)
- The problem of classification of twist 3 chiral-odd GPDs is still open: Pire, Szymanowski, S.W. in progress, in the spirit of our Light-Cone Collinear Factorization framework recently developped (Anikin, Ivanov, Pire, Szymanowski, S. W.)

a typical non-vanishing diagram:

M. El Beiyad, P. Pire, M. Segond, L. Szymanowski, S.W Phys.Lett.B688:154-167,2010 see also, at large s, with Pomeron exchange: R. Ivanov, B. Pire, L. Symanowski, O. Teryaev '02 R. Enberg, B. Pire, L. Symanowski '06

 $t \ll M_{\pi\rho}^2$ chiral-odd twist 2 GPD

• These processes with 3 body final state can give access to all GPDs: $M_{\pi\rho}^2$ plays the role of the γ^* virtuality of usual DVCS (here in the time-like domain) JLab, COMPASS

Introduction

Collinear factorizations

A few applications Problems

QCD at large s

Beyond leading twist Conclusion

Threshold effects for DVCS and TCS $_{\text{DVCS and TCS}}$

Deeply Virtual Compton Scattering $lN \rightarrow l'N'\gamma$

- TCS versus DVCS:
 - universality of the GPDs
 - another source for GPDs (special sensitivity on real part)
 - spacelike-timelike crossing and understanding the structure of the NLO corrections
- Where to measure TCS? In Ultra Peripheral Collisions LHC, JLab, COMPASS, AFTER

Timelike Compton Scattering $\gamma N \rightarrow l^+ l^- N'$

One loop contributions to the coefficient function

Belitsky, Mueller, Niedermeier, Schafer, Phys.Lett.B474, 2000 Pire, Szymanowski, Wagner Phys.Rev.D83, 2011

$$\mathcal{A}^{\mu\nu} = g_T^{\mu\nu} \int_{-1}^1 dx \left[\sum_q^{n_F} T^q(x) F^q(x) + T^g(x) F^g(x) \right]$$

(symmetric part of the factorised amplitude)

Threshold effects for DVCS and TCS Resummations effects are expected

• The renormalized quark coefficient functions T^q is

$$T^{q} = C_{0}^{q} + C_{1}^{q} + C_{coll}^{q} \log \frac{|Q^{2}|}{\mu_{F}^{2}}$$

$$C_{0}^{q} = e_{q}^{2} \left(\frac{1}{x - \xi + i\varepsilon} - (x \to -x) \right)$$

$$C_{1}^{q} = \frac{e_{q}^{2} \alpha_{S} C_{F}}{4\pi (x - \xi + i\varepsilon)} \left[\log^{2} \left(\frac{\xi - x}{2\xi} - i\varepsilon \right) + \dots \right] - (x \to -x)$$

ullet Usual collinear approach: single-scale analysis w.r.t. Q^2

 \bullet Consider the invariants ${\cal S}$ and ${\cal U}:$

$$egin{aligned} \mathcal{S} &= rac{x-\xi}{2\xi}\,Q^2 &\ll Q^2 & ext{when } x o \xi \ \mathcal{U} &= -rac{x+\xi}{2\xi}\,Q^2 &\ll Q^2 & ext{when } x o -\xi \end{aligned}$$

 \Rightarrow two scales problem; threshold singularities to be resummed

analogous to the $\log(x-x_{Bj})$ resummation for DIS coefficient functions 33/58

Soft-collinear resummation effects for the coefficient function

- The resummation easier when using the axial gauge $p_1 \cdot A = 0$ ($p_\gamma \equiv p_1$)
- The dominant diagram are ladder-like [backup]

- Our analysis can be used for the gluon coefficient function [In progress].
- The measurement of the phenomenological impact of this procedure on the data analysis needs further analysis with the implementation of modeled generalized parton distributions [backup].

Intro duction	Collinear factorizations	A few applications	Problems ● ● ○	QCD at large s 000000000	Beyond leading twist	Conclusion		
$Problem_{ ho- ext{electropr}}$	Problems ρ -electroproduction: Selection rules and factorization status							

- chirality = helicity for a particule, chirality = -helicity for an antiparticule
- for massless quarks: QED and QCD vertices = chiral even (no chirality flip during the interaction)
 - \Rightarrow the total helicity of a $q\bar{q}$ produced by a γ^* should be 0
 - $r \Rightarrow$ helicity of the $\gamma^* = L_z^{qar q}$ (z projection of the qar q angular momentum)
- in the pure collinear limit (i.e. twist 2), $L_z^{q \bar{q}} = 0 \Rightarrow \gamma_L^*$
- at t = 0, no source of orbital momentum from the proton coupling \Rightarrow helicity of the meson = helicity of the photon
- in the collinear factorization approach, $t\neq 0$ change nothing from the hard side \Rightarrow the above selection rule remains true
- thus: 2 transitions possible (s-channel helicity conservation (SCHC)): • $\gamma_L^* \rightarrow \rho_L$ transition: QCD factorization holds at t=2 at any order in
 - perturbation (i.e. LL, NLL, etc...)

Collins, Frankfurt, Strikman '97 Radyushkin '97

• $\gamma_T^* \to \rho_T$ transition: QCD factorization has problems at t=3 Mankiewicz-Piller '00

$$\int\limits_{0}^{1} rac{du}{u}$$
 or $\int\limits_{0}^{1} rac{du}{1-u}$ diverge (end-point singularity)

Introduction	Collinear factorizations	A few applications	Problems	QCD at large s	Beyond leading twist	Conclusion
			00			
Problems	5					

ho-electroproduction: Selection rules and factorization status

Improved collinear approximation: a solution?

