QCD factorization for $\gamma^{*} \gamma^{*} \rightarrow \rho_{L}^{0} \rho_{L}^{0}$

Samuel Wallon ${ }^{1}$

${ }^{1}$ Laboratoire de Physique Théorique
Université Paris Sud
Orsay

Blois 2007, DESY, Hamburg

based on:

Diffractive production of two ρ_{L}^{0} mesons in e+e- collisions
M. Segond, L. Szymanowski, S. W. [hep-ph/0703166]

QCD factorizations in $\gamma^{*} \gamma^{*} \rightarrow \rho \rho$
B. Pire, M. Segond, L. Szymanowski, S. W. Phys.Lett.B639:642-651,2006 [hep-ph/0605320]

BFKL resummation effects in $\gamma^{*} \gamma^{*} \rightarrow \rho \rho$
R. Enberg, B. Pire, L. Szymanowski, S. W. Eur.Phys.J.C45:759-769,2006 [hep-ph/0508134]

Double diffractive rho-production in $\gamma^{*} \gamma^{*}$ collisions
B. Pire, L. Szymanowski, S. W. Eur.Phys.J.C44:545-558,2005 [hep-ph/0507038]

Outline

(1) Introduction: Exclusive processes at high energy QCD

- Motivation
- GDA and TDA for $\gamma^{*} \gamma^{*} \rightarrow \rho_{L}^{0} \rho_{L}^{0}$
(2) Computation in the collinear factorization with DA at fixed W^{2}
- Direct calculation
- Interpretation in terms of QCD Factorization
- GDA for transverse photon in the limit $\Lambda_{Q C D} \ll W^{2} \ll \operatorname{Max}\left(Q_{1}^{2}, Q_{2}^{2}\right)$
- TDA for longitudinal photon in the limit $Q_{1}^{2} \gg Q_{2}^{2}$ (or $Q_{1}^{2} \ll Q_{2}^{2}$)
(3) Computation at large $W^{2}: k_{T}$ factorization approach
- Motivation and aims
- k_{T} factorization
- Non-forward Born order cross-section for $\gamma^{*} \gamma^{*} \rightarrow \rho_{L}^{0} \rho_{L}^{0}$
- Analytical 2-dimensional integration through conformal transformations
- Results
- Non-forward Born order cross-section for $e^{+} e^{-} \rightarrow e^{+} e^{-} \rho_{L}^{0} \rho_{L}^{0}$
- Equivalent photon approximation
- Kinematical cuts
- ILC collider and LDC detector
- Born result
- LL BFKL enhancement

Outline

(1) Introduction: Exclusive processes at high energy QCD

- Motivation
- GDA and TDA for $\gamma^{*} \gamma^{*} \rightarrow \rho_{L}^{0} \rho_{L}^{0}$
(2) Computation in the collinear factorization with DA at fixed W^{2}
- Direct calculation
- Interpretation in terms of QCD Factorization
- GDA for transverse photon in the limit $\Lambda_{Q C D} \ll W^{2} \ll \operatorname{Max}\left(Q_{1}^{2}, Q_{2}^{2}\right)$
- TDA for longitudinal photon in the limit $Q_{1}^{2} \gg Q_{2}^{2}$ (or $Q_{1}^{2} \ll Q_{2}^{2}$)
(3) Computation at large $W^{2}: k_{T}$ factorization approach
- Motivation and aims
- k_{T} factorization
- Non-forward Born order cross-section for $\gamma^{*} \gamma^{*} \rightarrow \rho_{L}^{0} \rho_{L}^{0}$
- Analytical 2-dimensional integration through conformal transformations
- Results
- Non-forward Born order cross-section for $e^{+} e^{-} \rightarrow e^{+} e^{-} \rho_{L}^{0} \rho_{L}^{0}$
- Equivalent photon approximation
- Kinematical cuts
- ILC collider and LDC detector
- Born result
- LL BFKL enhancement

Introduction: Exclusive processes at high energy QCD

Motivation

Since a decade, there have been much developpements in hard exclusive processes.

- form factors \rightarrow Distribution Amplitudes
- DVCS \rightarrow Generalized Parton Distributions,
- ...

These tests are possible in fixed target experiments

- $e^{ \pm} p$ HERA (HERMES), JLab, ...
as well as in colliders, mainly for fixed s
- $e^{ \pm} p$ colliders: HERA (H1,ZEUS)
- $e^{+} e^{-}$colliders: LEP, Belle, BaBar, BEPC

At the same time, the interest for phenomenological tests of hard Pomeron and related resummed approaches has become pretty wide:

- inclusive tests (total cross-section) and semi-inclusive tests (diffraction, forward jets, ...)
- exclusive tests (meson production)

These tests concern all type of collider experiments:

- $e^{ \pm} p$ (HERA: H1, ZEUS)
- $p \bar{p}$ (TEVATRON: CDF, DO)
- $e^{+} e^{-}$colliders (LEP, ILC)

We will focus on a specific exclusive process:

$$
\gamma^{*} \gamma^{*} \rightarrow \rho_{L}^{0} \rho_{L}^{0} \quad \text { with both } \gamma^{*} \text { hard }
$$

It is a beautiful theoretical laboratory for investigating different dynamics (collinear, multiregge) and factorization properties of high energy QCD:

- at low energy (fixed s) it provides an (almost) full perturbative laboratory for extended GPDs: GDA and TDA
- at high energy (asymptotic s) it provides an (almost) full perturbative laboratory for BFKL and related resummed effects, at amplitude level.
The corresponding experimental process is

$$
e^{+} e^{-} \rightarrow e^{+} e^{-} \rho_{L}^{0} \rho_{L}^{0}
$$

with double tagged outoing leptons.

Outline

(1) Introduction: Exclusive processes at high energy QCD

- Motivation
- GDA and TDA for $\gamma^{*} \gamma^{*} \rightarrow \rho_{L}^{0} \rho_{L}^{0}$
(2) Computation in the collinear factorization with DA at fixed W^{2}
- Direct calculation
- Interpretation in terms of QCD Factorization
- GDA for transverse photon in the limit $\Lambda_{\varrho C D} \ll W^{2} \ll \operatorname{Max}\left(Q_{1}^{2}, Q_{2}^{2}\right)$
- TDA for longitudinal photon in the limit $Q_{1}^{2} \gg Q_{2}^{2}$ (or $Q_{1}^{2} \ll Q_{2}^{2}$)
(3) Computation at large $W^{2}: k_{T}$ factorization approach
- Motivation and aims
- k_{T} factorization
- Non-forward Born order cross-section for $\gamma^{*} \gamma^{*} \rightarrow \rho_{L}^{0} \rho_{L}^{0}$
- Analytical 2 -dimensional integration through conformal transformations
- Results
- Non-forward Born order cross-section for $e^{+} e^{-} \rightarrow e^{+} e^{-} \rho_{L}^{0} \rho_{L}^{0}$
- Equivalent photon approximation
- Kinematical cuts
- ILC collider and IDC detector
- Born result
- LL BFKL enhancement

