Approches perturbatives

# QCD, physique hadronique et physique des saveurs au LPT

#### Samuel Wallon

## Université Pierre et Marie Curie et Laboratoire de Physique Théorique CNRS / Université Paris Sud Orsay

## Journée des entrants Laboratoire de Physique Théorique

18 octobre 2013

| <br>intro | <b>I</b> | сu | on |
|-----------|----------|----|----|

# Introduction Qui?

Permanents :

Asmâa Abada Benoît Blossier Damir Becirevic Philippe Boucaud Sébastien Descotes-Genon Samuel Wallon

- Retraités :
  - Michel Fontannaz
  - Jean-Pierre Leroy
  - Alain Le Yaouanc
  - Luis Oliver
  - Olivier Pène
  - Jean-Claude Raynal
  - Dominique Schiff
- Thésards :
  - Renaud Boussarie Bertrand Ducloué Antoine Gérardin Michele Lucente
    - Luiz Vale



#### Violation CP

## Sources de violation CP

- C (conjugaison de charge), P (parité) ne sont pas conservés
- $\bullet~$  Le produit CP n'est pas conservé
- Heureusement, car nous ne serions pas là : rapport matière / antimatière très disymétrique, alors qu'il ne l'était pas a priori lors de la formation de l'univers
- Sources de violation CP :
  - matrice CKM (Cabibbo-Kobayashi-Maskawa) : états propres des quarks libres  $|\Psi\rangle \neq$  états propres de masse) états propres des quarks en interaction faible  $|\Psi'\rangle$  états propres de saveur)  $\Rightarrow V_{CKM}$  = matrice unitaire qui décrit la probabilité de changement de saveur d'un quark lors d'une interaction faible  $|\Psi'\rangle = V_{CKM} |\Psi'\rangle$ 3 générations  $\Rightarrow$  une phase = source de violation CP
  - interaction forte : oui... mais aucun signe expérimental !
  - matrice PMNS (Pontecorvo, Maki, Nakagawa, Sakata) : analogue de CKM pour les neutrinos preuve expérimentale par les oscillations neutrinos (1998) ⇒ un pas au-delà du modèle standard

#### Physique de la saveur

#### Matrice CKM

• Structure de la matrice CKM :



• Un triangle d'unitarité typique pour  $V_{CKM}$ :  $V_{ud} V_{ub}^* + V_{cd} V_{cb}^* + V_{td} V_{tb}^* = 0$  (1ère et 3ème colonnes)



#### Physique de la saveur

#### CKM-fitter Sébastien Descotes-Genon

- données = (contribution int. faible)  $\otimes$  QCD
- on a donc besoin de connaître très précisément les contributions de QCD (QCD sur réseau, HQET, SCET, ...)
- un traitement statistique sophistiqué doit être mené pour espérer extraire les contributions du secteur électrofaible avec la précision requise pour potentiellement mettre en évidence des signaux de nouvelle physique
- $\bullet\,$  exemple de contrainte fortes : mélanges dans les mésons neutres  $B_d$  ,  $B_s$  et K



CKM-fitter : A. Lenz, U. Nierste, J. Charles, S. Descotes-Genon, H. Lacker, S. Monteil, V. Niess, S. T'Jampens

## Physique de la saveur

#### A la recherche de processus favorables Sébastien Descotes-Genon, Damir Becirević

- $\bullet\,$  désintégrations radiatives du B en particulier  $B \to K^* \ell^+ \ell^-$
- processus rare avec changement de saveur sans changement de charge électrique (FCNC : flavor-changing neutral currents) (LHCb)

à la limite  $m_u = m_c = m_t$ , ce processus serait complètement supprimé car V est unitaire :

$$V_{ub} V_{us}^* + V_{cb} V_{cs}^* + V_{tb} V_{ts}^* = 0$$

 Processus à 4 corps dans l'état final : les multiples distributions angulaires donnent accès à de nombreuses observables sensibles à la nouvelle physique