- keep a transverse ℓ_{\perp} dependency in the $q,\,\bar{q}$ momenta, used to regulate end-point singularities
- soft and collinear gluon exchange between the valence quark are responsible for large double-logarithmic effects which are conjectured to exponentiate
- this is made easier when using the impact parameter space b_\perp conjugated to $\ell_\perp \Rightarrow$ Sudakov factor

 $\exp[-S(u, b, Q)]$

- S diverges when $b_{\perp} \sim O(1/\Lambda_{QCD})$ (large transverse separation, i.e. small transverse momenta) or $u \sim O(\Lambda_{QCD}/Q)$ Botts, Sterman '89 \Rightarrow regularization of end-point singularities for $\pi \to \pi \gamma^*$ and $\gamma \gamma^* \pi^0$ form factors, based on the factorization approach Li, Sterman '92
- it has been proposed to combine this perturbative resummation tail effect with an ad-hoc non-perturbative gaussian ansatz for the DAs

$$\exp[-a^2 |k_{\perp}^2|/(u\bar{u})]$$

which gives back the usual asymptotic DA $6u\bar{u}$ when integrating over k_\perp \Rightarrow practical tools for meson electroproduction phenomenology Goloskokov, Kroll '05

A particular regime for QCD: The perturbative Regge limit $s \rightarrow \infty$

Consider the diffusion of two hadrons h_1 and h_2 :

- \sqrt{s} (= $E_1 + E_2$ in the center-of-mass system) \gg other scales (masses, transfered momenta, ...) eg $x_B \rightarrow 0$ in DIS
- other scales comparable (virtualities, etc...) $\gg \Lambda_{QCD}$

regime $\alpha_s \ln s \sim 1 \Longrightarrow$ dominant sub-series:

with $\alpha_{\mathbb{P}}(0) - 1 = C \alpha_s$ (C > 0) hard Pomeron (Balitsky, Fadin, Kuraev, Lipatov)

 $\bullet\,$ This result violates QCD $S\,$ matrix unitarity

 $(S S^{\dagger} = S^{\dagger} S = 1 \text{ i.e. } \sum Prob. = 1)$

- Until when this result could be applicable, and how to improve it?
- How to test this dynamics experimentally, in particular based on exclusive processes?

Introduction	Collinear factorizations	A few applications	Problems 00	QCD at large s ○●○○○○○○○	Beyond leading twist	Conclusion		
QCD at large s								

 $\gamma^*\,\gamma^*\to\rho\,\rho$ as an example

- Use Sudakov decomposition $k = \alpha p_1 + \beta p_2 + k_\perp$ $(p_1^2 = p_2^2 = 0, 2p_1 \cdot p_2 = s)$
- ullet write $d^4k=rac{s}{2}\,dlpha\,deta\,d^2k_\perp$
- *t*-channel gluons with non-sense polarizations ($\epsilon_{NS}^{up} = \frac{2}{s} p_2$, $\epsilon_{NS}^{down} = \frac{2}{s} p_1$) dominate at large *s*

Impact representation for exclusive processes $\underline{k} = Eucl. \leftrightarrow k_{\perp} = Mink.$

$$\mathcal{M} = is \int \frac{d^2 \underline{k}}{(2\pi)^2 \underline{k}^2 (\underline{r} - \underline{k})^2} \Phi^{\gamma^*(q_1) \to \rho(p_1^{\rho})}(\underline{k}, \underline{r} - \underline{k}) \Phi^{\gamma^*(q_2) \to \rho(p_2^{\rho})}(-\underline{k}, -\underline{r} + \underline{k})$$

 $\Phi^{\gamma^*(q_1) \to \rho(p_1^{
ho})}: \quad \gamma^*_{L,T}(q)g(k_1) \to \rho_{L,T} \, g(k_2) \text{ impact factor}$

Gauge invariance of QCD:

- probes are color neutral \Rightarrow their impact factor should vanish when $\underline{k} \rightarrow 0$ or $\underline{r} - \underline{k} \rightarrow 0$
- At twist-3 level (for the $\gamma_T^* \rightarrow \rho_T$ transition), gauge invariance is a non-trivial constraint when combining 2- and 3-body correlators

Introduction	Collinear factorizations	A few applications	Problems 00	QCD at large <i>s</i> ○○○●○○○○○	Beyond leading twist	Conclusion
QCD at Phenomenol	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	leson production a	t HERA			

Diffractive meson production at HERA

HERA (DESY, Hambourg): first and single $e^{\pm}p$ collider (1992-2007)

- The "easy" case (from factorization point of view): J/Ψ production ($u \sim 1/2$: non-relativistic limit for bound state) combined with k_T -factorisation Ryskin '93; Frankfurt, Koepf, Strikman '98; Ivanov, Kirschner, Schäfer, Szymanowski '00; Motyka, Enberg, Poludniowski '02
- Exclusive vector meson photoproduction at large t (= hard scale): $\gamma(q) + P \rightarrow \rho_{L,T}(p_1) + P$

based on k_T -factorization:

Forshaw, Ryskin '95; Bartels, Forshaw, Lotter, Wüsthoff '96; Forshaw, Motyka, Enberg, Poludniowski '03

- H1, ZEUS data seems to favor BFKL
- but end-point singularities for ρ_T are regularized with a quark mass: $m=m_\rho/2$
- the spin density matrix is badly described
- Exclusive electroproduction of vector meson $\gamma^*_{L,T}(q) + P \rightarrow \rho_{L,T}(p_1) + P$ Goloskokov, Kroll '05 based on improved collinear factorization for the coupling with the meson DA and collinear factorization for GPD coupling

- Very precise experimental data on the spin density matrix (i.e. correlations between γ^* and ρ polarizations)
- for $t = t_{min}$ one can experimentally distinguish

$$\int \gamma_L^* o
ho_L$$
 : dominates ("twist 2": amplitude $|\mathcal{A}| \sim rac{1}{Q}$

- $\left\{ \begin{array}{ll} \gamma_T^* o
 ho_T: {
 m visible} & (``twist 3'': {
 m amplitude} \ |\mathcal{A}| \sim rac{1}{Q^2}) \end{array}
 ight.$
- How to calculate the $\gamma_T^* \rightarrow \rho_T$ transition from first principles?

