Impact factor of v* — pp with twist three accuracy

Samuel Wallon !

ILaboratoire de Physique Théorique
Université Paris Sud
Orsay

Diffraction 2008, La Londe-les-Maures

in collaboration with
[. V. Anikin (JINR, Dubna), D .Yu. lvanov (SIM, Novosibirsk), B. Pire (CPhT,
Palaiseau) and L. Szymanowski (SINS, Varsaw)

1/26



Outline

© Introduction
@ Exclusive processes at high energy QCD
9 Exclusive p-production

© Impact factor for exclusive processes
@ Theoretical motivations
@ kr factorization
@ Gauge invariance of impact factor

© Collinear factorization
@ Light-Cone Collinear approach
@ Parametrization of vacuum—-to-rho-meson matrix elements (DAs)
@ Symmetry properties
@ Equations of motion

@ Computation and results
@ 2-body Diagrams
9 3-body Diagrams
@ Results
@ Discussion

© Conclusions

2/26



Introduction

Introduction
Exclusive processes at high energy in QCD

Since a decade, there have been much developpements in hard exclusive
processes.
@ form factors, Distribution Amplitudes — Generalized Distribution
Amplitudes
@ DVCS— Generalized Parton Distributions, Transition Distribution
Amplitudes
These tests are possible in fixed target experiments
@ e®p: HERA (HERMES), JLab, COMPASS...
as well as in colliders, mainly for medium s
% e pcolliders HERA (H1, ZEUS)
@ eTe™ colliders: LEP, Belle, BaBar, BEPC
At the same time, at large s, the interest for phenomenological tests of hard
Pomeron and related resummed approaches has become pretty wide:
@ inclusive tests (total cross-section) and semi-inclusive tests (diffraction,
forward jets, ...)
@ exclusive tests (meson production)
These tests concern all type of collider experiments:
o e®p: HERA: (H1, ZEUS)
? pﬁ and pp: TEVATRON (CDF, DO0); LHC (CMS, ATLAS, ALICE)
@ ete™: (LEP, ILC)

3/26



Introduction

@00

Introduction
Exclusive p-production

Our studies attempt to describe exclusive processes involving the production of
p-mesons in diffraction-type experiment. We choose ¢ = t,,;,, for simplicity.
® v (q) +77(a") = pr(p1) + p(p2) process in
ete” — et e pr(p1) + p(p2) with double tagged lepton at ILC
@ v*(q) + P — pr(p1) + P at HERA

H1 p electroproduction (preliminary)

g i R prel. Q?[GeVY

This process was studied by H1 and ZEUS 81031 o 20

@ the total cross-section strongly g e 33
decreases with Q> © ozl e 65 |

@ dramatic increase with W? = s.,p —r 119
(transition from soft to hard regime 10 ¢ _/-/-/f! 195

governed by QZ) i 37.0
! E — Fitow®

(from X. Janssen (H1), DIS 2008) 10°

W [GeV]
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Introduction
Exclusive p-production

Polarization effects in v* P — p P at HERA

IT1al 7 1Tool
F @® Hlpprel
. = A l.
@ one can experimentally measure all ! g it @pre
spin density matrix elements 0754 a
o5 ® @ .
@ at t = t,min One can experimentally distinguish 0.25 ;\ ‘+
* . . . . 0 1
VL pL d_omlnates (tw!st 2 dominance) it [Gev?]
v — pr:  sizable (twist 3)
[Tyl 7 1Tool
F ® Hlpprel
1 o A Hlgprel
@ S-channel helicity conservation: 0.75 [&
E e
os5f ®
VL = PL (= Too) E %
* * =T 0.25 °
Yr(+) = PT(+)» V(=) > PT(-) (=Tun) E L
0 20
dominate with respect to all other transitions Q*[GeV7]
(from X. Janssen (HL1),
DIS 2008)
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Introduction
Exclusive p-production

The processes with vector particle such as rho-meson probe deeper into the fine
features of QCD.

