Introduction Impact factor for exclusive processes

Collinear factorization

Computation and results

Conclusions

Impact factor of $\gamma^* \rightarrow \rho_T$ with twist three accuracy

Samuel Wallon

Laboratoire de Physique Théorique Université Paris Sud Orsay

IPN, october 16th, 2008

in collaboration with I. V. Anikin (JINR, Dubna), D .Yu. Ivanov (SIM, Novosibirsk), B. Pire (CPhT, Palaiseau) and L. Szymanowski (SINS, Varsaw)

Introduction	Impact factor for exclusive processes	Collinear factorization	Computation and results	Conclusions
000000000	0000	000000000	00000000	
Outline				
 Intro E Q E 	oduction xclusive processes at high ene CD in the perturbative Regge xclusive ρ -production	ergy QCD e limit		

- 2 Impact factor for exclusive processes
 - Theoretical motivations
 - k_T factorization
 - Gauge invariance of impact factor
- Collinear factorization
 - Light-Cone Collinear approach
 - Parametrization of vacuum-to-rho-meson matrix elements (DAs)
 - Symmetry properties
 - Equations of motion

Computation and results

- 2-body Diagrams
- 3-body Diagrams
- Results
- Discussion

Conclusions

Introduction	Impact factor for exclusive processes	Collinear factorization	Computation and results	Conclusions
• 0000 0000				
Introducti Exclusive prod	ON cesses at high energy in QCD			

- Since a decade, there have been much developpements in hard exclusive processes.
 - $\bullet\,$ form factors, Distribution Amplitudes $\rightarrow\,$ Generalized Distribution Amplitudes
 - DVCS \rightarrow Generalized Parton Distributions, Transition Distribution Amplitudes

3/33

• The key tool is the collinear factorization

Introduction	Impact factor for exclusive processes	Collinear factorization	Computation and results	Conclusions
000000000				
Introducti Extensions fro	on m GPD			

• starting from usual DVCS, one allows initial hadron \neq final hadron example:

which can be further extended by replacing the outoing γ by any hadronic state

• Experimental tests are possible in fixed target experiments

• $e^{\pm}p$: HERA (HERMES), JLab, COMPASS...

as well as in colliders, mainly for medium s

• $e^{\pm}p$ colliders: HERA (H1, ZEUS)

• e^+e^- colliders: LEP, Belle, BaBar, BEPC

Collinear factorization has been proven only for specific cases:
 e.g.: ρ_T production cannot directly be factorized (appearance of end point singularities)

 \Rightarrow improvement needed for a consistent approach of exclusive processes

- At the same time, at large *s*, the interest for phenomenological tests of hard Pomeron and related resummed approaches has become pretty wide:
 - inclusive tests (total cross-section) and semi-inclusive tests (diffraction, forward jets, ...)
 - exclusive tests (meson production)
- These tests concern all type of collider experiments:
 - e[±]p : HERA: (H1, ZEUS)
 - $par{p}$ and pp: TEVATRON (CDF, D0); LHC (CMS, ATLAS, ALICE)
 - e^+e^- : (LEP, ILC)
- These high energy exclusive processes in the perturbative Regge limit may provide new ideas when dealing with collinear factorization

Introduction	Impact factor for exclusive processes	Collinear factorization	Computation and results	Conclusions
0000000000				
Introducti Exclusive p-pr	ON oduction			

Our studies attempt to describe exclusive processes involving the production of ρ -mesons in diffraction-type experiment. We choose $t = t_{min}$ for simplicity.

• $\gamma^*(q) + \gamma^*(q') \rightarrow \rho_T(p_1) + \rho(p_2)$ process in $e^+e^- \rightarrow e^+e^-\rho_T(p_1) + \rho(p_2)$ with double tagged lepton at ILC

•
$$\gamma^*(q) + P \rightarrow \rho_T(p_1) + P$$
 at HERA

This process was studied by H1 and ZEUS

- the total cross-section strongly decreases with Q^2
- dramatic increase with $W^2 = s_{\gamma^* P}$ (transition from soft to hard regime governed by Q^2)

(from X. Janssen (H1), DIS 2008)

・ロト ・ ア・ ・ ヨト ・ ヨト

by $\gamma^*_{T(-)} \rightarrow \rho_{T(-)}$ and $\gamma^*_{T(+)} \rightarrow \rho_{T(+)} \ (\equiv T_{11})$

(from X. Janssen (H1), DIS 2008)

Introduction	Impact factor for exclusive processes	Collinear factorization	Computation and results	Conclusions
Introducti Exclusive ρ-pr	ON oduction			

The processes with vector particle such as rho-meson probe deeper into the fine features of QCD.