QCD at large sPhenomenological applications: Meson production at HERA

Diffractive exclusive process $e^- p \rightarrow e^- p \rho_{L,T}$

first description combining beyond leading twist

- collinear factorisation
- k_T factorisation
- I. V. Anikin, D. Yu. Ivanov, B. Pire, L. Szymanowski, S.W.

Phys.Lett.B682 (2010) 413-418

Nucl.Phys.B828 (2010) 1-68

HERA, EIC, LHeC, AFP@LHC

 ρ_T

Introduction Collinear factorizations A few applications Problems QCD at large s QCD at large S Phenomenological applications: exclusive processes at Tevatron, RHIC, LHC, ILC

Exclusive $\gamma^{(*)}\gamma^{(*)}$ processes = gold place for testing QCD at large s

Proposals in order to test perturbative QCD in the large s limit (*t*-structure of the hard \mathbb{P} omeron, saturation, \mathbb{O} dderon...)

- $\gamma^{(*)}(q) + \gamma^{(*)}(q') o J/\Psi \, J/\Psi$ Kwiecinski, Motyka '98
- $\gamma_{L,T}^*(q) + \gamma_{L,T}^*(q') \rightarrow \rho_L(p_1) + \rho_L(p_2)$ process in

 $e^+e^-
ightarrow e^+e^ho_L(p_1)+
ho_L(p_2)$ with double tagged lepton at ILC

Pire, Szymanowski, S. W. '04; Pire, Szymanowski, Enberg, S. W. '06; Ivanov, Papa '06; Segond, Szymanowski, S. W. '07

conclusion: feasible at ILC (high energy and high luminosity); BFKL NLL enhancement with respect to Born and DGLAP contributions

• What about the Odderon? C-parity of Odderon = -1 consider $\gamma + \gamma \rightarrow \pi^+\pi^-\pi^+\pi^-$: $\pi^+\pi^-$ pair has no fixed C-parity

 \Rightarrow Odderon and Pomeron can interfere

 \Rightarrow Odderon appears linearly in the charge asymmetry

Pire, Schwennsen, Szymanowski, S. W. '07

= example of possibilities offered by ultraperipheral exclusive processes at LHC [backup]

 $(p, \bar{p} \text{ or } A \text{ as effective sources of photon})$

but the distinction with pure QCD processes (with gluons intead of a photon) is tricky...

HCAL Pole Tip Up drawn HCAL Pole Tip HCAL Pole Tip

good efficiency of tagging for outgoing e^{\pm} for $E_e > 100$ GeV and $\theta > 4$ mrad (illustration for LDC concept)

• could be equivalently done at LHC based on the AFP project

Introduction	Collinear factorizations	A few applications	Problems	QCD at large s	Beyond leading twist	Conclusion
				00000000		
QCD at	arge s					

Phenomenological applications: exclusive test of Pomeron

QCD effects in the Regge limit on $\gamma^{(*)}\gamma^{(*)}
ightarrow
ho\,
ho$

 $\simeq 4.10^3 ~\rm events/year$

 $\simeq 2.10^4$ events/year

Introduction	Collinear factorizations	A few applications	Problems	QCD at large s	Beyond leading twist	Conclusion
	0000000000	000000000000000000000000000000000000000	00	000000000	00000000000	
Beyond I	eading twist Collinear Factorization	n versus Covariant	Collinear I	Factorization		

- The Light-Cone Collinear Factorization, a new self-consistent method, while non-covariant, is very efficient for practical computations Anikin, Ivanov, Pire, Szymanowski, S.W. '09
 - inspired by the inclusive case Ellis, Furmanski, Petronzio '83; Efremov, Teryaev '84
 - axial gauge
 - parametrization of matrix element along a light-like prefered direction $z = \lambda n \ (n = 2 p_2/s).$
 - non-local correlators are defined along this prefered direction, with contributions arising from Taylor expansion up to needed term for a given twist order computation
 - their number is then reduced to a minimal set combining equations of motion and n-independency condition
- Another approach (Braun, Ball), fully covariant but much less convenient when practically computing coefficient functions, can equivalently be used
- We have established the dictionnary between these two approaches
- This as been explicitly checked for the $\gamma_T^* \rightarrow \rho_T$ impact factor at twist 3 Anikin, Ivanov, Pire, Szymanowski, S.W. Nucl. Phys.B 828 (2010) 1-68; Phys.Lett.B682 (2010) 413

$$\Phi^{\gamma^*(\lambda_{\gamma})\to\rho(\lambda_{\rho})} = \int d^4\ell\cdots \operatorname{tr}[H^{(\lambda_{\gamma})}(\ell\cdots) \quad S^{(\lambda_{\rho})}(\ell\cdots)]$$

hard part soft part

Soft parts:

$$S_{q\bar{q}}(\ell_{q}) = \int d^{4}z \, e^{-i\ell_{q} \cdot z} \langle \rho(p) | \psi(0) \, \bar{\psi}(z) | 0 \rangle$$

$$S_{q\bar{q}q}(\ell_{q}, \ell_{g}) = \int d^{4}z_{1} \int d^{4}z_{2} \, e^{-i(\ell_{q} \cdot z_{1} + \ell_{g} \cdot z_{2})} \langle \rho(p) | \psi(0) \, g A_{\alpha}^{\perp}(z_{2}) \bar{\psi}(z_{1}) | 0 \rangle$$

Introduction	Collinear factorizations	A few applications Problems	QCD at large s	Beyond leading twist	Conclusion
	0000000000	000000000000 00	000000000	000000000000000000000000000000000000000	
_	a.				

