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Introduction: Exclusive processes at high energy QCD
Motivation

Since a decade, there have been much developpements in hard exclusive processes.

form factors → Distribution Amplitudes
DVCS→ Generalized Parton Distributions,
· · ·

These tests are possible in fixed target experiments
e±p: HERA (HERMES), JLab, ...

as well as in colliders, mainly for fixed s

e±p colliders: HERA (H1,ZEUS)
e+e− colliders: LEP, Belle, BaBar, BEPC

At the same time, the interest for phenomenological tests of hard Pomeron and related
resummed approaches has become pretty wide:

inclusive tests (total cross-section) and semi-inclusive tests (diffraction, forward
jets, ...)
exclusive tests (meson production, ...)

These tests concern all type of collider experiments:

e±p: (HERA: H1, ZEUS)
pp̄ (TEVATRON: CDF, D0)
e+e− colliders (LEP, ILC)
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We will focus on a specific exclusive process:

γ
∗
γ
∗
→ ρ

0
Lρ

0
L with both γ∗ hard

It is a beautiful theoretical laboratory for investigating different dynamics (collinear,
multiregge) and factorization properties of high energy QCD:

at low energy (fixed s) it provides an (almost) full perturbative laboratory for
extended GPDs: GDA and TDA

at high energy (asymptotic s) it provides an (almost) full perturbative laboratory for
BFKL and related resummed effects, at amplitude level.

The corresponding experimental process is

e+e− → e+e−ρ0
Lρ

0
L
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GDA and TDA for γ
∗
γ
∗
→ ρ

0
Lρ

0
L : collinear factorization

Extensions from GPD

DIS: inclusive process → forward amplitude (t = 0)

Structure Function

= Coefficient Function ⊗ Parton Distribution Function
(hard) (soft)

DVCS: exclusive process → non forward amplitude (−t � s = W2)

Amplitude

= Coefficient Function ⊗ Generalized Parton Distribution
(hard) (soft)
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Extensions:

Meson production: γ replaced by ρ, π, · · ·

Amplitude

= GPD ⊗ CF ⊗ Distribution Amplitude
(soft) (hard) (soft)

Crossed process: s � −t

Amplitude

= Coefficient Function ⊗ Generalized Distribution Amplitude
(hard) (soft)

PSfrag replacements

γ

γ∗

s

t

Q2

hadron

hadron

GDACF
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starting from usual DVCS, one allows initial hadron 6= final hadron
example:

which can be further extended by replacing the outoing γ by any hadronic state

Amplitude = Transition Distribution Amplitude ⊗ CF ⊗ DA
(soft) (hard) (soft)
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Collinear factorization at qq̄ρ vertices

Q2
1,2 : hard scales ⇒ collinear approximation at each qq̄ρ vertexPSfrag replacements
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i.e. we neglect the transverse relative (anti-)quark momenta in the ρ mesons:
`1 ∼ z1 k1 `2 ∼ z2 k2

˜̀
1 ∼ z̄1 k1

˜̀
2 ∼ z̄2 k2

We limit ourselves to longitudinaly polarized mesons (to avoid potential end-point
singularies due to higher twist contributions)
DA of the meson = matrix element of non local quarks fields correlator on the light cone

〈0|q̄(x) γµ q(−x)|ρL(p) = q̄q〉 = fρ pµ

1
Z

0

dz ei(2z−1)(px)φ(z)

with φ(z) = 6z(1 − z) (1 +
P∞

n=1 a2nC3/2
2 n (2z − 1))

Note: p1, p2 are light-like Sudakov vectors along the meson momenta.
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The moderate energy and the high energy factorizations

We will now consider two types of treatment for the hard part MH

at moderate W2 (� Λ2
QCD), we perform the direct calculation.

We then show that it can be presented in a QCD factorized form involving

• either a GDA for W2 � Max(Q2
1, Q2

2)
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at asymptotically large W2, we rely on
kT factorization involving impact factors
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Computation in the collinear factorization with DA, at fixed W2

Direct calculationPSfrag replacements
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The computation follows the line of the Brodsky, Lepage approach.

We consider the Born order, i.e. quark exchange.