- l'étude précise des contributions de QCD est cependant très délicate
  - S. Descotes-Genon, T. Hurth, J. Matias, J. Virto, JHEP 1305 (2013) 137
  - D. Becirević, A. Tayduganov, Nucl. Phys. B868 (2013) 368-382

## Physique des neutrinos

## Les neutrinos : ou comment attaquer le puzzle à partir d'une pièce Asmaa Abada, Michele Lucente

- Expérimentalement, la matrice PMNS est non-triviale
- Pourquoi les neutrinos ont-ils une masse, et pourquoi si petite?
  - mécanisme see-saw : les neutrinos sont des particules de Majorana (i.e. leur propre anti-particule) on introduit des neutrinos droits  $\nu_R$  très massifs (inverse see-saw : on introduit en plus des fermions singulets de saveur) on diagonalise la matrice de masse. Après mécanisme BEH :  $m_{\nu actif} \simeq \frac{1}{m_{\nu_R}}$
  - l'existence de neutrinos stériles (qui n'interagissent que par gravitation) conduit à une matrice PMNS non unitaire pour les  $\nu$  actifs  $\Rightarrow$  violation CP
- Conséquence : rapport matière/ antimatière eq 1 pour les leptons
- Liens physique des particules cosmologie : Passage leptogénèse → hadrogénèse : par un mécanisme non-perturbatif (sphaléron = solution de type point-selle des équations du mouvement ⇒ non-conservation des nombres leptoniques et baryoniques)

## Physique des neutrinos

• Effet des mécanismes de génération de masse (contributions éventuelles de nouvelle physique) sur les observables hadroniques : test de l'universalité de la saveur leptonique, e.g. rapports d'embranchement éliminant avec une bonne précision les effets des éléments de matrice hadronique

$$R_K \equiv \frac{\Gamma(K^+ \to e^+ \nu)}{\Gamma(K^+ \to \mu^+ \nu)}, \qquad R_\pi \equiv \frac{\Gamma(\pi^+ \to e^+ \nu)}{\Gamma(\pi^+ \to \mu^+ \nu)},$$

A. Abada, D. Das, A.M. Teixeira, A. Vicente, C. Weiland JHEP 1302 (2013) 048

- Lien physique des particules astrophysique -> rôle des neutrinos dans l'évolution (supernovae, évolution stellaire)
- Lien physique des particules à haute (collisionneurs LHC, futur LC) et basse énergies (e.g. MEG) : recherche de violation de la saveur leptonique. MEG : recherche de  $\mu \rightarrow e \gamma$   $\frac{SM(BR < 10^{40})}{2\pi^{5}}$   $\frac{SUSY(BR \sim 10^{41-10^{45}})}{2\pi^{5}}$



#### Confinement en QCD

## QCD sur réseau

# Damir Becirevic, Benoît Blossier, Philippe Boucaud, Alain Le Yaouanc Jean-Pierre Leroy, Olivier Pène, Antoine Gérardin

- Depuis leur invention les réseaux ont progressivement améliorés leur erreurs systématiques (par ordre historique et de complexité) :
  - approximation quenched : les boucles de fermions ne sont pas prise en compte (évite le calcul de déterminants très coûteux en temps de calcul)
  - amelioration o(a) (taille de la maille du réseau)
  - premières simulation Nf=2
  - simulation Nf = 2 + 1
  - simulation Nf = 2 + 1 + 1 (u, d, s, c) (cf figures)
  - simulation Nf = 2 (u, d a a masse physique) (en cours)
- Plusieurs objectifs :
  - étude de la dynamique propre à QCD dans le régime non-perturbatif : spectre des particules, évolution du couplage de QCD
  - calcul d'éléments de matrice pour la recherche de nouvelle physique

