
M1 General Physics 2022-2023
Particles

Mid-term exam

October 24th 2022

Documents allowed

Notes:
- One may use the usual system of units in which c = 1 and ~ = 1.
- Space coordinates may be freely denoted as (x, y, z) or (x1, x2, x3).
- Any drawing, at any stage, is welcome, and will be rewarded!

1 Particle decay

1.1 Particle decay in the rest frame

We consider an unstable particle of mass M, which can decay in two daughter particles of
masses m1 and m2.

1. In the center-of-mass frame (CMS), write the 4-momentum P of the decaying particle.

Solution

P = (M,~0) .

We denote by p the norm of 3-momentum of particles 1 and 2 in the CMS.
2. Express the sum of the two energies E1 and E2 of the produced particles in the CMS as
a function of p.

Solution

Since ~p1 + ~p2 = 0 , p = |~p1| = |~p1| so that

E1 + E2 =
√
m2

1 + p2 +
√
m2

2 + p2 .

3. Show that

p =
1

2M

√
[M2 − (m1 −m2)2][M2 − (m1 +m2)2] . (1)

Solution
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Since

E1 + E2 = M ,

and using the above expression, one thus gets

m2
1 +m2

2 + 2p2 + 2
√
m2

1 + p2
√
m2

2 + p2 = M2

which leads to

M2 −m2
1 −m2

2 − 2p2 = +2
√
m2

1 + p2
√
m2

2 + p2

to that after squaring,

(M2 −m2
1 −m2

2)
2 + 4p4 − 4p2(M2 −m2

1 −m2
2) = 4[m2

1m
2
2 +m2

1 +m2
2)p

2 + p4]

and thus

p =
1

2M

[
(m2

1 +m2
2 −M2)2 − 4m2

1m
2
2

]1/2
=

1

2M

[
(m2

1 +m2
2 − 2m1m2 −M2)(m2

1 +m2
2 + 2m1m2 −M2)

]1/2
=

1

2M

[
(M2 − (m1 −m2)

2)(M2 − (m1 −m2)
2)
]1/2

.

4. Show that

M ≥ m1 +m2 . (2)

Solution

This is an immediate consequence of

E1 + E2 =
√
m2

1 + p2 +
√
m2

2 + p2 = M .

5. Show that

E1 =
1

2M

(
M2 +m2

1 −m2
2

)
(3)

and

E2 =
1

2M

(
M2 +m2

2 −m2
1

)
. (4)

Solution
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Inserting the above expression for p inside E1 =
√
m2

1 + p2 we obtain

E1 =

{
m2

1 +
1

4M2

[
(M2 − (m1 −m2)

2)(M2 − (m1 −m2)
2)
]}1/2

=
1

2M

{
4M2m2

1 +M4 + (m2
1 −m2

2)
2 − 2M2(m2

1 +m2
2))
}1/2

=
1

2M

{
2M2m2

1 − 2M2m2
2 +M4 +m4

1 +m4
2 − 2m2

1m
2
2

}1/2
=

1

2M

{
(M2 +m2

1 −m2
2)

2
}1/2

=
1

2M

(
M2 +m2

1 −m2
2

)
.

Similarly exchanging the role of particle 1 and 2, one gets

E2 =
1

2M

(
M2 +m2

2 −m2
1

)
.

6. Is there any preferred direction for the emitted particles? What can be said for the second
particle if the first one is detected in a given direction?

Solution

The isotropy of space prevent from having a preferred direction in which the daughter par-
ticles travel (the decay is said to be isotropic). If particle 1 is detected in a given direction,
then the direction of the second particle is fixed by momentum conservation: the daughter
particles are traveling back-to-back in the rest frame of the mother particle.

7. Simplify the above results in the case where the two daughter particles are equal, for
instance in the decay of a neutral kaon into a pair of pions.