GDA and TDA for $\gamma^{*} \gamma^{*} \rightarrow \rho_{L}^{0} \rho_{L}^{0}:$

Extensions from GPD

- DIS: inclusive process \rightarrow forward amplitude ($t=0$)

- DVCS: exclusive process \rightarrow non forward amplitude $\left(-t \ll s=W^{2}\right)$

Extensions:

- Meson production: γ replaced by ρ, π, \cdots

Amplitude
$=\underset{(\mathrm{soft})}{\mathrm{GPD}} \otimes \underset{(\text { hard })}{\mathrm{CF}} \otimes \otimes \quad \begin{gathered}\text { Distribution Amplitude } \\ (\mathrm{soft})\end{gathered}$

- Crossed process: $s \ll-t$

Amplitude
$=\underset{\text { (hard) }}{\text { Coefficient Function }} \otimes \underset{\text { (soft) }}{\text { Generalized Distribution Amplitude }}$ (hard) (soft)

- starting from usual DVCS, one allows initial hadron \neq final hadron example:

which can be further extended by replacing the outoing γ by any hadronic state
Amplitude
$\underset{\text { (soft) }}{\text { Transition Distribution Amplitude }}$$\otimes \underset{\text { (hard) }}{\text { CF }} \otimes \underset{\text { (soft) }}{\text { DA }}$

Collinear factorization at $q \bar{q} \rho$ vertices

$Q_{1,2}^{2}:$ hard scales \Rightarrow collinear approximation at each $q \bar{q} \rho$ vertex

i.e. we neglect the transverse relative (anti-)quark momenta in the ρ mesons:

$$
\begin{array}{ll}
\ell_{1} \sim z_{1} k_{1} & \ell_{2} \sim z_{2} k_{2} \\
\hat{\ell}_{1} \sim \bar{z}_{1} k_{1} & \overline{\hat{L}_{2}} \sim \bar{z}_{2} k_{2}
\end{array}
$$

We limit ourselves to longitudinaly polarized mesons (to avoid potential end-point singularies due to higher twist contributions)
DA of the meson = matrix element of non local quarks fields correlator on the light cone

$$
\langle 0| \bar{q}(x) \gamma^{\mu} q(-x)\left|\rho_{L}(p)=\bar{q} q\right\rangle=f_{\rho} p^{\mu} \int_{0}^{1} d z e^{i(2 z-1)(p x)} \phi(z)
$$

with

$$
\phi(z)=6 z(1-z)\left(1+\sum_{n=1}^{\infty} a_{2 n} C_{2 n}^{3 / 2}(2 z-1)\right)
$$

Note: p_{1}, p_{2} are light-like Sudakov vectors along the meson momenta.

We will now consider two types of treatment for the hard part M_{H}

- at moderate $W^{2}\left(\gg \Lambda_{Q C D}^{2}\right)$, we perform the direct calculation. We then show that it can be presented in a QCD factorized form involving
- either a GDA for $W^{2} \ll \operatorname{Max}\left(Q_{1}^{2}, Q_{2}^{2}\right)$

- or a TDA for $Q_{1}^{2} \ll Q_{2}^{2}$ or $Q_{1}^{2} \gg Q_{2}^{2}$

- at asymptotically large W^{2}, k_{T} factorization involving impact factors

Outline

(1) Introduction: Exclusive processes at high energy QCD

- Motivation
- GDA and TDA for $\gamma^{*} \gamma^{*} \rightarrow \rho_{L \rho_{L}^{0}}^{0}$
(2) Computation in the collinear factorization with DA at fixed W^{2} - Direct calculation
- Interpretation in terms of QCD Factorization
- GDA for transverse photon in the limit $\Lambda_{Q C D} \ll W^{2} \ll \operatorname{Max}\left(Q_{1}^{2}, Q_{2}^{2}\right)$
- TDA for longitudinal photon in the limit $Q_{1}^{2} \gg Q_{2}^{2}$ (or $Q_{1}^{2} \ll Q_{2}^{2}$)
(3) Computation at large $W^{2}: k_{T}$ factorization approach
- Motivation and aims
- k_{T} factorization
- Non-forward Born order cross-section for $\gamma^{*} \gamma^{*} \rightarrow \rho_{L}^{0} \rho_{L}^{0}$
- Analytical 2-dimensional integration through conformal transformations
- Results
- Non-forward Born order cross-section for $e^{+} e^{-} \rightarrow e^{+} e^{-} \rho_{L}^{0} \rho_{L}^{0}$
- Equivalent photon approximation
- Kinematical cuts
- ILC collider and LDC detector
- Born result
- LL BFKL enhancement

Computation in the

Direct calculation

- The computation follows the line of the Brodsky, Lepage approach.
- We consider the Born order, i.e. quark exchange.
- We restrict ourselves to the forward case
- We only consider longitudinally polarized mesons \Rightarrow leading twist

The amplitude can be expressed as the sum of two tensors:

$$
\mathcal{M}=T^{\mu \nu} \epsilon_{\mu}\left(q_{1}\right) \epsilon_{\nu}\left(q_{2}\right)
$$

with

$$
\begin{gathered}
T^{\mu \nu}=\frac{1}{2} g_{T}^{\mu \nu} T^{\alpha \beta} g_{T \alpha \beta}+\left(p_{1}^{\mu}+\frac{Q_{1}^{2}}{s} p_{2}^{\mu}\right)\left(p_{2}^{\nu}+\frac{Q_{2}^{2}}{s} p_{1}^{\nu}\right) \frac{4}{s^{2}} T^{\alpha \beta} p_{2 \alpha} p_{1 \beta} \\
g_{T}^{\mu \nu}=g^{\mu \nu}-\frac{p_{1}^{\mu} p_{2}^{\nu}+p_{1}^{\nu} p_{2}^{\mu}}{p_{1} \cdot p_{2}}
\end{gathered}
$$

Longitudinally polarized photons

Diagrams

- The photons polarization vectors read

$$
\epsilon_{\|}\left(q_{1}\right)=\frac{1}{Q_{1}} q_{1}+\frac{2 Q_{1}}{s} p_{2} \quad \text { and } \quad \epsilon_{\|}\left(q_{2}\right)=\frac{1}{Q_{2}} q_{2}+\frac{2 Q_{2}}{s} p_{1} .
$$

- use QED gauge invariance
- remember that we only consider the forward kinematics
\Rightarrow the number of diagrams reduces to 4