It deserves theoretical developpement to describe HERA data in its special kinematical range:

- large $s_{\gamma^*P} \Rightarrow$ small-x effects expected, within k_t -factorization
- large $Q^2 \Rightarrow$ hard scale \Rightarrow perturbative approach and collinear factorization \Rightarrow the ρ can be described through its chiral even Distribution Amplitudes

$$\left\{ \begin{array}{cc} \rho_L & \text{twist 2} \\ \rho_T & \text{twist 3} \end{array} \right.$$

The main ingredient is the $\gamma^* \to \rho$ impact factor

- For $\rho_T,$ special care is needed: a pure 2-body description would violate gauge invariance.
- We show that:
 - Including in a consistent way all twist 3 contributions, i.e. 2-body and 3-body correlators, gives a gauge invariant impact factor
 - Our treatment is free of end-point singularities and does not violates the QCD factorization

Introduction 000000000	Impact factor for exclusive processes ●○○○	Collinear factorization	Computation and results	Conclusions
Impact fac Theoretical m	ctor for exclusive process ^{otivations}	es		

QCD in perturbative Regge limit

- In this limit, the dynamics is dominated by gluons (dominance of spin 1 exchange in t channel)
- BFKL (and extensions: NLL, saturations effects, ...) is expected to dominate with respect to Born order at large relative rapidity.

イロト イポト イヨト イヨト

 $\gamma^*\,\gamma^* \to \rho\,\rho$ as an example

- Use Sudakov decomposition $k = \alpha p_1 + \beta p_2 + k_\perp$ $(p_1^2 = p_2^2 = 0, 2p_1 \cdot p_2 = s)$
- ullet write $d^4k=rac{s}{2}\,dlpha\,deta\,d^2k_\perp$
- *t*-channel gluons with non-sense polarizations ($\epsilon_{NS}^{up} = \frac{2}{s} p_2$, $\epsilon_{NS}^{down} = \frac{2}{s} p_1$) dominates at large *s*

Introduction 000000000	Impact factor for exclusive processes	Collinear factorization	Computation and results	Conclusions
$\lim_{k_{\mathcal{T}} \text{ factorization}} \int_{\mathcal{T}} \int_{T$	tor for exclusive processe	es		

impact representation $\underline{k} = Eucl. \leftrightarrow k_{\perp} = Mink.$

$$\mathcal{M} = is \int \frac{d^2 \underline{k}}{(2\pi)^2 \underline{k}^2 (\underline{r} - \underline{k})^2} \Phi^{\gamma^*(q_1) \to \rho(p_1^{\rho})}(\underline{k}, \underline{r} - \underline{k}) \Phi^{\gamma^*(q_2) \to \rho(p_2^{\rho})}(-\underline{k}, -\underline{r} + \underline{k})$$

The $\gamma^*_{L,T}(q)g(k_1)
ightarrow
ho_{L,T} g(k_2)$ impact factor is normalized as

$$\Phi^{\gamma^* \to \rho}(\underline{k}^2) = e^{\gamma^* \mu} \frac{1}{2s} \int \frac{d\kappa}{2\pi} \operatorname{Disc}_{\kappa} \mathcal{S}_{\mu}^{\gamma^* g \to \rho g}(\underline{k}^2),$$

with $\kappa = (q+k)^2 = \beta \, s - Q^2 - \underline{k}^2$

<ロ> < 団> < 団> < 目> < 目> < 目> < 目 > のへの 14/33

Introduction	Impact factor for exclusive processes	Collinear factorization	Computation and results	Conclusions
	0000			
Impact fa	octor for exclusive process	es		

Gauge invariance

- QCD gauge invariance (probes are colorless) \Rightarrow impact factor should vanish when $\underline{k} \rightarrow 0$ or $\underline{r} - \underline{k} \rightarrow 0$
- In the following we will restrict ourselve to the case $t=t_{min},$ i.e. to $\underline{r}=0$