# QCD et confinement

# Couplage de QCD sur le réseau

• Vertex gluon-fantôme-fantôme nu :  $\sim$ 

$$b = g_s f^{abc} p^{\mu}$$

- Corrections de QCD au vertex nu :  $Z_g=\frac{\tilde{Z}_1}{\tilde{Z}_3^{1/2}\tilde{Z}_3^{1/2}Z_3^{1/2}}$
- Mais miracle : dans la limite où l'impulsion du fantôme entrant s'annulle,  $\tilde{Z}_1 = 1$

Dans le schéma MOM, seuls les corrélateurs à deux points sont nécessaires : meilleur contrôle du signal

QCD non-perturbatif

Approches perturbatives

# QCD et confinement

#### Couplage de QCD sur le réseau

- la constante de couplage pour plusieurs masse légères (μ<sub>l</sub>) et plusieurs mailles
- le fit avec l'expression théorique OPE dominant i.e. terme perturbatif + terme en  $1/p^2$  (~ OK pour  $q \gtrsim 3, 5$  GeV)
- le fit obtenu en ajoutant un terme en puissance d'ordre superieur en  $1/p^x$  ( $\sim$  OK pour  $q\gtrsim 2~{\rm GeV}$
- $\alpha_S^{\rm pert.}(q^2)=\frac{g_S^2(q^2)}{4\pi}$  connue à 4 boucles



- $\bullet$  L'échelle en GeV est obtenue par la mesure et l'extrapolation chirale de  $f_\pi$  et  $m_\pi$
- $\bullet$  on obtient la forme de  $\alpha_S(q),$  la valeur de  $\Lambda_{\bar{MS}},$  la valeur du condensat  $\langle A^2 \rangle$

QCD non-perturbatif

Approches perturbatives

# QCD et confinement

- Mesures de  $(\alpha_S/\alpha^{pert} 1)q^2$ = correction non perturbative en fonction de q
- Courbe théorique attendue
   B. Blossier, Ph. Boucaud, M. Brinet, F. De Soto, V. Morenas, O. Pène, K. Petrov, J. Rodríguez-Quintero, arXiv :1310.3763 [hep-ph]
- Rem : on peut tester le développement en produits d'opérateurs sur différentes observables
   Ph. Boucaud, M. Brinet, F. De Soto, V. Morenas, O. Pène, K. Petrov, J. Rodríguez-Quintero, arXiv :1310.4087 [hep-ph]



Introduction

Physique de la saveur

Physique des neutrinos

QCD non-perturbatif

Approches perturbatives

# QCD et confinement : saveurs lourdes

- Première étude sur le réseau de la transition entre une excitation radiale  $(B^{*'})$  et un état fondamental (B) en mesurant l'élément de matrice axial  $\langle B^{*'}|A_0|B\rangle \equiv g_{12}$  dans la limite statique de la Théorie Effective des Quarks Lourds (HQET).
- obtention d'un plateau sur le réseau
- le résultat est obtenu après extrapolation vers le continu et dans la limite chirale
- $g_{12} \sim -0.15$ : cela confirme une hypothèse émise au début des années 2000 par le groupe d'Orsay pour expliquer le désaccord entre le couplage  $g_{D^*D\pi}$  mesuré expérimentalement et son estimation "naïve" par les règles de somme sur le cône de lumière : les états excités ne peuvent pas être négligés du côté hadronique de la règle de somme.





B. Blossier, J. Bulava, M. Donnellan, A. Gérardin, Phys.Rev. D87 (2013) 094518

## QCD et confinement : saveurs lourdes

Etude de la désintégration semileptonique  $B \to D' l \nu$ 

D' = excitation radiale du méson D

Hypothèse phénoménologique d'un facteur de forme  $f_+^{B\to D'}$  élevé testée sur la transition non leptonique  $B \to D'\pi$ . Le processus  $B^- \to D'^0\pi^-$  dit de "Classe III" a une contribution paramétrée par la constante d'annihilation  $f_{D'}$ , extraite des simulations numériques.