Longitudinally polarized photons

$$
\begin{aligned}
& T^{\alpha \beta} p_{2 \alpha} p_{1 \beta}=-\frac{s^{2} f_{\rho}^{2} C_{F} e^{2} g^{2}\left(Q_{u}^{2}+Q_{d}^{2}\right)}{8 N_{c} Q_{1}^{2} Q_{2}^{2}} \int_{0}^{1} d z_{1} d z_{2} \phi\left(z_{1}\right) \phi\left(z_{2}\right) \\
& \times\left\{\frac{\left(1-\frac{Q_{1}^{2}}{s}\right)\left(1-\frac{Q_{2}^{2}}{s}\right)}{\left(z_{1}+\bar{z}_{1} \frac{Q_{2}^{2}}{s}\right)\left(z_{2}+\bar{z}_{2} \frac{Q_{1}^{2}}{s}\right)}+\frac{\left(1-\frac{Q_{1}^{2}}{s}\right)\left(1-\frac{Q_{2}^{2}}{s}\right)}{\left(\bar{z}_{1}+z_{1} \frac{Q_{2}^{2}}{s}\right)\left(\bar{z}_{2}+z_{2} \frac{Q_{1}^{2}}{s}\right)}+\frac{1}{z_{2} \bar{z}_{1}}+\frac{1}{z_{1} \bar{z}_{2}}\right\}
\end{aligned}
$$

with $s=2 p_{1} \cdot p_{2}$

Note:
Q_{1}^{2} and Q_{2}^{2} are non-zero and DA vanishes at $z_{i}=0$
\Rightarrow no end-point singularity in the z_{i} integration

Transversally polarized photons

Diagrams

In this case no simplification occurs. One needs to compute 12 diagrams.

Transversally polarized photons

Results

$$
\begin{gathered}
T^{\alpha \beta} g_{T \alpha \beta}=-\frac{e^{2}\left(Q_{u}^{2}+Q_{d}^{2}\right) g^{2} C_{F} f_{\rho}^{2}}{4 N_{c} s} \int_{0}^{1} d z_{1} d z_{2} \phi\left(z_{1}\right) \phi\left(z_{2}\right) \\
\times\left\{2\left(1-\frac{Q_{2}^{2}}{s}\right)\left(1-\frac{Q_{1}^{2}}{s}\right)\left[\frac{1}{\left(z_{2}+\bar{z}_{2} \frac{Q_{1}^{2}}{s}\right)^{2}\left(z_{1}+\bar{z}_{1} \frac{Q_{2}^{2}}{s}\right)^{2}}+\frac{1}{\left(\bar{z}_{2}+z_{2} \frac{Q_{1}^{2}}{s}\right)^{2}\left(\bar{z}_{1}+z_{1} \frac{Q_{2}^{2}}{s}\right)^{2}}\right]+\right. \\
\left.\left(\frac{1}{\bar{z}_{2} z_{1}}-\frac{1}{\bar{z}_{1} z_{2}}\right)\left[\frac{1}{1-\frac{Q_{2}^{2}}{s}}\left(\frac{1}{\bar{z}_{2}+z_{2} \frac{Q_{1}^{2}}{s}}-\frac{1}{z_{2}+\bar{z}_{2} \frac{Q_{1}^{2}}{s}}\right)-\frac{1}{1-\frac{Q_{1}^{2}}{s}}\left(\frac{1}{\bar{z}_{1}+z_{1} \frac{Q_{2}^{2}}{s}}-\frac{1}{z_{1}+\bar{z}_{1} \frac{Q_{2}^{2}}{s}}\right)\right]\right\}
\end{gathered}
$$

Same remark:
Q_{1}^{2} and Q_{2}^{2} are non-zero and DA vanishes at $z_{i}=0$
\Rightarrow no end-point singularity in the z_{i} integration

Outline

Introduction: Exclusive processes at high energy QCD

- Motivation
- GDA and TDA for $\gamma^{*} \gamma^{*} \rightarrow \rho_{L}^{0} \rho_{L}^{0}$
(2) Computation in the collinear factorization with DA at fixed W^{2}
- Direct calculation
- Interpretation in terms of QCD Factorization
- GDA for transverse photon in the limit $\Lambda_{Q C D} \ll W^{2} \ll \operatorname{Max}\left(Q_{1}^{2}, Q_{2}^{2}\right)$
- TDA for longitudinal photon in the limit $Q_{1}^{2} \gg Q_{2}^{2}\left(\right.$ or $\left.Q_{1}^{2} \ll Q_{2}^{2}\right)$
(3) Computation at large $W^{2}: k_{T}$ factorization approach
- Motivation and aims
- k_{T} factorization
- Non-forward Born order cross-section for $\gamma^{*} \gamma^{*} \rightarrow \rho_{L}^{0} \rho_{L}^{0}$
- Analytical 2-dimensional integration through conformal transformations
- Results
- Non-forward Born order cross-section for $e^{+} e^{-} \rightarrow e^{+} e^{-} \rho_{L}^{0} \rho_{L}^{0}$
- Equivalent photon approximation
- Kinematical cuts
- ILC collider and LDC detector
- Born result
- LL BFKL enhancement

Interpretation in terms of QCD Factorization

for transverse photon in the limit

When W^{2} is smaller then the highest photon virtuality
For example $\frac{W^{2}}{Q_{1}^{2}}=\frac{s}{Q_{1}^{2}}\left(1-\frac{Q_{1}^{2}}{s}\right)\left(1-\frac{Q_{2}^{2}}{s}\right) \approx 1-\frac{Q_{1}^{2}}{s} \ll 1$
the result obtained from direct calculation simplifies into

$$
\begin{aligned}
T^{\alpha \beta} g_{T \alpha \beta} & \approx \frac{e^{2}\left(Q_{u}^{2}+Q_{d}^{2}\right) g^{2} C_{F} f_{\rho}^{2}}{4 N_{c} W^{2}} \\
& \times \int_{0}^{1} d z_{1} d z_{2}\left(\frac{1}{\bar{z}_{1}+z_{1} \frac{Q_{2}^{2}}{s}}-\frac{1}{z_{1}+\bar{z}_{1} \frac{Q_{2}^{2}}{s}}\right)\left(\frac{1}{\bar{z}_{2} z_{1}}-\frac{1}{\bar{z}_{1} z_{2}}\right) \phi\left(z_{1}\right) \phi\left(z_{2}\right)
\end{aligned}
$$

which can be interpreted as ($P \sim p_{1}, n \sim p_{2}$)

Interpretation in terms of QCD Factorization

for transverse photon in the limit

GDA computation

At leading twist, the GDA is calculated in the Born order of perturbation theory

$$
\begin{aligned}
& \left\langle\rho_{L}^{0}\left(k_{1}\right) \rho_{L}^{0}\left(k_{2}\right)\right| \bar{q}(-\alpha n / 2) h \exp \left[i g \int_{-\frac{\alpha}{2}}^{\frac{\alpha}{2}} d y n_{\nu} A^{\nu}(y)\right] q(\alpha n / 2)|0\rangle \\
& =\int_{0}^{1} d z e^{-i(2 z-1) \alpha(n P) / 2} \Phi^{\rho_{L}^{0} \rho_{L}^{0}}\left(z, \zeta, W^{2}\right) \\
& \left(P \sim p_{1} \text { and } n \sim p_{2} \text { for } Q_{1}>Q_{2}\right)
\end{aligned}
$$

Since W^{2} is hard, the GDA can be factorized:

In our kinematics, the QCD Wilson line vanishes:

Interpretation in terms of QCD Factorization

for transverse photon in the limit

Hard Part computation at Born order

In the case of one flavored quark, it equals:

$$
T_{H}(z)=-4 e^{2} N_{c} Q_{q}^{2}\left(\frac{1}{\bar{z}+z \frac{Q_{2}^{2}}{s}}-\frac{1}{z+\bar{z} \frac{Q_{2}^{2}}{s}}\right)
$$

Interpretation in terms of QCD Factorization

for transverse photon in the limit

We have thus shown that $T^{\alpha \beta} g_{T \alpha \beta}$ factorizes into Hard part \otimes GDA:

$$
T^{\alpha \beta} g_{T \alpha \beta}=\frac{e^{2}}{2}\left(Q_{u}^{2}+Q_{d}^{2}\right) \int_{0}^{1} d z\left(\frac{1}{\bar{z}+z \frac{Q_{2}^{2}}{s}}-\frac{1}{z+\bar{z} \frac{Q_{2}^{2}}{s}}\right) \Phi^{\rho_{L} \rho_{L}}\left(z, \zeta \approx 1, W^{2}\right)
$$

with the GDA which itself factorizes into Hard part \otimes DA DA:

$$
\Phi^{\rho_{L} \rho_{L}}\left(z, \zeta \approx 1, W^{2}\right)=-\frac{f_{\rho}^{2} g^{2} C_{F}}{2 N_{c} W^{2}} \int_{0}^{1} d z_{2} \phi(z) \phi\left(z_{2}\right)\left[\frac{1}{z \bar{z}_{2}}-\frac{1}{\bar{z} z_{2}}\right]
$$

- This is a limiting case of the original equation obtained by D. Müller et al (2000)
- It extends the studies of $\gamma^{*} \gamma \rightarrow \pi \pi$ by M. Diehl et al (2000)
- We limited ourselves to the case of $t=t_{\text {min }}$

Interpretation in terms of QCD Factorization

for longitudinal photon in the limit
(or $Q_{1}^{2} \ll Q_{2}^{2}$)
The direct calculation of the amplitude $M=T^{\alpha \beta} p_{2 \alpha} p_{1 \beta}$ can be interpreted, in the limiting case $Q_{1}^{2} \gg Q_{2}^{2}\left(\right.$ or $\left.Q_{1}^{2} \ll Q_{2}^{2}\right)$, as

TDA kinematics = GPD kinematics

$$
n_{1}=(1+\xi) p_{1} \text { and } n_{2}=\frac{p_{2}}{1+\xi}
$$

x, ξ are momentum fraction along $n_{2}=\frac{p_{2}}{1+\xi}$

More precisely, we prove that M factorizes as

$$
\begin{aligned}
& T^{\alpha \beta} p_{2} \alpha p_{1 \beta} \\
& =-i f_{\rho}^{2} e^{2}\left(Q_{u}^{2}+Q_{d}^{2}\right) g^{2} \frac{c_{F}}{8 N_{c}} \int_{-1}^{1} d x \int_{0}^{1} d z_{1}\left[\frac{1}{\overline{z_{1}(x-\xi)}}+\frac{1}{z_{1}(x+\xi)}\right] \phi\left(z_{1}\right) \\
& \times N_{c}\left[\Theta(1 \geq x \geq \xi) \phi\left(\frac{x-\xi}{1-\xi}\right)-\Theta(-\xi \geq x \geq-1) \phi\left(\frac{1+x}{1-\xi}\right)\right]
\end{aligned}
$$

Interpretation in terms of QCD Factorization

TDA computation at Born order

The TDA $\gamma^{*} \rightarrow \rho_{L}^{0}$ is defined through ($n \sim n_{1}$)

$$
\begin{aligned}
& \int \frac{d z^{-}}{2 \pi} e^{i x(P . z)}\left\langle\rho_{L}^{q}\left(k_{2}\right)\right| \bar{q}(-z / 2) \not h e^{-i e Q_{q}} \int_{z / 2}^{-z / 2} d y_{\mu} A^{\mu}(y) \\
& \int^{-z} \\
& =\frac{e Q_{q} f_{\rho}}{P^{+}} \frac{2}{Q_{2}^{2}} \epsilon_{\nu}\left(q_{2}\right)\left((1+\xi) n_{2}^{\nu}+\frac{Q_{2}^{2}}{s(1+\xi)} n_{1}^{\nu}\right) T\left(x, \xi, \gamma_{\text {min }}\right)
\end{aligned}
$$

where the QED Wilson line is explicitly indicated (QCD Wilson line gives no contribution)
Since Q_{2}^{2} is hard, the TDA can be factorized:

Explicit computation gives

$$
T\left(x, \xi, t_{\text {min }}\right) \equiv N_{c}\left[\Theta(1 \geq x \geq \xi) \phi\left(\frac{x-\xi}{1-\xi}\right)-\Theta(-\xi \geq x \geq-1) \phi\left(\frac{1+x}{1-\xi}\right)\right]
$$

Interpretation in terms of QCD Factorization

Hard computation at Born order

$$
\begin{aligned}
T_{H}\left(z_{1}, x\right)= & -i f_{\rho} g^{2} e Q_{q} \frac{C_{F} \phi\left(z_{1}\right)}{2 N_{c} Q_{1}^{2}} \epsilon^{\mu}\left(q_{1}\right)\left(2 \xi n_{2 \mu}+\frac{1}{1+\xi} n_{1 \mu}\right) \\
& \times\left[\frac{1}{z_{1}(x+\xi-i \epsilon)}+\frac{1}{\bar{z}_{1}(x-\xi+i \epsilon)}\right]
\end{aligned}
$$

Interpretation in terms of QCD Factorization

We have shown, at Born order, that $T^{\alpha \beta} p_{2}{ }_{\alpha} p_{1 \beta}$ factorizes into TDA \otimes Hard part \otimes DA:

$$
\begin{aligned}
& T^{\alpha \beta} p_{2 \alpha} p_{1 \beta} \\
= & -i f_{\rho}^{2} e^{2}\left(Q_{u}^{2}+Q_{d}^{2}\right) g^{2} \frac{C_{F}}{8 N_{c}} \int_{-1}^{1} d x \int_{0}^{1} d z_{1} T\left(x, \xi, t_{\min }\right)\left[\frac{1}{\bar{z}_{1}(x-\xi)}+\frac{1}{z_{1}(x+\xi)}\right] \phi\left(z_{1}\right)
\end{aligned}
$$

with the TDA which itself factorizes into Hard part \otimes DA:

$$
T\left(x, \xi, t_{\min }\right) \equiv N_{c}\left[\Theta(1 \geq x \geq \xi) \phi\left(\frac{x-\xi}{1-\xi}\right)-\Theta(-\xi \geq x \geq-1) \phi\left(\frac{1+x}{1-\xi}\right)\right]
$$