We restrict ourselves to the forward case

We only consider longitudinally polarized mesons ⇒ leading twist

The amplitude can be expressed as the sum of two tensors:

M = Tµ νεµ(q1)εν(q2)

with

Tµ ν =
1
2

gµ ν
T Tα βgT α β +

„

pµ
1 +

Q2
1

s
pµ

2

« „

pν
2 +

Q2
2

s
pν

1

«

4
s2

Tα βp2 α p1 β

gµ ν
T = gµν − pµ

1 pν
2 + pν

1 pµ
2

p1.p2
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Longitudinally polarized photons
Diagrams

The photons polarization vectors read

ε‖(q1) =
1

Q1
q1 +

2Q1

s
p2 and ε‖(q2) =

1
Q2

q2 +
2Q2

s
p1 .

use QED gauge invariance

remember that we only consider the forward kinematics

⇒ the number of diagrams reduces to 4
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Longitudinally polarized photons
Result

Tα βp2 α p1 β = − s2f 2
ρCFe2g2(Q2

u + Q2
d)

8NcQ2
1Q2

2

1
Z

0

dz1 dz2 φ(z1) φ(z2)

×

8

<

:

(1 − Q2
1

s )(1 − Q2
2

s )

(z1 + z̄1
Q2

2
s )(z2 + z̄2

Q2
1

s )
+

(1 − Q2
1

s )(1 − Q2
2

s )

(̄z1 + z1
Q2

2
s )(̄z2 + z2

Q2
1

s )
+

1
z2z̄1

+
1

z1z̄2

9

=

;

with s = 2 p1 · p2

Note:

Q2
1 and Q2

2 are non-zero and DA vanishes at zi = 0

⇒no end-point singularity in the zi integration
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Transversally polarized photons
Diagrams

In this case no simplification occurs. One needs to compute 12 diagrams.
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Transversally polarized photons
Results

Tα βgT α β = −
e2(Q2

u + Q2
d) g2 CF f 2

ρ

4 Nc s
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×
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9

=

;

Same remark:

Q2
1 and Q2

2 are non-zero and DA vanishes at zi = 0

⇒no end-point singularity in the zi integration
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Interpretation in terms of QCD Factorization
GDA for transverse photon in the limit Λ2

QCD � W2 � Max(Q2
1, Q2

2)

When W2 is smaller then the highest photon virtuality

For example W2

Q2
1

= s
Q2

1

„
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1

s

« „

1 − Q2
2

s

«

≈ 1 − Q2
1

s � 1 s ≡ 2 p1 · p2

the result obtained from direct calculation simplifies into

Tα βgT α β ≈ e2(Q2
u + Q2

d) g2 CF f 2
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«
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which can be interpreted as (P ∼ p1, n ∼ p2)
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Interpretation in terms of QCD Factorization
GDA for transverse photon in the limit Λ2

QCD � W2 � Max(Q2
1, Q2

2): PROOF

GDA computation

At leading twist, the GDA is calculated in the Born order of perturbation theory

〈ρ0
L(k1) ρ0

L(k2)|q̄(−α n/2) /n exp
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4ig
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L (z, ζ, W2)

(P ∼ p1 and n ∼ p2 for Q1 > Q2)
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In our kinematics, the QCD
Wilson line vanishes:
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+
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TH
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Interpretation in terms of QCD Factorization
GDA for transverse photon in the limit Λ2

QCD � W2 � Max(Q2
1, Q2

2): PROOF

Hard Part computation at Born order

PSfrag replacements

/P

q1

q2

TH

/n

=
PSfrag replacements

/P

q1

q2
TH

/n

+
PSfrag replacements

/P

q1

q2
TH

/n

In the case of one flavored quark, it equals:

TH(z) = −4 e2 Nc Q2
q

0

@

1

z̄ + z
Q2

2
s

− 1

z + z̄
Q2

2
s

1

A
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Interpretation in terms of QCD Factorization
GDA for transverse photon in the limit Λ2

QCD � W2 � Max(Q2
1, Q2

2): SUMMARY

We have thus shown that Tα βgT α β factorizes into Hard part ⊗ GDA:

Tα βgT α β =
e2

2

“

Q2
u + Q2

d

”

