
M1 General Physics 2024-2025

Particles

Final exam

January 8th 2025

Documents allowed. No laptops. No cell phones. No tablets.

Notes:

- The subject is deliberately long. It is not requested to reach the end to get a good
mark!
- We use the system of unit in which c = 1, ~ = 1, ǫ0 = 1, µ0 = 1.
- Space coordinates may be freely denoted as (x, y, z) or (x1, x2, x3).
- Drawings are welcome!

The exercise and the problem are independent.

1 Exercise: Energy-momentum tensor of a scalar field

theory

We consider the Lagrangian density

L =
1

2
(∂µφ)(∂

µφ)− 1

2
m2φ2 − λ

4!
φ4 . (1)

where m and λ are constants.

1. Dimension analysis.

i) What is the mass dimension of L?

Solution

The action is dimensionless, therefore L has mass dimension M4 since [d4x] = M−4.

ii) What is the mass dimension of ∂µ and ∂µ?

Solution

There are both of the dimension of a mass.

iii) What is the mass dimension of the constant m?

Solution
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The first and second terms in (1) should have dimension M4 and both contains φ2. Thus m
has the dimension of ∂µ, i.e. it is a mass.

iv) What is the mass dimension of φ?

Solution

Either starting from term 1 or term 2 in (1), one sees that [φ] = M.

v) What is the mass dimension of λ?

Solution

From the fact that [φ] = M and L has mass dimension M4, one gets that λ is dimensionless.

2. Write the Euler-Lagrange equations for the field φ.

Solution

The Euler-Lagrange equation reads

δL
δφ

= ∂µ
δL

δ(∂µφ)
.

We have

δL
δφ

= −m2φ− λ

3!
φ3

and

δL
δ(∂µφ)

= ∂µφ

so that

∂µ
δL

δ(∂µφ)
= 2φ .

Thus,

2φ+m2φ+
λ

3!
φ3 = 0 .

2



3. The energy-momentum tensor is defined as

T µν =
δL

δ(∂µφ)
∂νφ− gµνL . (2)

i) Compute the energy-momentum tensor corresponding to the Lagrangian density (1).

Solution

The energy-momentum tensor reads

T µν = (∂µφ)(∂νφ)− 1

2
gµν(∂σφ)(∂

σφ) +
1

2
gµνm2φ2 + gµν

λ

4!
φ4 .

ii) Explain why it is conserved, and write the equation of conservation.

Solution

The Lagrangian density (1) does not depend explicitly on coordinates xµ, therefore the
action is invariant under any global space-time translation. From Noether theorem, there is
an associated conserved current, which is T µν . The fact that T µν is conserved reads

∂µT
µν = 0 .

iii) Check directly that T µν is conserved.

Solution

We compute directly

∂µT
µν = ∂µ

[

(∂µφ)(∂νφ)− 1

2
gµν(∂σφ)(∂

σφ) +
1

2
gµνm2φ2 + gµν

λ

4!
φ4

]

= (2φ)(∂νφ) + (∂µφ)(∂
µ∂νφ)− (∂ν∂σφ)(∂

σφ) +m2φ ∂νφ+
λ

3!
φ3∂νφ .

In this equation, the second and third terms cancel since µ and σ are dummy indices, while
the first, fourth and fifth terms compensate after factorizing ∂νφ and using Euler-Lagrange
equation.

iv) What are the symmetry properties of T µν?

Solution

The tensor T µν is symmetric, as a direct consequence of the conservation of the angular-
momentum tensor, which implies the symmetry of T µν for a scalar theory.
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2 Problem: Electromagnetic fields in two frames

2.1 Four-velocity and four-vector force

Consider a frame R′ traveling with speed ~β = ~v (c = 1) with respect to the frame R. For
convenience, ~v can be taken along the x-axis.

We denote by ~u = (ux, uy, uz) the velocity of a particle in frame R and ~u ′ = (u′
x, u

′
y, u

′
z) the

corresponding acceleration of this particle in frame R′.

1. Briefly show that

u′
x =

ux − β

1− βux

(3)

u′
y =

1

γ

uy

1− βux

(4)

u′
z =

1

γ

uz

1− βux

. (5)

where γ = 1/
√

1− β2.

Solution

We have, through differentiation,

{

dt′ = γ dt − γβ dx
dx′ = −γβ dt + γ dx

which gives

u′
x =

dx′

dt′
=

−γβdt+ γdx

γdt− γβdx
=

ux − β

1− βux

.