Solution

We have

E1 = E2 =
M

2

and

p =
1

2

√
M2 − 4m2 .
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1.2 Particle decay of an unstable particle in flight

We now consider an unstable particle in flight in the laboratory (LAB) frame. For conve-
nience, we chose the z−axis as being along the direction of flight of the mother particle. We
now denote ~p the 3-momentum of the mother particle, and E its energy.
We denote as ~p1⊥ and ~p2⊥ the transverse momentum (with respect to z−axis) of particle 1
and 2 respectively, and p1z and p2z their longitudinal momentum, so that the momenta of
daughter particles read

p1 = (E1, ~p1⊥, p1z) , (5)
p2 = (E2, ~p2⊥, p2z) . (6)

1. Write P , the 4-momentum of the mother particle, and compare ~p1⊥ and ~p2⊥, and p, p1z
and p2z.

Solution

One has

P = (E, 0, 0, p) .

Since P = p1 + p2, we thus have p = p1z + p2z and ~p⊥ ≡ ~p1⊥ = −~p2⊥.

2. We now use asterisks for momenta in the CMS.
Write precisely the boost from the CMS to the LAB frame for the mother particle.

Solution

The active boost from the CMS to the LAB frame reads
p0 = γp0∗ + γβpz∗

pz = γβp0∗ + γpz∗

~p⊥ = ~p ∗⊥ = 0 .

Since p0∗ = M and p0 = E, and since pz∗ = 0 and pz = p, we have γ = E
M

and β = p
γM

= p
E
.

3. Deduce the boost for particle 1 and 2.

Solution


E1 = γ(E∗1 + βp∗1z)
p1z = γ(p∗1z + βE∗1)
~p1⊥ = ~p ∗1⊥

and


E2 = γ(E∗2 + βp∗2z)
p2z = γ(p∗2z + βE∗2)
~p2⊥ = ~p ∗2⊥ .
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4. Show that the LAB angle θ1 that daughter particle 1 makes with the direction of flight
of the mother particle in a two-body decay is related to the CMS angle θ∗1 by the following
equation

tan θ1 =
sin θ∗1

γ(β/β∗1 + cos θ∗1)
(7)

where β is the LAB velocity of the mother particle and β∗1 the CMS velocity of the daughter
particle.

Solution

We have

tan θ1 =
p1⊥
p1z

=
p∗1⊥

γp∗1z + γβE∗1
=
p∗1⊥
p∗1

1

γ
p∗1z
p∗1

+ γβ
E∗

1

p∗1

=
sin θ∗1

γ(β/β∗1 + cos θ∗1)

since β∗1 =
p∗1
E∗

1
and cos θ∗1 =

p∗1z
p∗1
.

2 Train in a tunnel
Preliminary:
Show that in a boost from a frame F in which an object is at rest, to an arbitrary frame
F ′, lengths along the direction of the boost gets contracted by a factor γ, while transverse
distances are unaffected.
Hint: consider a rod at rest in a frame F , parallel to the axis of the boost. Determine its
length in the boosted frame F ′, i.e. measured at one and the same time t′ in this frame F ′.

Solution

In a Lorentz boost, say of axis z,{
t = γt′ + γβz′

z = γβt′ + γz′

while the transverse coordinates are preserved. At time t′, the two extremities of the rod
parallel to the z-axis satisfy

z1 = γβt′ + γz′1 and z2 = γβt′ + γz′2

i.e. z2 − z1 = γ(z′2 − z′1) and thus ∆z′ = 1
γ
∆z.

A train and a tunnel both have proper lengths L. The train moves toward the tunnel at
speed v. A bomb is located at the front of the train. The bomb is designed to explode when
the front of the train passes the far end of the tunnel. A deactivation sensor is located at the
back of the train. When the back of the train passes the near end of the tunnel, the sensor
tells the bomb to disarm itself. Does the bomb explode? To answer to this question, we will
consider two different frames, with two answers which should be obviously identical.

1. Easiest discussion: First consider the frame of the train and conclude.
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Solution

In the frame of the train, the train has length L, and the tunnel speeds past it. The tunnel
is length-contracted down to L/γ. Therefore, the far end of the tunnel passes the front of
the train before the near end passes the back, so the bomb explodes.