This kinematics takes into account skewedness effects along p_2 \Rightarrow restriction to the transitions $\begin{cases} 0 & \rightarrow & 0 & (twist 2) \\ (+ \text{ or } -) & \rightarrow & (+ \text{ or } -) & (twist 3) \end{cases}$

• At twist 3 level (for $\gamma_T^* \rightarrow \rho_T$ transition), gauge invariance is a non trivial statement which requires 2 and 3 body correlators

Introduction	Impact factor for exclusive processes	Collinear factorization	Computation and results	Conclusions
		● 0000 0000		
Collinear Light-Cone C	factorization ^{ollinear approach}			

• The impact factor can be written as

$$\Phi = \int d^4 l \cdots \operatorname{tr}[\boldsymbol{H}(\boldsymbol{l}\cdots) \quad S(\boldsymbol{l}\cdots)]$$

hard part soft part

• At the 2-body level:

$$S_{q\bar{q}}(l) = \int d^4z \, e^{-il \cdot z} \langle \rho(p) | \psi(0) \, \bar{\psi}(z) | 0 \rangle,$$

• H and S are related by $\int d^4l$ and by the summation over spinor indices

Introduction	Impact factor for exclusive processes	Collinear factorization	Computation and results	Conclusions
		00000000		
Collinear t Light-Cone C	factorization ollinear approach: 2 steps of factor	rization (2-body case)		

1 - Momentum factorization (1)

 $\bullet\,$ Use Sudakov decomposition in the form $(p=p_1,\,n=2\,p_2/s)$

$$l_{\mu}$$
 = $x p_{\mu}$ + l_{μ}^{\perp} + $(l \cdot p) n_{\mu}$, $x = l \cdot n$
scaling: 1 $1/Q$ $1/Q^2$

• decompose H(k) around the p direction:

$$\begin{split} H(l) &= H(xp) + \left. \frac{\partial H(l)}{\partial l_{\alpha}} \right|_{l=xp} (l-xp)_{\alpha} + \dots \text{ with } (l-xp)_{\alpha} \approx l_{\alpha}^{\perp} \\ \text{twist 2} & \text{kinematical twist 3 and genuine twist 3} \end{split}$$

• In Fourier space, the twist 3 term l_{α}^{\perp} turns into a derivative of the soft term

 $\Rightarrow \text{ one will deal with } \int d^4z \ e^{-il\cdot z} \langle \rho(p) | \psi(0) \ i \ \overleftrightarrow{\partial_{\alpha^\perp}} \bar{\psi}(z) | 0 \rangle$

1 - Momentum factorization (2)

write

$$d^4l \longrightarrow d^4l \ \delta(x - l \cdot n) \ dx$$

• $\int d^4 l \, \delta(x - l \cdot n)$ is then absorbed in the soft term:

$$\begin{split} (\tilde{S}_{q\bar{q}},\partial_{\perp}\tilde{S}_{q\bar{q}}) &\equiv \int d^{4}l\,\delta(x-l\cdot n)\int d^{4}z\,e^{-il\cdot z}\langle\rho(p)|\psi(0)\,(1,\,i\,\overleftrightarrow{\partial_{\perp}})\bar{\psi}(z)|0\rangle \\ &= \int \frac{d\lambda}{2\pi}\,e^{-i\lambda x}\int d^{4}z\,\delta^{(4)}(z-\lambda n)\,\langle\rho(p)|\psi(0)\,(1,\,i\,\overleftrightarrow{\partial_{\perp}})\bar{\psi}(z)|0\rangle \\ &= \int \frac{d\lambda}{2\pi}\,e^{-i\lambda x}\langle\rho(p)|\psi(0)\,(1,\,i\,\overleftrightarrow{\partial_{\perp}})\bar{\psi}(\lambda n)|0\rangle \end{split}$$

• $\int dx$ performs the longitudinal momentum factorization

Introduction	Impact factor for exclusive processes	Collinear factorization	Computation and results	Conclusions
		00000000		
Collinear · Light-Cone C	factorization ollinear approach: 2 steps of factor	ization (2-body case)		

2 - Spinorial (and color) factorization

ullet Use Fierz decomposition of the Dirac (and color) matrices $\psi(0)\,ar{\psi}(z)$ and