Besides,

u′
y =

dy′

dt′
=

dy

γdt− γβdy
=

1

γ

uy

1− βux

,

and similarly

u′
z =

dz′

dt′
=

dz

γdt− γβdz
=

1

γ

uz

1− βux

.

2. Show that

1− u′
x
2 =

(1− β2)(1− u2

x)

(1− βux)2
. (6)

Solution
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We have

1− u′
x
2 = 1−

(

ux − β

1− βux

)2

=
1 + β2u2

x − 2βux − u2

x + 2βux − β2

(1− βux)2
=

(1− β2)(1− u2

x)

(1− βux)2
.

3. Compute 1− ~u ′2.

Solution

Using the fact that 1/γ2 = 1− β2, let us first compute

~u ′2 = u′
x
2 + u′

y
2 + u′

z
2 =

1

(1− βux)2

[

(ux − β)2 +
u2

y

γ2
+

u2

z

γ2

]

=
1

(1− βux)2
[

u2

x + β2 − 2βux + u2

y − β2u2

y + u2

z − β2u2

z

]

=
1

(1− βux)2
[

~u 2 + β2 − 2βux + β2u2

x − β2~u 2
]

=
1

(1− βux)2
[

(1− β2)~u 2 + β(β − 2ux + βu2

x)
]

.

Thus,

1− ~u ′2 =
(1− βux)

2 − (1− β2)~u 2 − β(β − 2ux + βu2

x)

(1− βux)2

=
1− 2βux + β2u2

x − (1− β2)~u 2 − β2 + 2βux − β2u2

x

(1− βux)2

=
(1− β2)(1− ~u 2)

(1− βux)2
.

4. Show that the two ratios
1− ~u ′2

1− ~u 2
and

1− u′
x
2

1− u2
x

are related in a very simple way.

Solution

From questions 2 and 4, we have

1− ~u ′2

1− ~u 2
=

1− u′
x
2

1− u2
x

.

The above particle has a mass m. Its four-momentum is pµ = (E, ~p) in frame R, and p′µ =
(E ′, ~p ′) in frame R′. In frame R, we define

Fµ =
dpµ

dτ
. (7)

5. Why Fµ is a four-vector? Why can we call it the four-vector force in frame R?
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Solution

It is the derivative of the four-momentum with respect to the proper time. The proper time
being a Lorentz invariant, it is thus a four-vector. It is a natural relativistic extension of the
usual relation

~F =
d~p

dt
,

thus the name.

6. Denoting as ~F the force experienced by the particle in frame R, show that

Fµ = Γ(u)(~F · ~u, ~F ) (8)

with u = ‖~u‖ and Γ(u) = 1/
√
1− u2.

Solution

First, one has

dE

dτ
=

dt

dτ

dE

dt
= Γ(u)~F · ~u .

Second,

d~p

dτ
=

dt

dτ

d~p

dt
= Γ(u)~F .

We similarly define F ′µ in frame R′, and ~F ′ the force experienced by the particle in this
frame.
7. Relate the components of F ′µ in terms of Fµ.

Solution

We have

F ′0 = γF0 − γβFx,

F ′x = −γβF0 + γFx,

F ′y = Fy,

F ′z = F z.

or in a more compact way

F ′0 = γF0 − γβF‖,

F ′
‖ = −γβF0 + γF‖,

F ′
⊥ = F⊥ .
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8. Prove finally that

~F ′
‖ =

1

1− ~β · ~u

[

~F‖ − ~β(~F · ~u)
]

(9)

~F ′
⊥ =

1

γ(1− ~β · ~u)
~F⊥ (10)

where ‖ and ⊥ correspond respectively to the component collinear and transverse to ~β.

Solution

Let us denote Γ = Γ(u) and Γ′ = Γ(u′). From the previous question, one gets

Γ′ ~F ′
‖ = γΓ[~F‖ − β ~F · ~u]

Γ′ ~F ′
⊥ = Γ~F⊥

Besides, question 2. implies the relationship

Γ′ = Γγ(1− ~β · ~u) ,

so that

~F ′
‖ =

1

1− ~β · ~u

[

~F‖ − ~β(~F · ~u)
]

,

~F ′
⊥ =

1

γ(1− ~β · ~u)
~F⊥ .