Beyond leading twist Light-Cone Collinear Factorization

Light-Cone Collinear Factorization

• Sudakov expansion in the basis $p\sim p_
ho,\,n$ ($p^2=n^2=0$ and $p\cdot n=1$)

1 1/Q

$$l_{\mu} = u p_{\mu} + l_{\mu}^{\perp} + (l \cdot p) n_{\mu}, \quad u = l \cdot n_{\mu}$$

 $1/Q^{2}$

• Taylor expansion of the hard part $H(\ell)$ along the collinear direction p:

$$H(\ell) = H(up) + \frac{\partial H(\ell)}{\partial \ell_{\alpha}}\Big|_{\ell=up} (\ell - up)_{\alpha} + \dots \text{ with } (\ell - up)_{\alpha} \approx \ell_{\alpha}^{\perp}$$

• $l_{\alpha}^{\perp} \xrightarrow{Fourier} \text{derivative of the soft term:} \int d^4z \; e^{-i\ell \cdot z} \langle \rho(p) | \psi(0) \, i \; \overleftrightarrow{\partial_{\alpha^{\perp}}} \bar{\psi}(z) | 0 \rangle$

Introduction	Collinear factorizations	A few applications	Problems 0 00	QCD at la	rge s 00	Beyond leading twist ○○○●○○○○○○○○	Conclusion
Beyond _{Light-Cone}	leading twist Collinear Factorizatio	n					
	2-bo	ody non-local c	orrelators	ρ_L	t wist kine m	2 atical twist 3 (WW)	
۹	vector correlator			ρ_T	genuir genuir	ne twist 3 ne + kinematical twist 3	
	$\langle ho(p) ar{\psi}(z) angle$	$\gamma_{\mu}\psi(0) 0\rangle \stackrel{\mathcal{F}}{=} m$	$f_{\rho} f_{\rho} \left[\varphi_1 \right]$	$(y) (e^* \cdot r)$	$n)p_{\mu}$	$+ \varphi_3(y) e_{\mu}^{*T}$	

• axial correlator

$$\langle \rho(p) | \bar{\psi}(z) \gamma_5 \gamma_\mu \psi(0) | 0 \rangle \stackrel{\mathcal{F}}{=} m_\rho f_\rho \, i \, \varphi_A(y) \, \varepsilon_{\mu\lambda\beta\delta} \, e_\lambda^{*T} \, p_\beta \, n_\delta$$

• vector correlator with transverse derivative

$$\langle \rho(p) | \bar{\psi}(z) \gamma_{\mu} i \overleftrightarrow{\partial_{\alpha}^{\perp}} \psi(0) | 0 \rangle \stackrel{\mathcal{F}}{=} m_{\rho} f_{\rho} \varphi_{1}^{T}(y) p_{\mu} e_{\alpha}^{*T}$$

• axial correlator with transverse derivative

$$\langle
ho(p) | ar{\psi}(z) \gamma_5 \gamma_\mu \, i \stackrel{\leftrightarrow}{\partial_{lpha}^{\perp}} \psi(0) | 0
angle \stackrel{\mathcal{F}}{=} m_
ho \, f_
ho \, i \, arphi_A^T(y) \, p_\mu \, arepsilon_{lpha \lambda eta \delta} \, e_\lambda^{*T} \, p_eta \, n_\delta,$$

where y $(\bar{y} \equiv 1 - y)$ = momentum fraction along $p \equiv p_1$ of the quark (antiquark) and $\stackrel{\mathcal{F}}{=} \int_0^1 dy \exp{[i \ y \ p \cdot z]}$, with $z = \lambda n$

 \Rightarrow 5 2-body DAs

Introduction	Collinear factorizations	A few applications	Problems	QCD at large s	Beyond leading twist	Conclusion
	0000000000	000000000000000000000000000000000000000	00	000000000	000000000000000000000000000000000000000	
Beyond	leading twist	n				

3-body non-local correlators

genuine twist 3

• vector correlator

$$\langle \rho(p) | \bar{\psi}(z_1) \gamma_\mu g A_\alpha^T(z_2) \psi(0) | 0 \rangle \stackrel{\mathcal{F}_2}{=} m_\rho f_3^V B(y_1, y_2) p_\mu e_\alpha^{*T}$$

• axial correlator

$$\langle \rho(p) | \bar{\psi}(z_1) \gamma_5 \gamma_\mu g A_\alpha^T(z_2) \psi(0) | 0 \rangle \stackrel{\mathcal{F}_2}{=} m_\rho f_3^A \, i \, D(y_1, y_2) \, p_\mu \, \varepsilon_{\alpha \lambda \beta \delta} \, e_\lambda^{*T} \, p_\beta \, n_\delta,$$

where $y_1, \ \bar{y}_2, \ y_2 - y_1 = \mathsf{quark}, \ \mathsf{antiquark}, \ \mathsf{gluon}$ momentum fraction

and
$$\stackrel{\mathcal{F}_2}{=} \int\limits_0^1 dy_1 \int\limits_0^1 dy_2 \exp\left[i \, y_1 \, p \cdot z_1 + i(y_2 - y_1) \, p \cdot z_2\right]$$
, with $z_{1,2} = \lambda n$

 \Rightarrow 2 3-body DAs

Introduction	Collinear factorizations	A few applications	Problems 00	QCD at large s	Beyond leading twist ○○○○○●○○○○○○	Conclusion
Beyond Light-Cone	leading twist Collinear Factorization	n				

Minimal set of DAs

- Number of non-perturbative quantities: a priori 7 at twist 3
 - (5 2-parton DA and 2 2-parton DA)
- Non-perturbative correlators cannot be obtained perturbatively!
- One should reduce their number to a minimal set before any use of a model or any measure on the QCD lattice
- ${\ensuremath{\bullet}}$ independence w.r.t the choice of the vector n defining
 - the light-cone direction $z: z = \lambda \, {m n}$
 - the ho_T polarization vector $e_T \cdot {m n} = 0$
 - the axial gauge: $n \cdot A = 0$

$$\mathcal{A} = H \otimes S$$
 $rac{d\mathcal{A}}{dn_{\perp}^{\mu}} = 0 \Rightarrow S$ are related