1
Z

0

dz

0

@

1

z̄ + z
Q2

2
s

− 1

z + z̄
Q2

2
s

1

A ΦρLρL(z, ζ ≈ 1, W2)

with the GDA which itself factorizes into Hard part ⊗ DA DA:

ΦρLρL(z, ζ ≈ 1, W2) = − f 2
ρ g2 CF

2 Nc W2

1
Z

0

dz2 φ(z)φ(z2)

»

1
z̄z2

− 1
z̄z2

–

This is a limiting case of the original equation obtained by D. Müller et al (2000)

It extends the studies of γ∗γ → ππ by M. Diehl et al (2000)

We limited ourselves to the case of t = tmin

22 / 49



Interpretation in terms of QCD Factorization
TDA for longitudinal photon in the limit Q2

1 � Q2
2 (or Q2

1 � Q2
2)

The direct calculation of the amplitude M = Tα βp2 α p1 β can be interpreted, in the limiting case
Q2

1 � Q2
2 (or Q2

1 � Q2
2), as

M = TDA ⊗ CF ⊗ DAPSfrag replacements
/P

q1

1 + ξ 1 − ξ

x − ξx + ξ

TDA

ρ(k1)

ρ(k2)

TDA kinematics = GPD kinematics

n1 = (1 + ξ)p1 and n2 =
p2

1+ξ

x, ξ are momentum fraction along n2 =
p2

1+ξ

More precisely, we prove that M factorizes as

Tα βp2 αp1 β

= −if 2
ρe2(Q2

u + Q2
d)g2 CF

8Nc

1
R

−1
dx

1
R

0
dz1

h

1
z̄1(x−ξ) + 1

z1(x+ξ)

i

φ(z1)

× Nc

h

Θ(1 ≥ x ≥ ξ) φ
“

x−ξ
1−ξ

”

− Θ(−ξ ≥ x ≥ −1) φ
“

1+x
1−ξ

”i

PSfrag replacements

q1

q2

/p1

/p2
/p1

/p2

TDAH

TH

DA

PSfrag replacements
q1q2
/p1
/p2
/p1
/p2

TDAH
TH

DA
ρ(k1)/p2

PSfrag replacements
q1

q2

/p1

/p2

/p1

/p2

TDAH

TH
DA

PSfrag replacements
q1q2
/p1
/p2
/p1
/p2

TDAH
TH

DA
ρ(k2)/p1
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Interpretation in terms of QCD Factorization
TDA for longitudinal photon in the limit Q2

1 � Q2
2 (or Q2

1 � Q2
2): PROOF

TDA computation at Born order

The TDA γ∗ → ρ0
L is defined through ( n ∼ n1)

Z

dz−

2π
eix(P.z) 〈ρq

L(k2)|q̄(−z/2) /n e
−ieQq

−z/2
R

z/2
dyµ Aµ(y)

q(z/2)|γ∗(q2)〉

=
e Qq fρ

P+

2

Q2
2

εν(q2)

 

(1 + ξ)nν
2 +

Q2
2

s(1 + ξ)
nν

1

!

T(x, ξ, tmin) ,

where the QED Wilson line is explicitly indicated (QCD Wilson line gives no contribution)

Since Q2
2 is hard, the TDA can be factorized:

PSfrag replacements
ρ(k1)

ρ(k2)

/p1
/p2

/P /n
/nq1

q2

TDA

DA
MH

M
TH

ρ(k1)
ρ(k2)
ρ(k1)

/p2

=

PSfrag replacements
ρ(k1)
ρ(k2)

/p1

/p2

/P /n

/n

q1

q2

TDA
DA
MH

M
TH

ρ(k1)
ρ(k2)

TDAH

PSfrag replacements
ρ(k1)
ρ(k2)

/p1
/p2

/P /n
/nq1q2

TDA

DA

MH
M
TH

ρ(k1)
ρ(k2)

ρ(k2)/p1

withPSfrag replacements
/p2

/p2q1

q2

TDAH

/n

=
PSfrag replacements

/p2
/p2q1

q2
TDAH

/n

+
PSfrag replacements

/p2
/p2q1

q2
TDAH

/n

+

PSfrag replacements

/p2

/p2q1q2
TDAH

/n

Explicit computation gives

T(x, ξ, tmin) ≡ Nc

»