• Φ has now the simple factorized form:

$$\Phi = \int d\boldsymbol{x} \, \left\{ \operatorname{tr} \left[H_{q\bar{q}}(\boldsymbol{x} \, p) \, \Gamma \right] \, S^{\Gamma}_{q\bar{q}}(\boldsymbol{x}) + \operatorname{tr} \left[\partial_{\perp} H_{q\bar{q}}(\boldsymbol{x} \, p) \, \Gamma \right] \, \partial_{\perp} S^{\Gamma}_{q\bar{q}}(\boldsymbol{x}) \right\}$$

 Γ = γ^{μ} and $\gamma^{\mu}\,\gamma^{5}$ matrices

$$S_{q\bar{q}}^{\Gamma}(x) = \int \frac{d\lambda}{2\pi} e^{-i\lambda x} \langle \rho(p) | \bar{\psi}(\lambda n) \Gamma \psi(0) | 0 \rangle$$

$$\partial_{\perp} S_{q\bar{q}}^{\Gamma}(x) = \int \frac{d\lambda}{2\pi} e^{-i\lambda x} \langle \rho(p) | \bar{\psi}(\lambda n) \Gamma i \stackrel{\longleftrightarrow}{\partial_{\perp}} \psi(0) | 0 \rangle$$

• choose axial gauge condition for gluons, i.e. $n \cdot A = 0 \Rightarrow$ no Wilson line

Introduction	Impact factor for exclusive processes	Collinear factorization	Computation and results	Conclusions
		000000000		
Collinear Light-Cone C	factorization ollinear approach: 2 steps of factor	rization (3-body case)		

Factorization of 3-body contributions

- 3-body contributions start at genuine twist 3
 ⇒ no need for Taylor expansion
- Momentum factorization goes in the same way as for 2-body case
- Spinorial (and color) factorization is similar:

$$\langle \rho(p) | \bar{\psi}(z) \gamma_5 \gamma_\mu i \overleftarrow{\partial_\alpha^\perp} \psi(0) | 0 \rangle \stackrel{\mathcal{F}}{=} m_\rho f_\rho i \varphi_A^T(x) p_\mu \varepsilon_{\alpha\lambda\beta\delta} e_\lambda^{*T} p_\beta n_\delta,$$

where x ($\bar{x} = 1 - x$) = momentum fraction along $p \equiv p_1$ of the quark (antiquark) and $\stackrel{\mathcal{F}}{=} \int_0^1 dx \exp{[ix \, p \cdot z]}$, with $z = \lambda n$

3-body non-local correlators

genuine twist 3

• vector correlator

$$\langle \rho(p) | \bar{\psi}(z_1) \gamma_{\mu} g A_{\alpha}^T(z_2) \psi(0) | 0 \rangle \stackrel{\mathcal{F}_2}{=} m_{\rho} f_3^V B(x_1, x_2) p_{\mu} e_{\alpha}^{*T},$$

• axial correlator

$$\langle \rho(p) | \bar{\psi}(z_1) \gamma_5 \gamma_{\mu} g A_{\alpha}^T(z_2) \psi(0) | 0 \rangle \stackrel{\mathcal{F}_2}{=} m_{\rho} f_3^A \, i \, D(x_1, x_2) \, p_{\mu} \, \varepsilon_{\alpha \lambda \beta \delta} \, e_{\lambda}^{*T} \, p_{\beta} \, n_{\delta},$$

where x_1 , \bar{x}_2 , $x_2 - x_1 = quark$, antiquark, gluon momentum fraction

and
$$\mathcal{F}_{2} \int_{0}^{1} dx_{1} \int_{0}^{1} dx_{2} \exp \left[i x_{1} p \cdot z_{1} + i (x_{2} - x_{1}) p \cdot z_{2} \right]$$
, with $z_{1,2} = \lambda n$

4 ロト 4 部 ト 4 差 ト 4 差 ト 差 の Q ペ
22 / 33

Introduction	Impact factor for exclusive processes	Collinear factorization	Computation and results	Conclusions
		000000000		
Collinear f Symmetry pro	factorization			

From C-conjugation on the previous correlators, one gets:

• 2-body correlators:

$$\begin{array}{rcl} \varphi_{1}(y) & = & \varphi_{1}(1-y) \\ \varphi_{3}(y) & = & \varphi_{3}(1-y) \\ \varphi_{A}(y) & = & -\varphi_{A}(1-y) \\ \varphi_{1}^{T}(y) & = & -\varphi_{1}^{T}(1-y) \\ \varphi_{A}^{T}(y) & = & \varphi_{A}^{T}(1-y) \end{array}$$

• 3-body correlators:

$$B(x_1, x_2) = -B(1 - x_2, 1 - x_1)$$

$$D(x_1, x_2) = D(1 - x_2, 1 - x_1)$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

		Equations of motion	twist 2 kinematical twist 3 (W/W)	
Collinear Equations of	factorization			
000000000	0000	00000000	00000000	Conclusions
Introduction	Impact factor for exclusive pr	ocesses Collinear factorization	Computation and results	Conclusions

• Dirac equation leads to

twist 2 kinematical twist 3 (WW) genuine twist 3 genuine + kinematical twist 3

• Apply the Fierz decomposition to the above 2 and 3-body correlators

$$-\langle\psi(x)\,\bar{\psi}(z)\rangle = \frac{1}{4}\langle\bar{\psi}(z)\gamma_{\mu}\psi(x)\rangle\gamma_{\mu} + \frac{1}{4}\langle\bar{\psi}(z)\gamma_{5}\gamma_{\mu}\psi(x)\rangle\gamma_{\mu}\gamma_{5}.$$

 \bullet \Rightarrow Equation of motion:

$$\int dx_1 [2x_1 \, \bar{x_1} \, \varphi_3(x) + (x_1 - \bar{x_1}) \, \varphi_1^T(x_1) + \varphi_A^T(x_1)] + 2 \int dx_1 \, dx_2 \, x_1 [\zeta^V B(x_1, x_2) + \zeta^A D(x_1, x_2)] = 0 \qquad (\zeta^{V,A} = f_3^{V,A} / f_\rho)$$

• In WW approximation: genuine twist 3 = 0

Introduction	Impact factor for exclusive processes	Collinear factorization	Computation and results	Conclusions
Computat 2-body Diagra	ion and results			

• without derivative

• practical trick for computing $\partial_\perp H$: use the Ward identity

Introduction	Impact factor for exclusive processes	Collinear factorization	Computation and results	Conclusions
000000000	0000	00000000	0000000	
Computati 3-body Diagra	ion and results ^{ms}			

• "abelian" type

معمععم

م م م

• "non-abelian" type

≣⇒

Introduction 000000000	Impact factor for exclusive processes 0000	Collinear factorization	Computation and results	Conclusions
$\begin{array}{c} Computat \\ Recall: \ \boldsymbol{\gamma}_L^* \rightarrow \end{array}$	tion and results p_L impact factor			

$\gamma_L^* ightarrow ho_L$ impact factor

$$\Phi^{\gamma_L^* \to \rho_L}(\underline{k}^2) = -i \frac{4C_F e_q f_\rho}{Q} \int dx \,\varphi_1(x) \frac{\underline{k}^2}{x \, \bar{x} \, Q^2 + \underline{k}^2}$$

pure twist 2 scaling

Introduction	Impact factor for exclusive processes	Collinear factorization	Computation and results	Conclusions
000000000	0000	00000000	0000000	
Computation Results: γ_T^* -	tion and results $\rightarrow \rho_T$ impact factor			

 $\gamma_T^* \rightarrow \rho_T$ impact factor:

Spin Non-Flip/Flip separation appears

$$\Phi^{\gamma_T^* \to \rho_T}(\underline{k}^2) = \Phi^{\gamma_T^* \to \rho_T}_{n.f.}(\underline{k}^2) T_{n.f.} + \Phi^{\gamma_T^* \to \rho_T}_{f.}(\underline{k}^2) T_{f.f.}$$

where

$$T_{n.f.} = -(e_{\gamma} \cdot e^*) \quad \text{and} \quad T_{f.} = \frac{(e_{\gamma} \cdot k)(e^*k)}{\underline{k}^2} + \frac{(e_{\gamma} \cdot e^*)}{2}$$

non-flip transitions
$$\begin{cases} + \to + \\ - \to - \end{cases} \quad \text{flip transitions} \begin{cases} + \to - \\ - \to + \end{cases}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Introduction	Impact factor for exclusive processes 0000	Collinear factorization	Computation and results	Conclusions
Computati Results: γ_T^* –	ion and results $ ho_T$ impact factor			