LHCb, et de valider l'hypothèse d'un facteur de forme  $f_+^{B o D'}$  élevé.

D. Becirevic, B. Blossier, A. Gérardin, A. Le Yaouanc, F. Sanfilippo, Nucl.Phys. B872 (2013) 313-332

Extrapolations chirale et vers le continu de  $m_{D'}/m_D$  et  $f_{D'}/f_D$ 

Introduction

Physique de la saveur

Physique des neutrinos

QCD non-perturbatif

Approches perturbatives

## L'image ultime de la structure interne des hadrons



## QCD aux collisionneurs à très haute énergie

### Samuel Wallon, Bertrand Ducloué Jets Mueller-Navelet (1987) au LHC

processus dominés par l'échange et la production de gluons :

émettre <code>beaucoup</code> de gluons mous coûte très peu d'énergie  $\Rightarrow$  grandes sections efficaces + décorrélation ?



premier calcul complet à l'ordre des logarithmes sous-dominants de l'énergie (NLL) prédiction pour LHC : décorrélation angulaire faible D. Colferai, F. Schwennsen, S. Szymanowski, S.W., JHEP 1012 :026 (2010) 1-72 D. Ducloué, S. Szymanowski, S.W., JHEP 1305 (2013) 096; arXiv :1309.3229



Introduction

Physique de la saveur

Physique des neutrinos

QCD non-perturbatif

Approches perturbatives

## Corrections en puissances dans les processus exclusifs

Samuel Wallon, Renaud Boussarie Processus exclusifs et corrections en puissances  $e^-p \rightarrow e^- p \rho_{L,T}$ 

- première description combinant au delà des puissances dominantes
  - factorisation colinéaire
  - factorisation "haute énergie"





A. Anikin, D. Ivanov, B. Pire, L. Szy manowski, S. W. Phys.Lett.B682 (2010) 413-418 Nucl.Phys.B828 (2010) 1-68



- A. Anikin, A. Besse, D. Ivanov, B. Pire, L. Szymanowski, Phys.Rev. D 84 (2011) 054004
- vers une description de la saturation au delà des puissances dominantes



## QCD aux collisionneurs

#### Michel Fontannaz

- La mesure de photon "prompt" (i.e. mis en jeu directement dans le sous processus dur, par opposition aux photons secondaires, e.g. produits en voie  $\pi^0 \rightarrow \gamma\gamma$ ) aux collisionneurs : excellent test de QCD et du modèle standard, dans le processus  $p \, p \rightarrow \gamma \, X$
- Production de photons secondaire : bruit de fond de la Nouvelle Physique, e.g. production de Higgs dans  $p \, p \to H(\to \gamma \, \gamma) \, X$  versus  $p \, p \to \gamma \, \gamma \, X$
- Coupures en variables transverses pour isoler le photon prompt (plan  $y,\phi)$ 
  - Une collection d'hadrons k est dans le cône  $\mathcal{C}_\gamma(R)$  si

$$\sqrt{(y_k - y_\gamma)^2 + (\phi_k - \phi_\gamma)^2} \le R$$

• Coupure sur l'énergie transverse totale dans le cône :

 $\sum_{k \in \mathcal{C}_{\gamma}(R)} E_T^{(k)} < E_T^{iso} \quad \text{avec } E_T^{(k)} = E^{(k)} \, \sin \theta \,, \, (E^{(k)}, \, \theta^{(k)}) = (\text{énergie, angle polaire}) \text{ du hadron } k \in \mathcal{C}_{\gamma}(R)$ 

- ullet La limite R 
  ightarrow 0 est pathologique : divergence en  $\ln R$  de la section efficace
- Origine : divergence collinéaire
- resommation des radiations colinéaires Catani, Fontannaz, Guillet, Pilon JHEP 1309 (2013) 007