Θ(1 ≥ x ≥ ξ) φ

„

x − ξ

1 − ξ

«

− Θ(−ξ ≥ x ≥ −1) φ

„

1 + x

1 − ξ

«–
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Interpretation in terms of QCD Factorization
TDA for longitudinal photon in the limit Q2

1 � Q2
2 (or Q2

1 � Q2
2): PROOF

Hard computation at Born order

PSfrag replacements

/p2

/p1

/p2

q1

TH

/n

=

PSfrag replacements

/p2

/p1

/p2

q1

TH
/n

+
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q1

TH
/n

+
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/p2

/p1

/p2

q1

TH
/n

+

PSfrag replacements

/p2

/p1

/p2

q1

TH
/n

TH(z1, x) = −i fρ g2 e Qq
CF φ(z1)

2 Nc Q2
1

εµ(q1)

„

2ξ n2 µ +
1

1 + ξ
n1 µ

«

×
»

1
z1(x + ξ − iε)

+
1

z̄1(x − ξ + iε)

–

,
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Interpretation in terms of QCD Factorization
TDA for longitudinal photon in the limit Q2

1 � Q2
2 (or Q2

1 � Q2
2): SUMMARY

We have shown, at Born order, that Tα βp2 αp1 β factorizes into TDA ⊗ Hard part ⊗ DA:

Tα βp2 αp1 β

= −if 2
ρe2(Q2

u + Q2
d)g2 CF

8Nc

1
Z

−1

dx

1
Z

0

dz1 T(x, ξ, tmin)

»

1
z̄1(x − ξ)

+
1

z1(x + ξ)

–

φ(z1)

with the TDA which itself factorizes into Hard part ⊗ DA:

T(x, ξ, tmin) ≡ Nc

»

Θ(1 ≥ x ≥ ξ) φ

„

x − ξ

1 − ξ

«

− Θ(−ξ ≥ x ≥ −1)φ

„

1 + x
1 − ξ

«–

Note:

Only the DGLAP part of the TDA
contributes because of support
properties of the ρ meson DA

PSfrag replacements
/P

q1

1 + ξ 1 − ξ

x − ξx + ξ

TDA

ρ(k1)

ρ(k2)

DGLAP(1) −1 ≤ x ≤ −ξ
ERBL −ξ ≤ x ≤ ξ
DGLAP(2) ξ ≤ x ≤ 1

26 / 49



Outline
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Computation at large W2
: kT factorization approach

Theoretical motivations

QCD in perturbative Regge limit

In this limit, the dynamics is dominated by gluons (dominance of spin 1 exchange
in t channel)

BFKL (and extensions: NLL, saturations effects, ...) is expected to dominates with
respect to Born order at large relative rapidity.

Born order: BFKL ladder:

PSfrag replacements

gluon reggeon

effective vertex
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Computation at large W2
: kT factorization approach

Theoretical motivations

e+e− → e+e−ρ0
L ρ0

L is a good observable in order to test this limit:

IR-safe probes: double tagging of the final leptons and cut-off over soft photons
⇒ the hard virtual photons give the hard scales on both sides of the t-channel
exchanged state ⇒ fully perturbative process (except for DAs of ρ).

observable dominated by the "soft" (but still perturbative) dynamics of QCD (BFKL
and extensions) and not by its collinear dynamics (DGLAP, ERBL):
we impose Q2

1 ∼ Q2
2

gives access to the interplay between collinear and soft dynamics by getting away
from Q2

1 ∼ Q2
2 domain and by playing with the relative rapidity

one can control the spread in kT of the partons: transition from linear to non-linear
(saturated regime), when increasing sγ∗γ∗ for given values Q2

1 and Q2
2.