It deserves theoretical developpement to describe HERA data in its special
kinematical range:

@ large s4+p = small-x effects expected, within k;-factorization

@ large Q% = hard scale = perturbative approach and collinear factorization
= the p can be described through its chiral even Distribution Amplitudes

pr  twist 2
T twist 3

The main ingredient is the v* — p impact factor

@ For pr, special care is needed: a pure 2-body description would violate
gauge invariance.
@ We show that:

o Including in a consistent way all twist 3 contributions, i.e. 2-body and
3-body correlators, gives a gauge invariant impact factor

@ Our treatment is free of end-point singularities and does not violates the
QCD factorization
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Impact factor for exclusive processes
.

Impact factor for exclusive processes
Theoretical motivations

QCD in perturbative Regge limit

@ In this limit, the dynamics is dominated by gluons (dominance of spin 1
exchange in ¢ channel)

@ BFKL (and extensions: NLL, saturations effects, ...) is expected to
dominate with respect to Born order at large relative rapidity.

_, reggeon

Born order: BFKL ladder:

effective vertex
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Impact factor for exclusive processes
k1 factorization

y*~* — pp as an example
@ Use Sudakov decomposition k = api + Bp2 + ki (p? =p3 =0, 2p1 - p2 = 5)
o write d'k = £ dadBd’k.

o t—channel gluons with non-sense polarizations (¢%?, = 2 py, 320%™ = 2 py)
dominates at large s

I1 (illustration for 2-body case)
. ap < Qquarks = set ar =0 and fdﬁ
7" (q1)
- plk)
57 h
k r—k
[OAN
l2
7 (a2) Po O< = set B =0 and [ do

ﬂk < ﬁquarks

= plk2)
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Impact factor for exclusive processes
k1 factorization

impact representation k = Eucl. < k) = Mink.

. d2 k ~* —p(p? v*(g2)—p(ph
M =is / —(271')2]92(;—]{;)2@’ (q1) /(11)(&2_@@, (q2) /<]2)(—E7—£+E)
The 77 7(q)g(k1) — pr,r g(k2) impact factor is normalized as

7 P dk * g 2
() = [ Dise (82,

with k = (g + k)2 = Bs — Q2 — k2
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Impact factor for exclusive processes

Impact factor for exclusive processes
Gauge invariance within subleading twists

Gauge invariance

@ QCD gauge invariance (probes are colorless)
= impact factor should vanish when k — Oorr —k — 0

9 In the following we will restrict ourselve to the case t = tmin, i.e. tor =0

K 2 2
kli%m-ﬁ-kl

T
V)
Il
‘z
w |t
Ed
M
]
V]
+
Ea
s

This kinematics takes into account skewedness effects along po

=> restriction to the transitions 0 - 0 (twist 2)

(+or-) — (+or-) (twist 3)

9 At twist 3 level (for v7- — pr transition), gauge invariance is a non trivial
statement which requires 2 and 3 body correlators
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Collinear factorization
Light-Cone Collinear approach

@ The impact factor can be written as

<I>:/d4l---tr[H(l~~) S(---)]

hard part soft part

@ At the 2-body level:
Suall) = / d*z e~ (p(p)(0) B(2)]0),

@ H and S are related by [ d*l and by the summation over spinor indices
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Collinear factorization
Light-Cone Collinear approach: (2-body case)

1 - Momentum factorization (1)

@ Use Sudakov decomposition in the form (p = p1, n = 2p2/s)

Ly = ap. + Lo+ (-pn, z=1-n
scaling: 1 1/Q 1/Q?