• We have proven that 3 independent Distribution Amplitudes are necessary:

 $\begin{array}{lll} \varphi_1(y) & \leftarrow \text{2-body twist 2 correlator} \\ B(y_1, y_2) & \leftarrow \text{3-body genuine twist 3 vector correlator} \\ D(y_1, y_2) & \leftarrow \text{3-body genuine twist 3 axial correlator} \end{array}$

Introduction	Collinear factorizations	A few applications Pro	blems QCD at large s	Beyond leading twist	Conclusion
	0000000000	0000000000000 00	00000000	000000000000	
	 If the second sec				

Beyond leading twist Dipole representation and saturation effects

The dipole picture at high energy

- ullet Initial Ψ_i and final Ψ_f states wave functions of projectiles
- Primitive picture: proton = color dipole scattering amplitude for two t- channel exchanged gluons:

$$\mathcal{N}(\underline{r},\underline{k}) = \frac{4\pi\alpha_s}{N_c} \left(1 - e^{i\underline{k}\cdot\underline{r}}\right) \left(1 - e^{-i\underline{k}\cdot\underline{r}}\right)$$

• Real proton: $\mathcal{N} \to \hat{\sigma}_{dipole-target} = universal scattering amplitude Golec-Biernat Wusthoff '98$

- color transparency for small r_\perp $\hat{\sigma}_{\rm dip\, ole-target} \sim r_\perp^2$
- saturation for large $r_\perp \sim 1/Q_{
 m sat}$, $T\lesssim 1$
- Data for ρ production calls for models encoding saturation Munier, Stasto, Mueller '04; Kowalski, Motyka, Watt '06
- The dipole representation is consistent with the twist 2 collinear factorization

A dipole picture beyond leading twist?

• New: the dipole picture is still consistent with collinear factorization at higher twist order:

genuine twist 3

A. Besse, L. Szymanowski, S. W., NPB 867 (2013) 19-60

key ideas:

- reformulate the Light-Cone Collinear Factorization in the Fourier conjugated coordinate space: $\ell_{\perp} \leftrightarrow r_{\perp}$
- use QCD equations of motion

 \Rightarrow dipole picture!

WW approximation: interpretation

• Scanning the ρ -meson wave function:

Introduction	Collinear factorizations	A few applications	Problems	QCD at large s	Beyond leading twist	Conclusion
	0000000000	000000000000000000000000000000000000000	00	000000000	000000000000000	
Beyond	leading twist					

- Factorization in coordinate space: the complete twist 3 contribution
 - The 3-parton amplitude in transverse coordinate space at twist 3:

$$\begin{split} \Phi_{q\underline{q}g}^{\gamma^* \to \rho} &= -\frac{im_{\rho}f_{\rho}}{4} \int dy_1 dy_g \int \frac{d^2 r_{1\perp}}{(2\pi)^2} \frac{d^2 r_{g\perp}}{(2\pi)^2} \Big[\zeta_{3\rho}^V B(y_1, y_2) p_{\mu} e_{\rho\perp\alpha} \; \tilde{H}_{q\underline{q}g}^{\alpha,\gamma^{\mu}}(y_1, y_g, r_{1\perp}, r_{g\perp}) \\ &+ \zeta_{3\rho}^A i D(y_1, y_2) \, p_{\mu} \, \varepsilon_{\alpha e_{\rho\perp} pn} \; \tilde{H}_{q\underline{q}g}^{\alpha,\gamma^{\mu}\gamma_5}(y_1, y_g, r_{1\perp}, r_{g\perp}) \Big] \end{split}$$

- 3-partons exchanged; however, no quadrupole structure involved (even at finite N_c, beyond the 't Hooft limit)
- 3-partons results:

đ

$$\begin{split} \Phi_{q\underline{q}g}^{\gamma_T^* \to \rho_T} &\propto \int dy_1 \int dy_2 \int d^2 \underline{r} \psi_{(q\underline{q}g)}^{\gamma_T^* \to \rho_T}(y_1, y_2, \underline{r}) \times \mathcal{N}(\underline{r}, \underline{k}) + \int dy_1 \, dy_2 \, \frac{2\,S(y_1, y_2)}{\bar{y}_1} \\ & (S(y_1, y_2) = \zeta_{\rho}^V(\mu^2) B(y_1, y_2; \mu^2) + \zeta_{\rho}^A(\mu^2) D(y_1, y_2; \mu^2)) \\ \bullet \text{ Full twist 3 impact factor:} \\ \mathfrak{f}^{\gamma_T^* \to \rho_T} &= \Phi_{q\underline{q}}^{\gamma_T^* \to \rho_T} + \Phi_{q\underline{q}g}^{\gamma_T^* \to \rho_T} \propto \int dy_i \int d^2 \underline{r} \, \mathcal{N}(\underline{r}, \underline{k}) \left(\psi_{(q\underline{q})}^{\gamma_T^* \to \rho_T}(y, \underline{r}) + \psi_{(q\underline{q}g)}^{\gamma_T^* \to \rho_T}(y_1, y_2, \underline{r}) \right) \\ & + \underbrace{\int \frac{dy}{y\overline{y}} \left(2y\overline{y}\varphi_3(y) + (y - \overline{y})\varphi_1^T(y) + \varphi_A^T(y) \right) + \int dy_1 \, dy_2 \, \frac{2\,S(y_1, y_2)}{\overline{y}_1}}_{\overline{y}_1} \end{split}$$

Cancel due to EOM of QCD

 \Rightarrow dipole picture again!