Experimentally feasible by increasing se+e−

it gives access to non-forward dynamics
can reveal Pomeron structure apart from the forward limit
for saturation studies, it is important to get a full impact parameter picture of the
process (Froissart bound is for each impact parameter)
Note that for t = 0, the simplest model for non-linearity is the Balitskii Kovchegov
equation

cross-section are expected to be peaked in the forward limit
⇒ the forward differential cross-section gives the general trends
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Computation at large W2
: kT factorization approach

Aims

Compute the scattering amplitude for γ∗γ∗ → ρ0
L ρ0

L with gluon exchange, in the
range sγ∗γ∗ � −t, Q2

1, Q2
2 for every photons polarizations and check dominance

with respect to quarks exchange at ILC energies

We focus on Q2
1 ∼ Q2

2 ⇒ no DGLAP evolution (this is practically imposed by the
small range in both Q2

i due to the lower perturbative cut-off and by the fast
decreasing amplitude as powers of Q2

i )

We prove the experimental feasability at ILC, with LDC detector project

Study linear and non linear dynamical effects, and the expected enhancement at
large rapidity
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Computation at large W2
: kT factorization approach

kT factorization

Use Sudakov decomposition k = αp1 + βp2 + k⊥
write

d4k = s
2 dα dβ d2k⊥

and rearrange integrations in the large s limit:

PSfrag replacements

l1

−l̃1

l2

−l̃2

β ↗

α↘
k r − k

α � αquarks ⇒ set α = 0 and
R

dβ

β � βquarks ⇒ set β = 0 and
R

dα
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⇒ impact representation (written here for the whole process) note: k = Eucl. ↔ k⊥ = Mink.

M = is
Z

d2 k

(2π)4k2 (r − k)2
J γ∗

L,T (q1)→ρ0
L(k1)(k, r − k) J γ∗

L,T (q2)→ρ0
L(k2)(−k,−r + k)

For longitudinally polarized photons the impact factor reads

J γ∗
L (qi)→ρL(ki)(k, r − k) = 8π2αs

e√
2

δab

2Nc
Qi fρ α(ki)

1
Z

0

dzizi z̄i φ(zi)PP(zi, k, r, µi)

where

PP(zi, k, r, µi) =
1

z2
i r2 + µ2

i

+
1

z̄2
i r2 + µ2

i

− 1
(zir − k)2 + µ2

i

− 1
(̄zir − k)2 + µ2

i

∝ J γ∗
L (qi)→q q̄

For transversally polarized photons, one obtains

J γ∗
T (qi)→ρL(ki)(k, r − k) = 4π2αs

e√
2

δab

2Nc
fρα(ki)

1
Z

0

dzi (zi − z̄i)φ(zi) ε · Q(zi, k, r, µi)

where

Q(zi, k, r, µi) =
zi r

z2
i r2 + µ2

i

− z̄i r
z̄2

i r2 + µ2
i

+
k − zi r

(zir − k)2 + µ2
i

− k − z̄ir
(̄zi r − k)2 + µ2

i

∝ J γ∗
T (qi)→q q̄

we denote µ2
i = Q2

i zi z̄i + m2, where m is the quark mass (set to zero in practice)

due to QCD gauge invariance (probes are colorless), both impact factor vanishes
when k → 0 or r − k → 0
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Non-forward Born order cross-section for γ
∗
γ
∗
→ ρ

0
L ρ

0
L

Analytical dimensional integration through conformal transformations: principle

All the 2-d integrations with respect to k are treated analytically

The method relies on conformal transformation in the transverse momentum plane
(method inspired by Vassiliev in 2-d coordinate space)

The idea is to reduce the number of propagators, in order to be able to perform
standard Feynman parameter integration

the whole computation involves integrals with up to 4 propagators (2 massive, with
different masses) which we would have been enable to compute without this
method
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Non-forward Born order cross-section for γ
∗
γ
∗
→ ρ

0
L ρ

0
L

Analytical dimensional integration through conformal transformations: Example

The integral (ā ≡ 1 − a)

J3µ(a) =

Z

d2k

k2(k − r)2

»

1
(k − ra)2 + µ2

− 1
a2r2 + µ2

+ (a ↔ ā)

–

has 3 propagators (1 massive)

perform the inversion on integration variable and parameters:

k → K
K2 , r → R

R2 , m → 1
M

perform a shift of variable: K = R + k′

perform another inversion

one then obtains an integral with 2 propagators (1 massive)

J3m =
1
r2

Z

d2k

k2

2

6

6

4

(r + k)2

(r2a2 + m2)

„

“

k − r r2a ā−m2

r2 ā2+m2

”2
+ m2r4

(r2 ā2+m2)2

« − 1
a2r2 + m2

+ (a ↔ ā)