$$\begin{split} \Phi_{n,f.}^{\gamma_T^{\bullet} \to \rho_T}(\underline{k}^2) & \text{pure twist 3 scaling} \\ &= -\frac{m_{\rho}f_{\rho}}{2\sqrt{2}Q^2} \left\{ -2\,C_F \int dx_1 \frac{\left(\underline{k}^2 + 2\,Q^2\,x_1\,(1-x_1)\right)\underline{k}^2}{x_1\,(1-x_1)\,(\underline{k}^2 + Q^2\,x_1\,(1-x_1))^2} \left[(2x_1 - 1)\,\varphi_1^T(x_1) + \varphi_A^T(x_1) \right] \right. \\ &+ 2\,\zeta \int dx_1\,dx_2\left[B\,(x_1,x_2) - D\,(x_1,x_2) \right] \frac{x_1\,(1-x_1)\,\underline{k}^2}{\underline{k}^2 + Q^2\,x_1\,(1-x_1)} \left[\frac{(2\,C_F - N_c)Q^2}{\underline{k}^2\,(x_1 - x_2 + 1) + Q^2\,x_1\,(1-x_2)} \right. \\ &\left. - \frac{N_c\,Q^2}{x_2\underline{k}^2 + Q^2\,x_1\,(x_2 - x_1)} \right] - 2\,\zeta \int dx_1\,dx_2\left[B\,(x_1,x_2) + D\,(x_1,x_2) \right] \left[\frac{2\,C_F + N_c}{1-x_1} \right. \\ &\left. + \frac{x_1\,Q^2}{\underline{k}^2 + Q^2\,x_1\,(1-x_1)} \left(\frac{(2\,C_F - N_c)\,x_1\,\underline{k}^2}{(x_1 - x_2 + 1) + Q^2\,x_1\,(1-x_2)} - 2C_F \right) \right. \\ &\left. + N_c\,\frac{(x_1 - x_2)\,(1-x_2)}{1-x_1} \frac{Q^2}{\underline{k}^2\,(1-x_1) + Q^2\,(x_2 - x_1)\,(1-x_2)} \right] \right\} \end{split}$$

and

$$\begin{split} \Phi_{f.}^{\gamma_T^* \to \rho_T}(\underline{k}^2) &= -\frac{m_\rho f_\rho}{2\sqrt{2} Q^2} \left\{ 4 \, C_F \int dx_1 \frac{\underline{k}^2 \, Q^2}{(\underline{k}^2 + Q^2 \, x_1 \, (1 - x_1))^2} \left[\varphi_A^T(x_1) - (2x_1 - 1) \, \varphi_1^T(x_1) \right] \right. \\ &- 4 \, \zeta \int dx_1 \, dx_2 \frac{x_1 \, \underline{k}^2}{\underline{k}^2 + Q^2 \, x_1 \, (1 - x_1)} \left[D(x_1, x_2) \, (-x_1 + x_2 - 1) + B(x_1, x_2) \, (x_1 + x_2 - 1) \right] \\ &\times \left[\frac{(2 \, C_F - N_c) Q^2}{\underline{k}^2 \, (x_1 - x_2 + 1) + Q^2 \, x_1 \, (1 - x_2)} - \frac{N_c \, Q^2}{x_2 \, \underline{k}^2 + Q^2 x_1 \, (x_2 - x_1)} \right] \right\} \\ &\left. \left. \left(\frac{\partial \varphi}{\partial x_1} + \frac{\partial \varphi}{\partial x_2} \right] \right\} \end{split}$$

Introduction	Impact factor for exclusive processes	Collinear factorization	Computation and results	Conclusions	
00000000	0000	00000000	00000000		
Computation and results					
Results: γ_T^* –					