Note:
Only the DGLAP part of the TDA contributes because of support properties of the ρ meson DA

DGLAP(1) $\quad-1 \leq x \leq-\xi$
ERBL
DGLAP(2)

Outline

(1) Introduction: Exclusive processes at high energy QCD

- Motivation
- GDA and TDA for $\gamma^{*} \gamma^{*} \rightarrow \rho_{L}^{0} \rho_{L}^{0}$
(2) Computation in the collinear factorization with DA at fixed W^{2}
- Direct calculation
- Interpretation in terms of QCD Factorization
- GDA for transverse photon in the limit $\Lambda_{Q C D} \ll W^{2} \ll \operatorname{Max}\left(Q_{1}^{2}, Q_{2}^{2}\right)$
- TDA for longitudinal photon in the limit $Q_{1}^{2} \gg Q_{2}^{2}$ (or $Q_{1}^{2} \ll Q_{2}^{2}$)
(3) Computation at large $W^{2}: k_{T}$ factorization approach
- Motivation and aims
- k_{T} factorization
- Non-forward Born order cross-section for $\gamma^{*} \gamma^{*} \rightarrow \rho_{L}^{0} \rho_{L}^{0}$
- Analytical 2-dimensional integration through conformal transformations
- Results
- Non-forward Born order cross-section for $e^{+} e^{-} \rightarrow e^{+} e^{-} \rho_{L}^{0} \rho_{L}^{0}$
- Equivalent photon approximation
- Kinematical cuts
- ILC collider and IDC detector
- Born result
- LL BFKL enhancement

Computation at large $W^{2}: k_{T}$ factorization approach

QCD in perturbative Regge limit

- In this limit, the dynamics is dominated by gluons (dominance of spin 1 exchange in t channel)
- BFKL (and extensions: NLL, saturations effects, ...) is expected to dominates with respect to Born order at large relative rapidity.

Born order:

Computation at large $W^{2}: k_{T}$ factorization approach

$e^{+} e^{-} \rightarrow e^{+} e^{-} \rho_{L}^{0} \rho_{L}^{0}$ is a good observable in order to test this limit:

- IR-safe probes: double tagging of the final leptons and cut-off over soft photons \Rightarrow the hard virtual photons give the hard scales on both sides of the t-channel exchanged state \Rightarrow fully perturbative process (except for DAs of ρ).
- observable dominated by the "soft" (but still perturbative) dynamics of QCD (BFKL and extensions) and not by its collinear dynamics (DGLAP, ERBL): we impose $Q_{1}^{2} \sim Q_{2}^{2}$
- gives access to the interplay between collinear and soft dynamics by getting away from $Q_{1}^{2} \sim Q_{2}^{2}$ domain and by playing with the relative rapidity
- one can control the spread in k_{T} of the partons: transition from linear to non-linear (saturated regime), when increasing $s_{\gamma^{*} \gamma^{*}}$ for given values Q_{1}^{2} and Q_{2}^{2}.
Experimentally feasible by increasing $s_{e^{+} e^{-}}$
- it gives access to non-forward dynamics
- can reveal Pomeron structure apart from the forward limit
- for saturation studies, it is important to get a full impact parameter picture of the process (Froissart bound is for each impact parameter)
- Note that for $t=0$, the simplest model for non-linearity is the Balitskii Kovchegov equation
- cross-section are expected to be peaked in the forward limit \Rightarrow the forward differential cross-section gives the general trends

Computation at large $W^{2}: k_{T}$ factorization approach

- Compute the scattering amplitude for $\gamma^{*} \gamma^{*} \rightarrow \rho_{L}^{0} \rho_{L}^{0}$ with gluon exchange, in the range $s_{\gamma^{*} \gamma^{*}} \gg-t, Q_{1}^{2}, Q_{2}^{2}$ for every photons polarizations and check dominance with respect to quarks exchange at ILC energies
- We focus on $Q_{1}^{2} \sim Q_{2}^{2} \Rightarrow$ no DGLAP evolution (this is practically imposed by the small range in both Q_{i}^{2} due to the lower perturbative cut-off and by the fast decreasing amplitude as powers of Q_{i}^{2})
- We prove the experimental feasability at ILC, with LDC detector project
- Study linear and non linear dynamical effects, and the expected enhancement at large rapidity

Outline

(1) Introduction: Exclusive processes at high energy QCD

- Motivation
- GDA and TDA for $\gamma^{*} \gamma^{*} \rightarrow \rho_{L \rho_{L}^{0}}^{0}$
(2) Computation in the collinear factorization with DA at fixed W^{2}
- Direct calculation
- Interpretation in terms of QCD Factorization
- GDA for transverse photon in the limit $\Lambda_{Q C D} \ll W^{2} \ll \operatorname{Max}\left(Q_{1}^{2}, Q_{2}^{2}\right)$
- TDA for longitudinal photon in the limit $Q_{1}^{2} \gg Q_{2}^{2}\left(\right.$ or $\left.Q_{1}^{2} \ll Q_{2}^{2}\right)$
(3) Computation at large $W^{2}: k_{T}$ factorization approach
- Motivation and aims
- k_{T} factorization
- Non-forward Born order cross-section for $\gamma^{*} \gamma^{*} \rightarrow \rho_{L}^{0} \rho_{L}^{0}$
- Analytical 2-dimensional integration through conformal transformations
- Results
- Non-forward Born order cross-section for $e^{+} e^{-} \rightarrow e^{+} e^{-} \rho_{L}^{0} \rho_{L}^{0}$
- Equivalent photon approximation
- Kinematical cuts
- ILC collider and LDC detector
- Born result
- LL BFKL enhancement

Computation at large $W^{2}: k_{T}$ factorization approach

k_{T} factorization

- Use Sudakov decomposition $k=\alpha p_{1}+\beta p_{2}+k_{\perp}$
- write

$$
d^{4} k=\frac{s}{2} d \alpha d \beta d^{2} k_{\perp}
$$

and rearrange integrations in the large s limit:

\Rightarrow impact representation (written here for the whole process) note: $\underline{k}=$ Eucl. $\leftrightarrow k_{\perp}=$ Mink.

$$
\mathcal{M}=i s \int \frac{d^{2} \underline{k}}{(2 \pi)^{4} \underline{k}^{2}(\underline{r}-\underline{k})^{2}} \mathcal{J}^{\gamma_{L, T}^{*}\left(q_{1}\right) \rightarrow \rho_{L}^{0}\left(k_{1}\right)}(\underline{k}, \underline{r}-\underline{k}) \mathcal{J}^{\gamma_{L, T}^{*}\left(q_{2}\right) \rightarrow \rho_{L}^{0}\left(k_{2}\right)}(-\underline{k},-\underline{r}+\underline{k})
$$