3

7

7

5

which is easily computed.
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Non-forward Born order cross-section for γ
∗
γ
∗
→ ρ

0
L ρ

0
L

Results

The integration over momentum fractions z1 and z2 are performed numerically
we use Q1Q2 as a scale for αS (3 loops)

differential cross-sections for γ∗
i γ∗

j → ρ0
L ρ0

L

1 2 3 4 5

101
102
103
104
105
106
107

dσ
γ∗
L,T

γ∗
L,T

→ρ0

L
ρ0

L

dt
(fb/GeV 2)

Q1 = Q2 = 1 GeV

|t − tmin| (GeV 2)
1 2 3 4 5

101

102

103

104

105

106

dσ
γ∗
L,T

γ∗
L,T

→ρ0

L
ρ0

L

dt
(fb/GeV 2)

Q1 = Q2 = 1.5 GeV

|t − tmin| (GeV 2)

LL

LT

T 6= T′

T = T′

LL

LT

T 6= T′

T = T′
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Non-forward Born order cross-section for γ
∗
γ
∗
→ ρ

0
L ρ

0
L

Results

1 2 3 4 5

101

102

103

104

105

1

dσ
γ∗
L,T

γ∗
L,T

→ρ0

L
ρ0

L

dt
(fb/GeV 2)

Q1 = Q2 = 2 GeV

|t − tmin| (GeV 2)
10 20 30 40 50 60

0.1
1

101
102
103
104
105
106
107

dσ
γ∗
L,T

γ∗
L,T

→ρ0

L
ρ0

L

dt
(fb/GeV 2)

Q1 = Q2 = 1 GeV

|t − tmin| (GeV 2)

LL

LT

T 6= T′

T = T′

the cross-sections strongly decrease with Q2 (as 1/Q8 for LL)

any cross-section with at least one tranverse photon vanishes at t = 0 (due to
s-channel helicity conservation): remember that ρ is longitudinal

at large t, γ∗
T γ∗

T′ dominates (photon are then almost on-shell with respect to t)

38 / 49



Outline

1 Introduction: Exclusive processes at high energy QCD
Motivation
GDA and TDA for γ∗γ∗ → ρ0

Lρ
0
L

2 Computation in the collinear factorization with DA at fixed W2

Direct calculation
Interpretation in terms of QCD Factorization

GDA for transverse photon in the limit ΛQCD � W2 � Max(Q2
1, Q2

2)

TDA for longitudinal photon in the limit Q2
1 � Q2

2 (or Q2
1 � Q2

2)

3 Computation at large W2 : kT factorization approach
Motivation and aims
kT factorization
Non-forward Born order cross-section for γ∗γ∗ → ρ0

L ρ0
L

Analytical 2-dimensional integration through conformal transformations
Results

Non-forward Born order cross-section for e+e− → e+e−ρ0
L ρ0

L
Equivalent photon approximation
Kinematical cuts
ILC collider and LDC detector
Born result
LL BFKL enhancement

39 / 49



Non-forward Born order cross-section for e+e− → e+e−ρ
0
L ρ

0
L

Equivalent photon approximation

γ∗γ∗ → ρ0
L ρ0

L −→ e+e− → e+e−ρ0
L ρ0

L

using equivalent photon approximation

dσ(e+e− → e+e−ρ0
Lρ

0
L)

dy1 dy2 dQ2
1 dQ2

2

=
1

y1y2 Q2
1Q2

2

“α

π

”2 h

l(y1) l(y2) σ(γ∗
L γ∗

L → ρ0
Lρ

0
L) + t(y1) l(y2) σ(γ∗

T γ∗
L → ρ0

Lρ
0
L)

+ l(y1) t(y2)σ(γ∗
L γ∗

T → ρ0
Lρ

0
L) + t(y1) t(y2) σ(γ∗

T γ∗
T → ρ0

Lρ
0
L)

i

with the usual flux factors given by

t(yi) =
1 + (1 − yi)

2

2
, l(yi) = 1 − yi ,

yi (i = 1, 2) are the longitudinal momentum fractions of the bremsstrahlung photons
with respect to the incoming leptons
sγ∗γ∗ ∼ y1 y2 se+e−