Introd	uction	Co

QCD at large s

Conclusion

- Since a decade, there have been much progress in the understanding of hard exclusive processes
 - at medium energies, there is now a conceptual framework starting from first principle, allowing to describe a huge number of processes
 - at high energy, the impact representation is a powerful tool for describing exclusive processes in diffractive experiments; they are and will be essential for studying QCD in the hard Regge limit (Pomeron, Odderon, saturation...)
- Still, some problems remain:
 - proofs of factorization have been obtained only for very few processes (ex.: $\gamma^* p \to \gamma p$, $\gamma^*_L p \to \rho_L p$)
 - for some other processes factorization is highly plausible, but not fully demonstrated at any order (ex.: processes involving GDAs and TDAs)
 - some processes explicitly show sign of breaking of factorization (ex.: $\gamma_T^* p \rightarrow \rho_T p$ which has end-point singularities at Leading Order)
 - models and results from the lattice or from AdS/QCD for the non-perturbative correlators entering GPDs, DAs, GDAs, TDAs are needed, even at a qualitative level!
 - the effect of QCD evolution, the NLO corrections, choice of renormalization/factorization scale, power corrections, threshold resummations will be very relevant to interpret and describe the forecoming data
- Links between theoretical and experimental communities are very fruitful HERA, HERMES, Tevatron, LHC, JLab, Compass, BaBar, BELLE, EIC, LHeC, ILC

Distribution amplitude and quantum numbers: C-parity

• Define the H DA as (for long. pol.)

$$\langle H(p,0)|\bar{\psi}(-z/2)\gamma_{\mu}[-z/2;z/2]\psi(z/2)|0\rangle_{\substack{z^{2}=0\\z_{\perp}=0}} = if_{H}M_{H}e_{\mu}^{(0)}\int_{0}^{1}dy\,e^{i(\bar{y}-y)p\cdot z/2}\phi_{L}^{H}(y)$$

Expansion in terms of local operators

$$\langle H(p,\lambda)|\bar{\psi}(-z/2)\gamma_{\mu}[-z/2;z/2]\psi(z/2)|0\rangle = \\ \sum_{n} \frac{1}{n!} z_{\mu_{1}} .. z_{\mu_{n}} \langle H(p,\lambda)|\bar{\psi}(0)\gamma_{\mu} \stackrel{\leftrightarrow}{D}_{\mu_{1}} .. \stackrel{\leftrightarrow}{D}_{\mu_{n}} \psi(0)|0\rangle$$

• C-parity: $\begin{cases}
H \text{ selects the odd-terms:} & C_H = (-) \\
\rho \text{ selects even-terms:} & C_\rho = (-)
\end{cases}$

$$\langle H(p,\lambda)|\bar{\psi}(-z/2)\gamma_{\mu}[-z/2;z/2]\psi(z/2)|0\rangle = \\ \sum_{n \text{ odd}} \frac{1}{n!} z_{\mu_{1}} ... z_{\mu_{n}} \langle H(p,\lambda)|\bar{\psi}(0)\gamma_{\mu} \stackrel{\leftrightarrow}{D}_{\mu_{1}} ... \stackrel{\leftrightarrow}{D}_{\mu_{n}} \psi(0)|0\rangle$$

• Special case n = 1: $\mathcal{R}_{\mu\nu} = \mathsf{S}_{(\mu\nu)} \bar{\psi}(0) \gamma_{\mu} \stackrel{\leftrightarrow}{D}_{\nu} \psi(0)$

 $S_{(\mu\nu)}$ = symmetrization operator: $S_{(\mu\nu)}T_{\mu\nu} = \frac{1}{2}(T_{\mu\nu} + T_{\nu\mu})$

Non perturbative imput for the hybrid DA

- We need to fix f_H (the analogue of $f_{
 ho}$)
- This is a non-perturbative imput
- Lattice does not yet give information
- The operator $\mathcal{R}_{\mu
 u}$ is related to quark energy-momentum tensor $\Theta_{\mu
 u}$:

$$\mathcal{R}_{\mu\nu} = -i\,\Theta_{\mu\nu}$$

- $\bullet~{\rm Rely}$ on QCD sum rules: resonance for $M\approx 1.4~{\rm GeV}$
 - I. I. Balitsky, D. Diakonov, and A. V. Yung

$f_H \approx 50 \,\mathrm{MeV}$

 $f_{\rho}=216~{\rm MeV}$

 $\bullet~{\rm Note:}~f_H$ evolves according to the γ_{QQ} anomalous dimension

$$f_H(Q^2) = f_H \left(\frac{\alpha_S(Q^2)}{\alpha_S(M_H^2)}\right)^{K_1} \quad K_1 = \frac{2\gamma_{QQ}(1)}{\beta_0} ,$$

A few applications Electroproduction of an exotic hybrid meson

Counting rates for H versus ho electroproduction: order of magnitude

Aatio:

$$\frac{d\sigma^{H}(Q^{2}, x_{B}, t)}{d\sigma^{\rho}(Q^{2}, x_{B}, t)} = \left|\frac{f_{H}}{f_{\rho}} \frac{\left(e_{u}\mathcal{H}_{uu}^{-} - e_{d}\mathcal{H}_{dd}^{-}\right)\mathcal{V}^{(H, -)}}{\left(e_{u}\mathcal{H}_{uu}^{+} - e_{d}\mathcal{H}_{dd}^{+}\right)\mathcal{V}^{(\rho, +)}}\right|^{2}$$

- Rough estimate:
 - neglect \bar{q} i.e. $x \in [0,1]$

 $\Rightarrow Im \mathcal{A}_H$ and $Im \mathcal{A}_
ho$ are equal up to the factor \mathcal{V}^M

• Neglect the effect of $Re\mathcal{A}$

$$\frac{d\sigma^H(Q^2, x_B, t)}{d\sigma^{\rho}(Q^2, x_B, t)} \approx \left(\frac{5f_H}{3f_{\rho}}\right)^2 \approx 0.15$$