- For longitudinally polarized photons the impact factor reads

$$
\mathcal{J}^{\gamma_{L}^{*}\left(q_{i}\right) \rightarrow \rho_{L}\left(k_{i}\right)}(\underline{k}, \underline{r}-\underline{k})=8 \pi^{2} \alpha_{s} \frac{e}{\sqrt{2}} \frac{\delta^{a b}}{2 N_{c}} Q_{i} f_{\rho} \alpha\left(k_{i}\right) \int_{0}^{1} d z_{i} z_{i} \bar{z}_{i} \phi\left(z_{i}\right) \mathrm{P}_{\mathrm{P}}\left(z_{i}, \underline{k}, \underline{r}, \mu_{i}\right)
$$

where

- For transversally polarized photons, one obtains

$$
\mathcal{J}^{\gamma_{\tilde{T}}^{*}\left(q_{i}\right) \rightarrow \rho_{L}\left(k_{i}\right)}(\underline{k}, \underline{r}-\underline{k})=4 \pi^{2} \alpha_{s} \frac{e}{\sqrt{2}} \frac{\delta^{a b}}{2 N_{c}} f_{\rho} \alpha\left(k_{i}\right) \int_{0}^{1} d z_{i}\left(z_{i}-\bar{z}_{i}\right) \phi\left(z_{i}\right) \underline{\epsilon} \cdot \underline{Q}\left(z_{i}, \underline{k}, \underline{r}, \mu_{i}\right)
$$

where

$$
\underline{\mathrm{Q}}\left(z_{i}, \underline{k}, \underline{r}, \mu_{i}\right)=\frac{z_{i} \underline{\underline{r}}}{z_{i}^{2} \underline{r}^{2}+\mu_{i}^{2}}-\frac{\bar{z}_{i} \underline{\underline{r}}}{\bar{z}_{i}^{2} \underline{r}^{2}+\mu_{i}^{2}}+\frac{\underline{k}-z_{i} \underline{\underline{r}}}{\left(z_{i} \underline{r}-\underline{k}\right)^{2}+\mu_{i}^{2}}-\frac{\underline{k}-\bar{z}_{i} \underline{r}}{\left(\bar{z}_{i} \underline{\underline{r}}-\underline{k}\right)^{2}+\mu_{i}^{2}} \propto \mathcal{J}^{\mathcal{V}_{T}^{*}\left(q_{i}\right) \rightarrow q \bar{q}}
$$

$$
\text { we denote } \mu_{i}^{2}=Q_{i}^{2} z_{i} \bar{z}_{i}+m^{2} \text {, where } m \text { is the quark mass (set to zero in practice) }
$$

- due to QCD gauge invariance (probes are colorless), both impact factor vanishes when $\underline{k} \rightarrow 0$ or $\underline{r}-\underline{k} \rightarrow 0$

Outline

(1) Introduction: Exclusive processes at high energy QCD

- Motivation
- GDA and TDA for $\gamma^{*} \gamma^{*} \rightarrow \rho_{L}^{0} p_{L}^{0}$
(2) Computation in the collinear factorization with DA at fixed W^{2}
- Direct calculation
- Interpretation in terms of QCD Factorization
- GDA for transverse photon in the limit $\Lambda_{Q C D} \ll W^{2} \ll \operatorname{Max}\left(Q_{1}^{2}, Q_{2}^{2}\right)$
- TDA for longitudinal photon in the limit $Q_{1}^{2} \gg Q_{2}^{2}$ (or $Q_{1}^{2} \ll Q_{2}^{2}$)
(3) Computation at large $W^{2}: k_{T}$ factorization approach
- Motivation and aims
- k_{T} factorization
- Non-forward Born order cross-section for $\gamma^{*} \gamma^{*} \rightarrow \rho_{L}^{0} \rho_{L}^{0}$
- Analytical 2-dimensional integration through conformal transformations
- Results
- Non-forward Born order cross-section for $e^{+} e^{-} \rightarrow e^{+} e^{-} \rho_{L}^{0} \rho_{L}^{0}$
- Equivalent photon approximation
- Kinematical cuts
- ILC collider and IDC detector
- Born result
- LL BFKL enhancement
- All the 2-d integrations with respect to \underline{k} are treated analytically
- The method relies on conformal transformation in the transverse momentum plane (method inspired by Vassiliev in 2-d coordinate space)
- The idea is to reduce the number of propagators, in order to be able to perform standard Feynman parameter integration
- the whole computation involves integrals with up to 4 propagators (2 massive, with different masses) which we would have been enable to compute without this method

Non-forward Born order cross-section for $\gamma^{*} \gamma^{*} \rightarrow \rho_{L}^{0} \rho_{L}^{0}$

Analytical dimensional integration through conformal transformations: Example

The integral $(\bar{a} \equiv 1-a)$

$$
J_{3 \mu}(a)=\int \frac{d^{2} \underline{k}}{\underline{k}^{2}(\underline{k}-\underline{r})^{2}}\left[\frac{1}{(\underline{k}-\underline{r} a)^{2}+\mu^{2}}-\frac{1}{a^{2} \underline{\underline{2}}^{2}+\mu^{2}}+(a \leftrightarrow \bar{a})\right]
$$

has 3 propagators (1 massive)

- perform the inversion on integration variable and parameters:

$$
\underline{k} \rightarrow \frac{\underline{K}}{\underline{K}^{2}}, \quad \underline{r} \rightarrow \frac{\underline{R}}{\underline{R}^{2}}, \quad m \rightarrow \frac{1}{M}
$$

- perform a shift of variable: $\underline{K}=\underline{R}+\underline{k}^{\prime}$
- perform another inversion
- one then obtains an integral with 2 propagators (1 massive)

$$
\left.\left.J_{3 m}=\frac{1}{r^{2}} \int \frac{d^{2} \underline{k}}{\underline{k}^{2}}\left[\frac{(\underline{r}+\underline{k})^{2}}{\left(r^{2} a^{2}+m^{2}\right)\left(\left(\underline{k}-\underline{r}^{\frac{r}{2} a \bar{a}-m^{2}} r^{2} \bar{a}^{2}+m^{2}\right.\right.}\right)^{2}+\frac{m^{2} \iota^{4}}{\left(r^{2} \bar{a}^{2}+m^{2}\right)^{2}}\right)-\frac{1}{a^{2} r^{2}+m^{2}}+(a \leftrightarrow \bar{a})\right]
$$

which is easily computed.