⇒ σe+e−→e+e−ρLρL is peaked in the low y and Q2 region
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Non-forward Born order cross-section for e+e− → e+e−ρ
0
L ρ

0
L

Kinematical cuts

photon momentum fractions: (in the laboratory frame = center of mass system (cms) for an e+e− collider)

yi =
E − E′

i cos2(θi/2)

E

virtualities:
Q2

i = 4EE′
i sin2(θi/2)

cross-section peaked at small Q2
i and yi

⇒ one needs to get access to the (very) forward region
kinematical constraints:

minimal detection angle (detector constraint)
conditions on the energies of outgoing leptons (detector constraint)
Regge condition

yi max = 1 − Emin
E

y1 min = max
`

f (Q1), 1 − Emax
E

´

y2 min = max
“

f (Q2), 1 − Emax
E , c Q1 Q2

s y1

”

with f (Qi) = 1 − Q2
i

s tan2(θmin/2)
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Non-forward Born order cross-section for e+e− → e+e−ρ
0
L ρ

0
L

ILC collider and detectors

Reference Design Report for International Linear Collider√
se+e− = 2Elepton : nominal value of 500 GeV

high luminosity, with 125 fb−1 per year within 4 years of running at 500 GeV
possible scan in energy between 200 GeV and 500 GeV.
upgrade at 1 TeV, with a luminosity of 1 ab−1 within 3 to 4 years
two interaction regions are highly desirable: one which could be at low
crossing-angle, and one compatible with eγ and γγ physics (through single or
double laser Compton backscattering)

at the moment, 3 options are considered: 2 mrad, 14 mrad and 20 mrad
in eγ and γγ modes, for which αc > 25 mrad :

no BeamCal can be placed around the beampipe in a cone of 12 mrad (angular size of the
disrupted outgoing beam after laser Compton backscattering)
tiny space for any forward detector in a cone of 95 mrad α

W

~c 25mrad

QD0

Laser

beam

R=50mm

    95 mrad+−

4m

outgoing

beam

Layout of the quad and electron and laser beams at the distance of 4 m from the interaction point

it thus means that if a single detector would be used at the same interaction point (to
reduce the budget devoted to γγ mode, this solution without displacement of the
detector has been suggested: Telnov), no forward calorimeter like BeamCal could be
installed
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ILC collider and detectors

In the case of e+e− mode

Each design of detector for ILC project involves a very forward electromagnetic
calorimeter for luminosity measurement, with tagging angle for outgoing leptons
down to 5 mrad (design 10 years ago were considering 20 mrad as almost
impossible!)

This is an ideal tool for diffractive physics: cross-section are sharply peaked in the
very forward region

luminosity is enough to give high statistics, even with exclusive events
there are 4 concepts of detectors at the moment:

GLD
Large Detector Concept (LDC)
Silicon Design Detector Study (Sid)
4th
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LDC detector

We focus specifically on the LDC project
The BeamCal is an electromagnetic calorimeter devoted to luminosity
measurement, located at 3.65 m from the vertex

it can be used for diffractive physics
the main background is due to beamstrahlung photons, which leads to energy
deposit in cells close from the beampipe
⇒ in practice we cut-off the cells for lepton tagging with

Emin = 100 GeV
θmin = 4 mrad

dσe+e−→e+e−ρLρL

dt
=

Z Q2
1max

Q2
1min

dQ2
1

Z Q2
2max

Q2
2min

dQ2
2

Z ymax

ε

dy1

Z ymax

Q1Q2
sy1

dy2
dσe+e−→e+e−ρLρL

dt dy1 dy2 dQ2
1 dQ2

2

,
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Born results

0.25 0.5 0.75 1 1.25 1.5 1.75 2

0.01

0.1

1
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100

LL

LT

T 6= T′

T = T′

|t − tmin| (GeV2)

dσe+e−→e+e−ρLρL

dt (fb/GeV2)

We obtain, at
√

se+e− = 500 GeV (and c = 1)