@ decompose H (k) around the p direction:

H(l)=H(zp) + 8%([) (l—xp)a+... with (I—zp)a~Ily

twist 2 kinematical twist 3

l=xp

@ In Fourier space, the kinematical twist 3 term k. turns into a derivative of
the soft term o
= one will deal with [ d*z e ""*(p(p)[¥)(0)i O, 1(2)|0)
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00@00

Collinear factorization
Light-Cone Collinear approach: (2-body case)

1 - Momentum factorization (2)

@ write
d'l — d*1 6(z —1-n) dz

o [d*16(x —1-n) is then absorbed in the soft term:

(Sqg,0154q)

/ d*16(z —1-n) / a2 e (p(p)(0) (1, i 01 )(2)[0)
d\ e*i/\z

27

/%fm{p(p)lw(o)(l,i 9.)d(An)|0)

[ @269 = ow) (pwlw() (1, 050

o [ dx performs the longitudinal momentum factorization
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Collinear factorization
Light-Cone Collinear approach: (2-body case)

2 - Spinorial (and color) factorization

@ Use Fierz decomposition of the Dirac (and color) matrices 1(0) ¢(2) and

»(0) E’u?(z»l

@ & has now the simple factorized form:
@ [ do {tr[Hag(ep)T) Siy(0) + [0 Hoglo ) T) 0. Slyo)}

T' = v* and v* ~% matrices

Shue) = [ B e () ) T6(0) 0)
0.555() e GO T 0L p(0))0)

@ choose axial gauge condition for gluons, i.e. n- A =0 = no Wilson line
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Collinear factorization
Light-Cone Collinear approach: (3-body case)

Factorization of 3-body contributions

@ 3-body contributions start at genuine twist 3
= no need for Taylor expansion

@ Momentum factorization goes in the same way as for 2-body case

@ Spinorial (and color) factorization is similar:
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Collinear factorization

Parametrization of vacuum—to-rho-meson matrix elements (DAs): 2-body correlators

2-body non-local correlators e wist2

kinematical twist 3 (WW)
genuine twist 3
genuine + kinematical twist 3

T
@ vector correlator

(pIP()7010) Zmy £, [01(2) (e )y + () s
9 axial correlator

(P(D) [ (2)1570(0)[0) £ my fo i (x) s €3 pa s

@ vector correlator with transverse derivative

OB i O B(O)[0) Zmp fp o7 (2) ppe?

@ axial correlator with transverse derivative
—

(p(P)[D(2)y57d D% $(0)]0) Z my fri 0 (2) pu carps €4 P 1,

where z (Z = 1 — ) = momentum fraction along p = p1 of the quark (antiquark) and
z fol dzexp iz p - 2], with 2 = \n
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Collinear factorization

Parametrization of vacuum—to—rho-meson matrix elements: 3-body correlators

3-body non-local correlators genuine twist 3

@ vector correlator
- F
(p(D) |1 (21)VugAd (22)¥(0)[0) = my f, B(w1, 22) py ea,
@ axial correlator

(D) D (21) 15709 AL (22)1(0)]0) 2 my, f,0 D(w1, ) P carps € pa 15,

where z1, T2, z2 — x1 = quark, antiquark, gluon momentum fraction

2

and = [dx1

O =
O =

dro explizip-z1 +i(x2 —x1)p- 22], with z12 = An
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Collinear factorization
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Collinear factorization
Symmetry properties

From C-conjugation on the previous correlators, one gets:

@ 2-body correlators:

ey) = wil-y)
es(y) = ws(l-y)
valy) = —pal—y)
piy) = —ei(l-y)
paly) =  @al—y)
@ 3-body correlators:
B(l’1,1’2) = —B(l—l’z,l—l’l)
D(l’1,1’2) = D(l—l‘g,l—l‘l)
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Collinear factorization
Equations of motion

Equations of motion twist 2
kinematical twist 3 (WW)

genuine twist 3

@ Dirac equation leads to genuine + kinematical twist 3
(i(P (0)9(0)ats(2)) =0 (i Du=1 du +Au)
9 Apply the Fierz decomposition to 2 and 3-body correlators above
— (W(2)P(2)) =

9@ = Equation of motion:

BB @ + 3B Emb @)

]

[ dmlzm i ga(a) + @1 - 1) o (o0) + o)
—|—2/dm1 dxs x1[B(x1,x2) + D(x1,22)] =0

@ In WW approximation: genuine twist 3 = 0

[ —2) X" (2) — 5" (2)]

(@) = (@ — ) oV (@) — oV (@)