Non-forward Born order cross-section for $\gamma^{*} \gamma^{*} \rightarrow \rho_{L}^{0} \rho_{L}^{0}$

- The integration over momentum fractions z_{1} and z_{2} are performed numerically
- we use $Q_{1} Q_{2}$ as a scale for α_{S} (3 loops)
differential cross-sections for $\gamma_{i}^{*} \gamma_{j}^{*} \rightarrow \rho_{L}^{0} \rho_{L}^{0}$

Non-forward Born order cross-section for $\gamma^{*} \gamma^{*} \rightarrow \rho_{L}^{0} \rho_{L}^{0}$

- the cross-sections strongly decrease with Q^{2} (as $1 / Q^{4}$ for LL)
- any cross-section with at least one tranverse photon vanishes at $t=0$ (due to s-channel helicity conservation): remember that ρ is transverse
- at large $t, \gamma_{T}^{*} \gamma_{T^{\prime}}^{*}$ dominates (photon are then almost on-shell with respect to t)

Outline

Introduction: Exclusive processes at high energy QCD

- Motivation
- GDA and TDA for $\gamma^{*} \gamma^{*} \rightarrow \rho_{L}^{0} \rho_{L}^{0}$
(2) Computation in the collinear factorization with DA at fixed W^{2}
- Direct calculation
- Interpretation in terms of QCD Factorization
- GDA for transverse photon in the limit $\Lambda_{Q C D} \ll W^{2} \ll \operatorname{Max}\left(Q_{1}^{2}, Q_{2}^{2}\right)$
- TDA for longitudinal photon in the limit $Q_{1}^{2} \gg Q_{2}^{2}$ (or $Q_{1}^{2} \ll Q_{2}^{2}$)
(3) Computation at large $W^{2}: k_{T}$ factorization approach
- Motivation and aims
- k_{T} factorization
- Non-forward Born order cross-section for $\gamma^{*} \gamma^{*} \rightarrow \rho_{L}^{0} \rho_{L}^{0}$
- Analytical 2-dimensional integration through conformal transformations
- Results
- Non-forward Born order cross-section for $e^{+} e^{-} \rightarrow e^{+} e^{-} \rho_{L}^{0} \rho_{L}^{0}$
- Equivalent photon approximation
- Kinematical cuts
- ILC collider and LDC detector
- Born result
- LL BFKL enhancement

Non-forward Born order cross-section for $e^{+} e^{-} \rightarrow e^{+} e^{-} \rho_{L}^{0} \rho_{L}^{0}$

$$
\gamma^{*} \gamma^{*} \rightarrow \rho_{L}^{0} \rho_{L}^{0} \quad \longrightarrow \quad e^{+} e^{-} \rightarrow e^{+} e^{-} \rho_{L}^{0} \rho_{L}^{0}
$$

using equivalent photon approximation

$$
\begin{aligned}
& \frac{d \sigma\left(e^{+} e^{-} \rightarrow e^{+} e^{-} \rho_{L}^{0} \rho_{L}^{0}\right)}{d y_{1} d y_{2} d Q_{1}^{2} d Q_{2}^{2}} \\
& =\frac{1}{y_{1} y_{2} Q_{1}^{2} Q_{2}^{2}}\left(\frac{\alpha}{\pi}\right)^{2}\left[l\left(y_{1}\right) l\left(y_{2}\right) \sigma\left(\gamma_{L}^{*} \gamma_{L}^{*} \rightarrow \rho_{L}^{0} \rho_{L}^{0}\right)+t\left(y_{1}\right) l\left(y_{2}\right) \sigma\left(\gamma_{T}^{*} \gamma_{L}^{*} \rightarrow \rho_{L}^{0} \rho_{L}^{0}\right)\right. \\
& \left.+l\left(y_{1}\right) t\left(y_{2}\right) \sigma\left(\gamma_{L}^{*} \gamma_{T}^{*} \rightarrow \rho_{L}^{0} \rho_{L}^{0}\right)+t\left(y_{1}\right) t\left(y_{2}\right) \sigma\left(\gamma_{T}^{*} \gamma_{T}^{*} \rightarrow \rho_{L}^{0} \rho_{L}^{0}\right)\right]
\end{aligned}
$$

with the usual flux factors given by

$$
t\left(y_{i}\right)=\frac{1+\left(1-y_{i}\right)^{2}}{2}, \quad l\left(y_{i}\right)=1-y_{i}
$$

$y_{i}(i=1,2)$ are the longitudinal momentum fractions of the bremsstrahlung photons with respect to the incoming leptons

$$
s_{\gamma^{*} \gamma^{*}} \sim y_{1} y_{2} s_{e^{+}+e^{-}}
$$

$\Rightarrow \sigma^{e^{+} e^{-} \rightarrow e^{+} e^{-} \rho_{L} \rho_{L}}$ is peaked in the low y and Q^{2} region

Non-forward Born order cross-section for $e^{+} e^{-} \rightarrow e^{+} e^{-} \rho_{L}^{0} \rho_{L}^{0}$

- photon momentum fractions: (in the laboratory frame $=$ center of mass system (cms) for an $e^{+} e^{-}$collider)

$$
y_{i}=\frac{E-E_{i}^{\prime} \cos ^{2}\left(\theta_{i} / 2\right)}{E}
$$

- virtualities:

$$
Q_{i}^{2}=4 E E_{i}^{\prime} \sin ^{2}\left(\theta_{i} / 2\right)
$$

- cross-section peaked at small Q_{i}^{2} and y_{i}
\Rightarrow one needs to get access to the (very) forward region
- kinematical constraints:
- minimal detection angle (detector constraint)
- conditions on the energies of outgoing leptons (detector constraint)
- Regge condition

$$
\begin{aligned}
& y_{i_{\text {max }}}=1-\frac{E_{\min }}{E} \\
& y_{1 \text { min }}=\max \left(f\left(Q_{1}\right), 1-\frac{E_{\max }}{E}\right) \\
& y_{2 \text { min }}=\max \left(f\left(Q_{2}\right), 1-\frac{E_{\max }}{E}, \frac{c Q_{1} Q_{2}}{s y_{1}}\right)
\end{aligned}
$$

with $f\left(Q_{i}\right)=1-\frac{Q_{i}^{2}}{s \tan ^{2}\left(\theta_{\text {min }} / 2\right)}$

Reference Design Report for International Linear Collider

- ${\sqrt{s^{+}+e^{-}}}=2 E_{\text {lepton }}$: nominal value of 500 GeV
- high luminosity, with $125 \mathrm{fb}^{-1}$ per year within 4 years of running at 500 GeV
- possible scan in energy between 200 GeV and 500 GeV .
- upgrade at 1 TeV , with a luminosity of $1 \mathrm{ab}^{-1}$ within 3 to 4 years
- two interaction regions are highly desirable: one which could be at low crossing-angle, and one compatible with e e and $\gamma \gamma$ physics (through single or double laser Compton backscattering)
- at the moment, 3 options are considered: $2 \mathrm{mrad}, 14 \mathrm{mrad}$ and 20 mrad
- note that in $e \gamma$ and $\gamma \gamma$ modes, for which $\alpha_{c}>25 \mathrm{mrad}$, no BeamCal can be placed around the beampipe, at least at $\alpha<12 \mathrm{mrad}$ (angular size of the disrupred outgoing beam after laser Compton backscattering)
- it thus means that if a single detector would be used at the same interaction point (in order to reduce the budget devoted to $\gamma \gamma$ mode, this solution without displacement of the detector has been suggested: Telnov), no forward calorimeter like BeamCal could be installed