σLL = 32.4 fb

σLT = 1.5 fb

σTT = 0.2 fb

σtot = 34.1 fb

which leads to 4.3 103 events per year with foreseen luminosity
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Born results

the background (dominated by γ which would be misidentified in BeamCal as e+

or e−) is completely negligible at
√

se+e− = 500 GeV
quarks contribution are indeed negligible. This is related to c through
sγ∗γ∗ > c Q1 Q2

more drastic Regge constraint by performing c = 1 → c = 10 reduces the
cross-section by 40% ⇒still statistically measurable
changing order of loop for αS only has a few % effect

200 400 600 800 1000

50

100

150

200

250

300

√
s (GeV)

dσtmin

dt (fb/GeV2)

red curve: c = 1
green curve: c = 2
yellow curve: c = 3

from up to down:
gluon exchange
quark-exchange with γ∗

L

quark-exchange with γ∗
T
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BFKL enhancement

LL BFKL differential cross-section at t = tmin

200 400 600 800 1000

108

109

1010

1011

1012

1013

√
s (GeV)

dσtmin
dt (fb/GeV2)

upper red curve: αS(
p

Q1 Q2) at one loop

lower red curve: αS(
p

Q1 Q2) at three loop

green curve: αS = 0.46 fixed

Enhancement is enormous but not trustable: it is well known that NLL BFKL is far below LL
BFKL and almost always above Born (cf HERA, LEP) .
At the level of γ∗γ∗, corrections to LL BFKL have been studied earlier

resummed BFKL à la Khoze, Martin, Ryskin, Stirling (based on Salam):
Enberg, Pire, Szymanowski, S.W with LL impact factor and BLM scale fixing
NLL BFKL with NLL impact factor: Ivanov, Papa.
Both approaches are compatible within a few %

Work to implement this resummed BFKL effects at e+e− level is in progress. Trends:
enhancement less dramatic (∼ 5) but still visible
due to detector constraint, the expected increase of the cross-section with √

se+e− is
washed-out for

√
se+e− > 500 GeV: sharked curves, with Born level clearly below

resummed BFKL
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Summary (1)

γ∗ γ∗ → ρ0
Lρ

0
L is a very nice process for studying QCD dynamics in its perturbative

regime, with a minimal onset of non-perturbative physics
At low energy, it is dominated by quark exchange

Its perturbative analysis in the Born approximation, in the forward case, leads to two
different types of QCD factorization
We have shown that the polarization states of the photons dictate either the
factorization involving a GDA or involving a TDA.
Usually these two types of factorizations are applied to two different kinematical
regimes.
The arbitrariness in choosing values of photon virtualities Q2

i shows that there may exist
an intersection region where both types of factorization are simultaneously valid.
the obtained TDA contains a perturbative part which could give a hint for modelling in
non perturbative cases
further generalizations:

non-forward kinematics (rather easy)
transverse photon (hard: higher twist contributes)
charged meson pair (hard: non-trivial QED gauge invariance)

the measure could be done at Babar, Belle, BEPC-II,...,ILC
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Summary (2)

At high energy, it is dominated by gluon exchange
we gave a precise estimation of the Born order cross-section for arbitrary photon
polarizations

we have demonstrated the feasability of the measurement at the level of
e+e− → e+e−ρ0

L ρ0
L with double tagged outgoing leptons, within ILC collider and LDC

detector with a forward electromagnetic calorimeter

this evaluation can be considered as the background for any resummation à la BFKL

we have made a first estimate of BFKL evolution at LL, to be dramatically modified by
higher order corrections

we are now implementing our previous estimate of resummed BFKL evolution for
γ∗ γ∗ → ρ0

Lρ0
L at e+e− → e+e−ρ0

L ρ0
L level: enhancement with respect to Born is still

there, but moderate (∼ 5) (results to come soon)
there is a potential very interesting possibility of entering smoothly into the non-linear
saturation regime when the machine would be upgraded up to 1 TeV:

at √se+e− = 500 GeV, Qsat ∼ 1.1 GeV
saturation is at the border, almost negligible
at √se+e− = 1 TeV, Qsat ∼ 1.4 GeV
saturation effects should start to be rather important (but still in the almost linear regime)
γ∗ γ∗ total cross-section as well as γ∗ γ∗ exclusive processes are very symmetrical; usual
saturation studies are made in typically non-symmetrical situation (e± − p and e± − A DIS)
⇒ further formal developments are required
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