2. Naively paradoxical result: Consider now the frame of the tunnel. Conclude.
Hint: Escape the paradox by taking into account the time of propagation of any signal.

Solution

We can, however, also look at things in the frame of the tunnel. Here the tunnel has length
L, and the train is length-contracted down to L/γ. Therefore, the deactivation device gets
triggered before the front of the train passes the far end of the tunnel, so you might think
that the bomb does not explode. We appear to have a paradox. The resolution to this para-
dox is that the deactivation device cannot instantaneously tell the bomb to deactivate itself.
It takes a finite time for the signal to travel the length of the train from the sensor to the
bomb. And it turns out that this transmission time makes it impossible for the deactivation
signal to get to the bomb before the bomb gets to the far end of the tunnel, no matter how
fast the train is moving. Let us show this in detail.

The signal has the best chance of winning this “race” if it has speed c, so let’s assume
this is the case. Now, the signal gets to the bomb before the bomb gets to the far end of the
tunnel if and only if a light pulse emitted from the near end of the tunnel (at the instant
the back of the train goes by) reaches the far end of the tunnel before the front of the train
does. The former takes a time L/c. The latter takes a time L(1− 1/γ)/v, because the front
of the train is already a distance L/γ through the tunnel. So if the bomb is not to explode,
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the following constraint should hold:

L

c
<

L

v

(
1− 1

γ

)
⇔ β < 1−

√
1−

√
1− β2

⇔
√

1− β2 < 1− β
⇔
√

1 + β <
√

1− β .

Obviously, this never occurs. This shows that signal always arrives too late, and the bomb
always explodes.

3 Impossibility of certain processes
1. Show that the process γ → e−e+ is impossible in the vacuum.

Solution

One should have

~pγ = ~pe− + ~pe+

and

Eγ = Ee− + Ee+ =
√
p2e− +m2

e +
√
p2e+ +m2

e

with pe− = |~pe−| and pe+ = |~pe+ |. Besides, the constraint

Eγ = |~pγ| = |~pe− + ~pe+| ≤ |~pe−|+ |~pe+ |

should hold, i.e. √
p2e− +m2

e +
√
p2e+ +m2

e ≤ pe− + pe+

which is obviously impossible since me 6= 0.

2. Show that this reaction is possible in the vicinity of a heavy nucleus and calculate the
threshold energy for this reaction.

Solution
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Conservation of energy and momentum can now be fulfilled thanks to the possibility that
the nucleus A gets a recoil from the process. The threshold energy is obtained by moving to
the γA rest frame: one should have E∗ = E∗γ + E∗A ≥ 2me + MA. In the rest frame of the
initial nucleus, this reads

E∗2 = (pγ + pA)2 = M2 + 2pγ · pA = M2 + 2EγM

≥ (2me +MA)2 = 4m2
e + 4meMA +M2

i.e.

Eγ ≥ 2me +
2m2

e

MA

.

Neglecting the mass of the electron with the mass of the nucleus, this simplifies to Eγ ≥ 2me.

3. Show that it is impossible for a free and isolated electron to absorb a photon.

Solution

Let us denote (E1, ~p1) and (E2, ~p2) the 4-momentum of the initial and final electron. We have

m2 = E2
1 − p21 = E2

2 − p22 = (E1 + Eγ)
2 − (~p1 + ~pγ)

2 = E2
1 + 2E1Eγ − p21 − 2~p1 · ~pγ .

Thus,

E1Eγ − p21 − ~p1 · ~pγ = 0

i.e., introducing the angle θ between the initial photon and the initial electron,

Eγ

[√
m2
e + p21 − p1 cos θ

]
= 0 .

A non trivial solution Eγ 6= 0 would thus lead to

cos θ =

√
m2
e + p21
p1

> 1

for me 6= 0, which is obviously absurd.
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