WW limit

- In the WW limit, only the twist 2 and kinematical twist 3 terms are kept.
- The only remaining contributions come from the two-body correlators
- non-flip transition

$$\begin{split} \Phi_{n.f.}^{\gamma_T^* \to \rho_T}(\underline{k}^2) &= -\frac{-e \, m_\rho f_\rho}{2 \sqrt{2} \, Q^2} \frac{\delta^{ab}}{2 \, N_c} \int_0^1 \left\{ \frac{(2 \, x - 1) \, \varphi_1^T(x) + 2 \, x \, (1 - x) \, \varphi^{WW}_3(x) + \varphi_A^T(x)}{x \, (1 - x)} \right. \\ &\left. - \frac{2 \, \underline{k}^2 \left(\underline{k}^2 + 2 \, Q^2 \, x \, (1 - x)\right) \left((2 \, x - 1) \, \phi_1^T(x) + \phi_A^T(x)\right)}{x \, (1 - x) \left(\underline{k}^2 + Q^2 \, x \, (1 - x)\right)^2} \right\} \end{split}$$

which simplifies, using equation of motion:

$$\int dx_1 [2 x \bar{x} \varphi_3^{WW}(x) + (x - \bar{x}) \varphi_1^T(x) + \varphi_A^T(x)] = 0$$

$$\Phi_{n.f.}^{\gamma_T^* \to \rho_T}(\underline{k}^2) = \frac{e m_{\rho} f_{\rho}}{\sqrt{2} Q^2} \frac{\delta^{ab}}{2 N_c} \int_0^1 \frac{2 \underline{k}^2 \left(\underline{k}^2 + 2 Q^2 x (1 - x)\right)}{x (1 - x) \left(\underline{k}^2 + Q^2 x (1 - x)\right)^2} \left[(2 x - 1) \varphi_1^T(x) + \varphi_A^T(x) \right].$$

• flip transition:

$$\Phi_{n.f.}^{\gamma_T^* \to \rho_T}(\underline{k}^2) = -\frac{e \, m_\rho f_\rho}{\sqrt{2} \, Q^2} \frac{\delta^{ab}}{2 \, N_c} \int_0^1 \frac{2 \, \underline{k}^2 \, Q^2}{\left(\underline{k}^2 + Q^2 \, (1-x) \, x\right)^2} \left[(1-2 \, x_1) \, \varphi_1^T(x) + \varphi_A^T(x) \right] \, .$$

Introduction	Impact factor for exclusive processes	Collinear factorization	Computation and results	Conclusions
			00000000	
Computat	ion and results auge invariance			

• The obtained results are gauge invariant:

$$\Phi^{\gamma_T^* \to \rho_T} \to 0$$
 when $\underline{k} \to 0$

- this is straightforward in the WW limit
- at the full twist 3 order:
 - the C_F part of the abelian 3-body contribution cancels the 2-body contribution after using the equation of motion
 - $\bullet\,$ the N_c part of the abelian 3-body contribution cancels the 3-body non-abelian contribution
 - thus $\gamma_T^* \to \rho_T$ impact factor is gauge-invariant only provided the 3-body contributions have been taken into account

Introduction 000000000	Impact factor for exclusive processes	Collinear factorization	Computation and results ○○○○○○●	Conclusions
Computat Discussion: o	ion and results			

- Our results are free of end-point singularities, in both WW approximation and full twist-3 order calculation:
 - the flip contribution obviously does not have any end-point singularity because of the \underline{k}^2 which regulates them
 - the potential end-point singularity for the non-flip contribution is spurious since $\varphi_{1}^{T}(x_{1})$, $\varphi_{1}^{T}(x_{1})$ vanishes at $x_{1} = 0, 1$ as well as $B(x_{1}, x_{2})$ and $D(x_{1}, x_{2})$.

Introduction 000000000	Impact factor for exclusive processes 0000	Collinear factorization	Computation and results	Conclusions
Conclusio	ns			

- We have performed a full up to twist 3 computation of the $\gamma^*\to\rho$ impact factor, in the $t=t_{min}$ limit.
- Our result respects gauge invariance. This is achieved only after including 2 and 3 body correlators.
- It is free of end-point singularities (this should be contrasted with standard collinear treatment, at moderate s, where no k_T -factorization is applicable: see Mankiewicz-Piller).
- In this talk we relied on the Light-Cone Collinear approach (Anikin, Teryaev), which is non-covariant, but very efficient for practical computations.
- We also performed calculations of the same impact factor using a fully covariant approach (inspired by Braun, Ball).
 - We got identical results in the WW approximation and developped the corresponding dictionnary between the two approaches.
 - The general dictionnary between the two approaches within a full twist 3 treatment is under process
- Phenomenological applications will be done in the near future.