- More precise study based on Double Distributions to model GPDs + effects of varying μ_R: order of magnitude unchanged
- The range around 1400 MeV is dominated by the $a_2(1329)(2^{++})$ resonance
 - ullet possible interference between H and a_2
 - identification through the $\pi\eta$ GDA, main decay mode for the $\pi_1(1400)$ candidate, through angular asymmetry in θ_{π} in the $\pi\eta$ cms

A few applications Electroproduction of an exotic hybrid meson

Hybrid meson production in e^+e^- colliders

• Hybrid can be copiously produced in $\gamma^*\gamma$, i.e. at e^+e^- colliders with one tagged out-going electron

• This can be described in a hard factorization framework:

A few applications Electroproduction of an exotic hybrid meson

Counting rates for H^0 versus π^0

• Factorization gives:

$$\mathcal{A}^{\gamma\gamma^* \to H^0}(\gamma\gamma^* \to H_L) = (\epsilon_{\gamma} \cdot \epsilon_{\gamma}^*) \frac{(e_u^2 - e_d^2)f_H}{2\sqrt{2}} \int_0^1 dz \, \Phi^H(z) \left(\frac{1}{\bar{z}} - \frac{1}{z}\right)$$

• Ratio H^0 versus π^0 :

$$\frac{d\sigma^{H}}{d\sigma^{\pi^{0}}} = \left| \frac{f_{H} \int_{0}^{1} dz \ \Phi^{H}(z) \left(\frac{1}{z} - \frac{1}{z}\right)}{f_{\pi} \int_{0}^{1} dz \ \Phi^{\pi}(z) \left(\frac{1}{z} + \frac{1}{z}\right)} \right|^{2}$$

• This gives, with asymptotical DAs (i.e. limit $Q^2 \to \infty$):

$$\frac{d\sigma^H}{d\sigma^{\pi^0}} \approx 38\%$$

still larger than 20% at $Q^2 \approx 1~{\rm GeV}^2$ (including kinematical twist-3 effects à la Wandzura-Wilczek for the H^0 DA) and similarly

$$\frac{d\sigma^H}{d\sigma^\eta} \approx 46\%$$
 63/5

8

Backup 00000●0000000

Threshold effects for DVCS and TCS Resummation for Coefficient functions (1)

Computation of the n-loop ladder-like diagram

Threshold effects for DVCS and TCS Resummation for Coefficient functions

Computation of the n-loop ladder-like diagram (2)

• Strong ordering is given as :

 $|\underline{k}_n| \gg |\underline{k}_{n-1}| \gg \cdots \gg |\underline{k}_1| \quad , \quad 1 \gg |\alpha_n| \gg |\alpha_{n-1}| \gg \cdots \gg |\alpha_1|$

 $x \sim \xi \gg |\beta_1| \sim |x - \xi| \gg |x - \xi + \beta_1| \sim |\beta_2| \gg \cdots \gg |x - \xi + \beta_1 + \beta_2 - \cdots + \beta_{n-1}| \sim |\beta_n|$

- eikonal coupling on the left
- coupling on the right goes beyond eikonal
- Integral for n-loop:

$$I_n = \left(\frac{s}{2}\right)^n \int d\alpha_1 \, d\beta_1 \, d_2 \underline{k}_1 \cdots \int d\alpha_n \, d\beta_n \, d_2 \underline{k}_n \, \, (\text{Num})_n \frac{1}{L_1^2} \cdots \frac{1}{L_n^2} \frac{1}{S^2} \frac{1}{R_1^2} \cdots \frac{1}{R_n^2} \frac{1}{k_1^2} \cdots \frac{1}{k_n^2}$$

• Numerator:

$$(\text{Num})_2 = -4s \underbrace{\frac{-2k_1^2 (x+\xi)}{\beta_1} \left[1 + \frac{2(x-\xi)}{\beta_1}\right]}_{\text{gluon 1}} \underbrace{\frac{-2k_2^2 (x+\xi)}{\beta_2} \left[1 + \frac{2(\beta_1 + x - \xi)}{\beta_2}\right]}_{\text{gluon 2}} \cdots \underbrace{\frac{-2k_n^2 (x+\xi)}{\beta_n} \left[1 + \frac{2(\beta_{n-1} + \dots + \beta_1 + x - \xi)}{\beta_n}\right]}_{\text{gluon n}}_{\text{gluon n}}$$

• Propagators:

$$\begin{split} L_1^2 &= \alpha_1(x+\xi)s \ , \qquad R_1^2 = -\underline{k}_1^2 + \alpha_1(\beta_1 + x - \xi)s \ , \\ L_2^2 &= \alpha_2(x+\xi)s \ , \qquad R_2^2 = -\underline{k}_2^2 + \alpha_2(\beta_1 + \beta_2 + x - \xi)s \ , \\ &\vdots \\ L_n^2 &= \alpha_n(x+\xi)s \ , \qquad R_n^2 = -\underline{k}_n^2 + \alpha_n(\beta_1 + \dots + \beta_n + x - \xi)s \ , \end{split}$$

Threshold effects for DVCS and TCS Resummation for Coefficient functions

Computation of the n-loop ladder-like diagram (3)

$$I_{n} = -4 \frac{(2\pi i)^{n}}{x - \xi} \int_{0}^{\xi - x} d\beta_{1} \cdots \int_{0}^{\xi - x - \beta_{1} - \dots - \beta_{n-1}} d\beta_{n} \frac{1}{\beta_{1} + x - \xi} \cdots \frac{1}{\beta_{1} + \dots + \beta_{n} + x - \xi} \\ \times \int_{0}^{\infty} d_{N} \underline{k}_{n} \cdots \int_{\underline{k}_{2}^{2}}^{\infty} d_{N} \underline{k}_{1} \frac{1}{\underline{k}_{1}^{2}} \cdots \frac{1}{\underline{k}_{n-1}^{2}} \frac{1}{\underline{k}_{n}^{2} - (\beta_{1} + \dots + \beta_{n} + x - \xi)s}$$

integration over \underline{k}_i and β_i leads to our final result :

$$I_n^{\text{fin.}} = -4 \frac{(2\pi i)^n}{x - \xi + i\epsilon} \frac{1}{(2n)!} \log^{2n} \left[\frac{\xi - x}{2\xi} - i\epsilon \right]$$