‘G
S
N
S
~
Il
=
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Computation and results
2-body Diagrams

@ without derivative

N

} twist 2 (v — pL)

3 3 twist 3 (’y;« — PT)

9 practical trick for computing 9, H : use the Ward identity

- = ® where —=——=

M it

At
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Computation and results
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Computation and results
3-body Diagrams

@ “abelian” type
o | ™, F @
@ “non-abelian” type

999999999 vvJ
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Computation and results
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Computation and results
Recall:

~i — pr impact factor

2
(I)’YL"PL(E2) — —i4CF €q fﬂ /dxgol(w) E

pure twist 2 scaling
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Computation and results
Results:

~7p — pr impact factor:

Spin Non-Flip/Flip separation appears

OITIT (IR = 1T (KE) T g + BF 0T (k) T,

where

Tn.f4 = _(676*) and Tf — (e’Yk)ge k) + (6»\/26 )

—_ —

-+

+—+

— — —

non-flip transitions { flip transitions { t
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Computation and results
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Computation and results
Results:

p pure twist 3 scaling
<1>”Tf PT (K2)
zmpfp k2+2Q211(1711))E2
= 2CF/d131 3 5 S
Q2 (1 —=z1) (k% 4+ Q2 a1 (1 — x1))
2 (1—x1)k? (2CF — No)Q?
E24+Q%z1 (1 —a1) [k2 (21 —22+ 1)+ Q% z1 (1 —x2)

[2e1 = D) o] (@1) + ¢4 (@1)]

+2 / dzy dag [B (w1, 2) — D (x1, x2)]

N Q? {ch + Ne
_ — dzqi d s D , —
w2k? 1 Q% 2y (ng —11)] 2/ @1 dwy [B (21, 22) + D (21, 22)] | — .
N 21 Q? (2CF — Ne) z1 k2 _20p
k2 +Q%zq (1 —x1) \ k2 (z1 — 22+ 1) + Q%21 (1 — x2)
4N (z1 —x2) (1 —x2) Q? }}
¢ 1—x k2 (1 —21)+ Q2 (z2 —z1) (1 — =2)
and
Vi—op oy impfp k2% Q? T T
@7 (k%) = o {401:/(111 2+ Q2o (1= 21)° [‘PA(II) — (21— 1)y (11)}
2
*4./d11 d®2m [D(z1,22) (—z1 + 22 — 1) + B (21, z2) (1 + 2 — 1)]
o (20F — No)Q? B Ne Q? ]}
k2 (z1 —22+ 1)+ Q%z1 (1 —z2) x2k? + Q%1 (z2 — 1)
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Computation and results

Discussion

9 The obtained results are gauge invariant:

PTTPT (0 when k — 0

o the Cg part of the abelian 3-body contribution cancels the 2-body
contribution after using the equation of motion

o the N, part of the abelian 3-body contribution cancels the 3-body
non-abelian contribution

¢ thus v} — pr impact factor is gauge-invariant only provided the 3-body
contributions have been taken into account

@ Our results are free of end-point singularities, in both WW approximation
and full twist-3 order calculation:

o the flip contribution obviously does not have any end-point singularity
because of the k2 which regulates them

o the potential end-point singularity for the non-flip contribution is spurious
since ©% (z1), o7 (x1) vanishes at z1 = 0,1 as well as B(z1,z2) and
D(z1,x2).
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Conclusions

Conclusions

@ We have performed a full up to twist 3 computation of the v* — p impact
factor, in the t =ty limit

@ Our result respects gauge invariance

@ It is free of end-point singularities (this should be contrasted with standard
collinear treatment, at moderate s, where no kpr-factorization is
applicable: see Mankiewicz-Piller).

@ In this talk we relied on the Light-Cone Collinear approach (Anikin,
Teryaev), which is non-covariant, but very efficient for practical
computations. We also performed calculations of the same impact factor
using the fully covariant approach in the coordinate space (Braun, Ball).
We got identical results and developped the corresponding dictionnary
between the two approaches.

@ Phenomenological applications will be done in the near future
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