9. Show that the time derivative of the energy in frames R and R′ are related by the equation

dE ′

dt′
=

1

1− ~β · ~u

[

dE

dt
− ~F · ~β

]

. (11)

Solution

From question 7. one gets

Γ′dE
′

dt′
= γΓ

dE

dt
− γβΓF‖

and thus

dE ′

dt′
=

γΓ

Γ′

dE

dt
− γβΓ

Γ′
F‖ =

1

1− ~β · ~u
dE

dt
−

~F · ~β
1− ~β · ~u

.
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10. Show that the previous relation, written as

~F ′ · ~u ′ =
1

1− ~β · ~u

[

~F · ~u− ~F · ~β
]

, (12)

can be directly obtained from the transformation laws for ~u‖ and ~u⊥ obtained in question 1.

and for ~F‖ and ~F⊥ obtained in question 8.

Solution

From question 1. we have

~u ′
‖ =

~u‖ − ~β

1− ~β · ~u
,

~u ′
⊥ =

1

γ

~u⊥

1− ~β · ~u
.

Thus,

~F ′ · ~u ′ = ~F ′
‖u

′
‖ +

~F ′
⊥ · ~u ′

⊥ =
1

(1− ~β · ~u)2

[

(

F‖ − β(~F · ~u)
)

(u‖ − β) +
1

γ2

~F⊥ · ~u⊥

]

.

Using 1/γ2 = 1− β2 and performing the replacement ~F⊥ · ~u⊥ = ~F · ~u− F‖u‖, we get

~F ′ · ~u ′ =
1

(1− ~β · ~u)2
[

F‖u‖ − βF‖ − βu‖
~F · ~u+ β2 ~F · ~u+ ~F · ~u− β2 ~F · ~u− F‖u‖ + β2F‖u‖

]

=
1

(1− ~β · ~u)2
[

~F · ~u(1− βu‖)− βF‖(1− βu‖)
]

=
1

1− ~β · ~u

[

~F · ~u− ~F · ~β
]

2.2 Electromagnetic field created by an infinite plane

In an inertial reference frame R, consider an infinite plane of electric charges, of constant
surface density σ. We choose an origin and a system of axes such that that coincides with
the Oxy plane. These charges move at constant velocity ~v in the direction of the Ox axis.
We denote ~ex, ~ey, ~ez the unit vectors on each of the axes axes Ox,Oy,Oz.

Preliminary (bonus).
11. Show that the electromagnetic field, in the reference frame R, is given, for z > 0, by

~E =
σ

2
~ez and ~B = −σv

2
~ey (13)

What are the expressions of ~E and ~B for z < 0?

Solution
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Consider a point M in which we want to evaluate the electromagnetic fields. The plane
P1 = (Myz) is a symmetry plane for the charge distribution, and an antisymmetry plane for
the current distribution. Under the symmetry SP1

with respect to this plane, the vector field
~E and the pseudo-vector ~B transform as

~B = Bx~ex +By~ey +Bz~ez
SP1−→ Bx~ex −By~ey −Bz~ez

~E = Ex~ex + Ey~ey + Ez~ez
SP1−→ −Ex~ex + Ey~ey + Ez~ez

so that Ex = 0 and Bx = 0. Similarly, consider the plane P2 = (Mxz). It is a symmetry plane
for both the charge and the current distributions. Under the symmetry SP2

with respect to
this plane, one has

~B = By~ey +Bz~ez
SP2−→ By~ey − Bz~ez

~E = Ey~ey + Ez~ez
SP2−→ −Ey~ey + Ez~ez

so that Ey = 0 and Bz = 0. Finally, by translation invariance along ~ex and ~ey, we conclude

that ~E = Ez(z)~ez and ~B = By(z)~ey.
The plane P3 = (Oxy) is a symmetry plane for both the charge and the current distributions.
Under the symmetry SP3

with respect to this plane,

~B = By(z)~ey
SP3−→ −By(−z)~ey

~E = Ez(z)~ez
SP3−→ −Ez(−z)~ez

Let z > 0. Consider a cylinder symmetric with respect to P3 = (Oxy), with its faces of
surface s, located at z and −z. Applying Gauss theorem on this cylinder gives 2sEz(z) = sσ
so that

~E(z > 0) =
σ

2
~ez and ~E(z < 0) = −σ

2
~ez

Consider now a closed path made of a two segments of length ℓ, the first one being at fixed
x and z, pointing in the direction −~ey, the second one at fixed x and −z, pointing in the
direction ~ey, these two segments being connected by two segments pointing along ~ez and
−~ez, of length 2z, see figure below.
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z = 0

z > 0

−z

ℓ

~ex

~ey

~ez

Applying Ampère theorem
x

~B · d~ℓ = I

on this contour gives

−By(z)ℓ +By(−z)ℓ = vσℓ

so that

By(z > 0) = −vσ

2
and By(z < 0) =

vσ

2
.