Resummation :

remember that
$$K_n=-rac{1}{4}e_q^2\left(-i\,C_F\,lpha_srac{1}{(2\pi)^2}
ight)^n I_n$$

$$\left(\sum_{n=0}^{\infty} K_n\right) - (x \to -x) = \frac{e_q^2}{x - \xi + i\epsilon} \cosh\left[D\log\left(\frac{\xi - x}{2\xi} - i\epsilon\right)\right] - (x \to -x)$$

where
$$D=\sqrt{rac{lpha_{s}C_{F}}{2\pi}}$$
 66/54

Threshold effects for DVCS and TCS Resummed formula

Inclusion of our resummed formula into the NLO coefficient function

The inclusion procedure is not unique and it is natural to propose two choices:

 $\bullet\,$ modifying only the Born term and the \log^2 part of the C_1^q and keeping the rest of the terms untouched :

$$\begin{split} (T^q)^{\mathrm{res1}} &= \left(\frac{e_q^2}{x-\xi+i\epsilon} \bigg\{ \cosh\left[D\log\left(\frac{\xi-x}{2\xi}-i\epsilon\right)\right] - \frac{D^2}{2} \bigg[9 + 3\frac{\xi-x}{x+\xi}\log\left(\frac{\xi-x}{2\xi}-i\epsilon\right)\bigg] \bigg\} \\ &+ C_{coll}^q \log\frac{Q^2}{\mu_F^2} \bigg) - (x \to -x) \end{split}$$

 \bullet the resummation effects are accounted for in a multiplicative way for C_0^q and C_1^q :

$$\begin{split} (T^q)^{\mathrm{res2}} &= \left(\frac{e_q^2}{x-\xi+i\epsilon}\cosh\left[D\log\left(\frac{\xi-x}{2\xi}-i\epsilon\right)\right] \left[1-\frac{D^2}{2}\left\{9+3\frac{\xi-x}{x+\xi}\log\left(\frac{\xi-x}{2\xi}-i\epsilon\right)\right\}\right] \\ &+ C_{coll}^q\log\frac{Q^2}{\mu_F^2}\right) - (x \to -x) \end{split}$$

These resummed formulas differ through logarithmic contributions which are beyond the precision of our study.

Backup 000000000●000

Threshold effects for DVCS and TCS Phenomenological implications

- We use a Double Distribution based model
 - S. V. Goloskokov and P. Kroll, Eur. Phys. J. C 50, 829 (2007)
- $\bullet\,$ Blind integral in the whole $x-{\rm range:\,}$ amplitude = NLO result $\pm\,1\%$
- To respect the domain of applicability of our resummation procedure:
 - ullet restrict the use of our formula to $\xi-a\gamma<|x|<\xi+a\gamma$
 - width $a\gamma$ defined through $|D\log(\gamma/(2\xi))| = 1$
 - ${\scriptstyle ullet}$ theoretical uncertainty evaluated by varying a
 - a more precise treatment is beyond the leading logarithmic approximation

$$R_{a}(\xi) = \frac{\left[\int_{\xi-a\gamma}^{\xi+a\gamma} + \int_{-\xi-a\gamma}^{-\xi+a\gamma}\right] dx (C^{\text{res}} - C_{0} - C_{1}) H(x,\xi,0)}{|\int_{-1}^{1} dx (C_{0} + C_{1}) H(x,\xi,0)|}$$

 $Re[R_a(\xi)]$: black upper curves $Im[R_a(\xi)]$: grey lower curves a = 1 (solid)

$$a=1/2 \ ({\rm dotted})$$

$$a = 2 \text{ (dashed)}$$

- colorless gluonic exchange
 - C = +1 : Pomeron, in pQCD described by BFKL equation
 - $\bullet \ C = -1$: $\mathbb O {\rm dderon}, \ {\rm in} \ {\rm pQCD} \ {\rm described} \ {\rm by} \ {\rm BJKP} \ {\rm equation}$
- ullet best but still weak evidence for \mathbb{O} : pp and $par{p}$ data at ISR
- $\bullet\,$ no evidence for perturbative $\mathbb O$

Finding the hard Odderon

 $\mathbb O$ exchange much weaker than $\mathbb P \Rightarrow$ two strategies in QCD

- consider processes, where \mathbb{P} vanishes due to C-parity conservation: exclusive $\eta, \eta_c, f_2, a_2, ...$ in $ep; \gamma\gamma \to \eta_c \eta_c \sim |\mathcal{M}_{\mathbb{O}}|^2$ Braunewell, Ewerz '04 exclusive $J/\Psi, \Upsilon$ in pp (PO fusion, not PP)) Bzdak, Motyka, Szymanowski, Cudell '07
- consider observables sensitive to the interference between P and O
 (open charm in ep; π⁺π⁻ in ep)~ Re M_PM₀^{*} ⇒ observable linear in M₀

Brodsky, Rathsman, Merino '99

Ivanov, Nikolaev, Ginzburg '01 in photo-production Hägler, Pire, Szymanowski, Teryaev '02 in electro-production

Finding the hard Odderon

 $\mathbb{P} - \mathbb{O}$ interference in double UPC

 $\mathbb{P}-\mathbb{O}$ interference in $\gamma\gamma \rightarrow \pi^+\,\pi^-\,\pi^+\,\pi^-$

Hard scale = t

B. Pire, F. Schwennsen, L. Szymanowski, S. W. Phys.Rev.D78:094009 (2008) pb at LHC: pile-up!