In the case of $e^{+} e^{-}$mode

- Each design of detector for ILC project involves a very forward electromagnetic calorimeter for luminosity measurement, with tagging angle for outgoing leptons down to 5 mrad (design 10 years ago were considering 20 mrad as almost impossible!)
- This is an ideal tool for diffractive physics: cross-section are sharply peaked in the very forward region
- luminosity is enough to give high statistics, even with exclusive events
- there are 4 concepts of detectors at the moment:
- GLD
- Large Detector Concept (LDC)
- Silicon Design Detector Study (Sid)
- 4th

Non-forward Born order cross-section for $e^{+} e^{-} \rightarrow e^{+} e^{-} \rho_{L}^{0} \rho_{L}^{0}$

 detectorWe focus specifically on the LDC project

- The BeamCal is an electromagnetic calorimeter devoted to luminosity measurement, located at 3.65 m from the vertex

- it can be used for diffractive physics
- the main background is due to beamstrahlung photons, which leads to energy deposit in cells close from the beampipe
\Rightarrow in practice we cut-off the cells for lepton tagging with

$$
\begin{gathered}
E_{\min }=100 \mathrm{GeV} \\
\theta_{\min }=4 \mathrm{mrad}
\end{gathered}
$$

$$
\frac{d \sigma^{e^{+} e^{-} \rightarrow e^{+} e^{-} \rho_{L} \rho_{L}}}{d t}=\int_{Q_{1 \text { min }}^{2}}^{Q_{1 \text { max }}^{2}} d Q_{1}^{2} \int_{Q_{2 \text { min }}^{2}}^{Q_{2 \max }^{2}} d Q_{2}^{2} \int_{\epsilon}^{y_{\max }} d y_{1} \int_{\frac{Q_{1} Q_{2}}{y_{1}}}^{y_{\max }} d y_{2} \frac{d \sigma^{e^{+} e^{-} \rightarrow e^{+} e^{-} \rho_{L} \rho_{L}}}{d t d y_{1} d y_{2} d Q_{1}^{2} d Q_{2}^{2}},
$$

Non-forward Born order cross-section for $e^{+} e^{-} \rightarrow e^{+} e^{-} \rho_{L}^{0} \rho_{L}^{0}$

 results

We obtain, at $\sqrt{S_{e^{+} e^{-}}}=500 \mathrm{GeV}$ (and $c=1$)

$$
\begin{aligned}
\sigma^{L L} & =32.4 \mathrm{fb} \\
\sigma^{L T} & =1.5 \mathrm{fb} \\
\sigma^{T T} & =0.2 \mathrm{fb} \\
\sigma^{\text {tot }} & =34.1 \mathrm{fb}
\end{aligned}
$$

which leads to 4.310^{3} events per year with foreseen luminosity

Non-forward Born order cross-section for $e^{+} e^{-} \rightarrow e^{+} e^{-} \rho_{L}^{0} \rho_{L}^{0}$

Born results

- the background (dominated by γ which would be misidentified in BeamCal as e^{+} or e^{-}) is completely negligible at $\sqrt{s_{e^{+} e^{-}}}=500 \mathrm{GeV}$
- quarks contribution are indeed negligible. This is related to c through $s_{\gamma^{*} \gamma^{*}}>c Q_{1} Q_{2}$
- more drastic Regge constraint by performing $c=1 \rightarrow c=10$ reduces the cross-section by $40 \% \Rightarrow$ still statistically measurable
- changing order of loop for α_{S} only has a few \% effect


```
red curve: c=1
green curve: c=2
yellow curve: c=3
```

from up to down:
gluon exchange
quark-exchange with γ_{L}^{*}
quark-exchange with γ_{T}^{*}

Non-forward Born order cross-section for $e^{+} e^{-} \rightarrow e^{+} e^{-} \rho_{L}^{0} \rho_{L}^{0}$

LL BFKL differential cross-section at $t=t_{\text {min }}$

- Enhancement is enormous but it is well known that NLL BFKL is bellow LL BFKL and almost always above Born. This latter issue is true except at small rapidity in certain perculiar scale fixing scheme: see Ivanov Papa
- At the level of $\gamma^{*} \gamma^{*}$ this has been studied earlier
- resummed BFKL à la Khoze, Martin, Ryskin, Stirling:

Enberg, Pire, Szymanowski, S.W with LL impact factor and BLM scale fixing

- NLL BFKL with NLL impact factor: Ivanov Papa.
- Work to implement this at $e^{+} e^{-}$level is in progress.
- due to detector constraint, the expected increase of the cross-section with $\sqrt{s_{e^{+}} e^{-}}$ is washed-out for $\sqrt{s_{e^{+} e^{-}}}>500 \mathrm{GeV}$: flattish curve to be compared with sharked curve at Born level

Summary (1)

- $\gamma^{*} \gamma^{*} \rightarrow \rho_{L}^{0} \rho_{L}^{0}$ is a very nice process for studying QCD dynamics in its perturbative regime, with a minimal onset of non-perturbative physics
- At low energy, it is dominated by quark exchange
- Its perturbative analysis in the Born approximation, in the forward case, leads to two different types of QCD factorization
- We have shown that the polarization states of the photons dictate either the factorization involving a GDA or involving a TDA.
- Usually these two types of factorizations are applied to two different kinematical regimes.
- The arbitrariness in choosing values of photon virtualities Q_{i}^{2} shows that there may exist an intersection region where both types of factorization are simultaneously valid.
- the obtained TDA contains a perturbative part which could give a hint for modelling in non perturbative cases
- further generalizations:
- non-forward kinematics (rather easy)
- transverse photon (hard: higher twist contributes)
- charged meson pair (hard: non-trivial QED gauge invariance)
- the measure could be done at Babar, Belle, BEPC-II,...,ILC

Summary (2)

- At high energy, it is dominated by gluon exchange
- we gave a precise estimation of the Born order cross-section for arbitrary photon polarization
- we have demonstrated the feasability of the measurement at the level of $e^{+} e^{-} \rightarrow e^{+} e^{-} \rho_{L}^{0} \rho_{L}^{0}$ with double tagged outgoing leptons, within ILC collider and LDC detector with a forward electromagnetic calorimeter
- this evaluation can be considered as the background for any resummation à la BFKL
- we have made a first estimate of BFKL evolution at LL.
- our previous estimate of resummed BFKL evolution for $\gamma^{*} \gamma^{*} \rightarrow \rho_{L}^{0} \rho_{L}^{0}$ should now be implemented at $e^{+} e^{-} \rightarrow e^{+} e^{-} \rho_{L}^{0} \rho_{L}^{0}$ level
- there is a potential very interesting possibility of entering smoothly into the non-linear saturation regime when the machine would be upgraded up to 1 TeV :
- at $\sqrt{s_{e+e^{-}}}=500 \mathrm{GeV}, Q_{s a t} \sim 1.1 \mathrm{GeV}$
saturation is at the border, almost negligible
- at $\sqrt{s_{e+e^{-}}}=1 \mathrm{TeV}, Q_{s a t} \sim 1.4 \mathrm{GeV}$
saturation effects should start to be rather important (but still in the almost linear regime)