Let R′ be another inertial frame, with moves at a constant velocity ~V in the direction of
x > 0 with respect to the frame R.

12. Give the expression of ~v ′ in frame R′, as a function of V and v.

Solution

From question 1., we have ~v ′ = v′~ex with

v′ =
v − V

1− V v
.

13. Compute Γ′ = 1/
√
1− v′2 in terms of Γ = 1/

√
1− v2, γ = 1/

√
1− V 2, V and v.

Solution

From question 3., we have

Γ′ = Γγ(1− V v) .
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14. Show that the surface density σ′ in frame R′ reads

σ′ = σ
1− V v√
1− V 2

. (14)

Solution

Passing from the charges rest frame R0 to the frame R, one experience length contraction
along x axis, namely dx = dxR0

/Γ, while dy = dyR0
. Since the charge in a given surface

remains identical in frames R0 and R, one can write

σR0
dxR0

dyR0
= σdxdy

i.e.

σ = σR0

dxR0

dx
= ΓσR0

.

Similarly,

σ′ = σR0

dxR0

dx′
= Γ′σR0

,

so that

σ′ =
Γ′

Γ
σ = γ(1− βV )σ .

15. We now consider the frame R′.
i) By analogy with the expression given above for the electromagnetic field in the frame R,

give the expression for the electromagnetic field ( ~E ′, ~B ′) in frame R′.

Solution

In frame R′, we have

~E ′ =
σ′

2
~ez = γ(1− V v)

σ

2
~ez ,

~B ′ = −σ′v′

2
~ey = −σ

2
γ(1− V v)

v − V

1− V v
~ey = −σ

2
γ(v − V )~ey

ii) Check that it is consistent with Lorentz’s transformation of fields.

Solution
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We know that the transformation law for ( ~E, ~B) reads

~E ′ = ( ~E · ~n)~n+ γ
[

~E − ( ~E · ~n)~n
]

+ γ ~V ∧ ~B ,

~B′ = ( ~B · ~n)~n+ γ
[

~B − ( ~B · ~n)~n
]

− γ ~V ∧ ~E .

Here ~n = ~ex, ~V = V ~ex, ~E = Ez~ez and ~B = By~ey so that

~E ′ = γEz~ez + γ V ~ex ∧ By~ey ,

~B′ = γBy~ey − γ V ~ex ∧ Ez~ez ,

which leads to

~E ′ = γ
σ

2
~ez + γ V

(

−vσ

2

)

~ez = γ(1− V v)
σ

2
~ez ,

~B′ = γ
(

−vσ

2

)

~ey + γ V
σ

2
~ey = −σ

2
γ (v − V )~ey ,

in accordance with question 15. i).

iii) What happens if ~V = ~v ?

Solution

When ~V = ~v, γ(1− V v) = 1/γ = 1/Γ so that

~E ′ =
σ

Γ2
~ez =

σR0

2
~ez ,

~B′ = 0 .

As expected, this is the field produced by an infinite plane of electric charges at rest, of
constant surface density σR0

.

16. A particle, of charge q and velocity ~v in frame R, is subjected to the action of this
electromagnetic field.
i) What force does it experience in frame R?

Solution

The Lorentz force reads

~F = q ~E = +q~v ∧ ~B

In frame R, we thus have

~F = qσ

[

1

2
~ez −

v2

2
~ex ∧ ~ey

]

= q
σ

2
(1− v2)~ez = q

σ

2 Γ2
~ez .
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ii) And in its rest frame?

Solution

The rest frame of the charge is also the frame in which the charge of the plane are at rest,
since both have the same velocity in frame R. We thus have

~FR0
= q

σR0

2
~ez =

σ

2 Γ
~ez .

iii) Compare these two forces.

Solution

We observe that

~FR0
= Γ~F .

iv) Does the result agree with that obtained using the quadrivector force?

Solution

From question 8., since ~F‖ = ~0 and ~F · ~v = 0, the force after Lorentz’s boost from frame R
to the rest frame R0 reads

FR0 x = Fx = 0 ,

FR0 y = Fy = 0 ,

FR0 z =
1

Γ(1− v2)
Fz = ΓFz ,

i.e.

~Fpropre = Γ~F .

in accordance to the result of question 16. iii).
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