
M1 General Physics 2024-2025

Particles

Mid-term exam

November 4th 2024

Documents allowed

Notes:

- The subject is deliberately long. It is not requested to reach the end to get a good
mark!
- For convenience, one may freely put c = 1 everywhere.
- Space coordinates maybe freely denoted as (x, y, z) or (x1, x2, x3).
- The standard notation according to which a quantity with superscript * is measured in the
center-of-mass frame will be used.

Any process is characterized by a scattering amplitude which gives the amplitude of prob-
ability to pass from a given initial state to another given final state. Knowing the phase
space for the initial and final states, the modulus square of this amplitude, and the flux of
initial particles, one can compute the cross-section of the process, which is an experimen-
tal observable. Our purpose here is obtain several generic properties of the flux and of the
amplitude.

1 Flux

Considering the scattering of a beam on a target, the flux term accounts for the fact that a
target has a given number density, and that the beam has a given number density, made of
particles of type B with a velocity vB.
More generally, for a head-on scattering (let us say along the z axis), the masses, velocities,
energies of particles A and B being denoted as mA, ~pA, EA and mB, ~pB, EB, it can be shown
that this flux factor reads

2K = |~vA − ~vB| 2EA 2EB . (1)

1. Consider a boost along the z axis, the new frame F ′ moving with respect to initial one
F with a velocity ~βc. As usual, the rapidity φ of this boost is defined through the relation
β = tanhφ.

(a) Give the expression of γ and γβ as hyperbolic trigonometric functions of the rapidity φ.

Hint: cosh2 φ− sinh2 φ = 1 .

(b) Write this boost using φ and then using β and γ.

1



2. Prove that under such a boost, the velocity of a particle transforms as

v1′ =
1

γ

v1

1− β v3

c

and v2′ =
1

γ

v2

1− β v3

c

, (2)

v3′ =
v3 − β c

1 − β v3

c

. (3)

Hint: consider the differential of a boost.

Discuss the non-relativistic limit v ≪ c, β ≪ 1 and comment.

3. We want to demonstrate that the flux factor 2K given by Eq. (1) is invariant under
boosts along the z axis. We consider the boost of question 1. and we denote with a prime
the quantities in the boosted frame F ′, and without prime the corresponding quantities in
the initial frame F.

(a) Prove that

v′B − v′A = (vB − vA)
1− β2

(1− βvA)(1− βvB)
. (4)

(b) Show that

E ′

A E ′

B = EA EB γ2(1− βvA)(1− βvB) . (5)

(c) Prove finally that 2K is invariant.

4. Prove that the flux factor can be expressed as

2K = 4(EB|~pA|+ EA|~pB|) . (6)

5. Demonstrate that

2K = 4
√

(pA · pB)2 −m2
Am

2
B . (7)

Hint: consider a frame in which A moves in the z direction.

6. In the center-of-mass frame, show that

2K = 4 p∗i W
∗ , (8)

where W ∗ = E∗

A + E∗

B is the total center of mass energy, and p∗i ≡ |~p ∗

A|.
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2 Mandelstam variables

0. Preliminary

Any 2 body → 2 body scattering between particles P1, P2, producing particles P3 and P4,

P1(p1)P2(p2) → P3(p3)P3(p4) (9)

is completely characterized, if one does not take into account spin effects, by the Mandelstam
variables defined by

s ≡ (p1 + p2)
2 = (p3 + p4)

2 ,

t ≡ (p1 − p3)
2 = (p2 − p4)

2 ,

u ≡ (p1 − p4)
2 = (p2 − p3)

2 ,

(10)

Explain in each of the three above equtaions, why the second equalities are valid.

These variables are illustrated on Fig. 1. Each of these variables can be considered as a

1

2

3

4

s

t

u

Figure 1: Mandelstam variables for a 2 body → 2 body process.

“s”-variable for a crossed-channel process:

“s”-variable “t”-variable “u”-variable
s-channel: 1 + 2 → 3 + 4 s t u

t-channel: 1 + 3̄ → 2̄ + 4 t s u

u−channel: 1 + 4̄ → 3 + 2̄ u t s

(11)

Indeed, a particle i of momentum pi with p0 > 0 should be considered as its antiparticle ī,
of momentum −pi when p0 < 0. The same amplitude M(s, t, u) thus describes these 3 reac-
tions, as well as every desintegration process 1 body → 3 body (for example 1 → 2̄+3+4) and
every back reaction (for example 3+4 → 1+2), by analytic continuation on variables s, t, u.

1. For further use, we denote, using the fact that 2p1 · p2 = s−m2
1 −m2

2 ,

λ(s,m2

1, m
2

2) = 4[(p1 · p2)2 −m2

1m
2

2] . (12)
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We thus have

K(s) =
√

λ(s,m2
1, m

2
2) . (13)

(a) Show that

λ(s, m2

1, m
2

2) = [s− (m1 +m2)
2][s− (m1 −m2)

2] . (14)

(b) Give the expression of λ(s, 0,M2) when one mass vanishes, M being the non-vanishing
one, and of λ(s, 0, 0) when both vanish.

(c) Relate W ∗ and s.

(d) Show that in the center-of-mass frame, p∗i = |~p1| = |~p2| and p∗f = |~p3| = |~p4| have very
simple relativistic invariant forms:

p∗i =

√

λ(s, m2
1, m

2
2)

2
√
s

, (15)

and

p∗f =

√

λ(s, m2
3, m

2
4)

2
√
s

. (16)

2. Prove that
s + t+ u =

∑

i

m2

i . (17)

Hint: compute 2(s+ t + u) is a “democratic way“, using Eq. (10).

Consequently, the scattering amplitude only depends on two independent variables. One
conventionally writes

M = M(s, t) .

3. (a) In the center-of-mass frame, show that

E∗

1 =
s+m2

1 −m2
2

2
√
s

, E∗

3 =
s+m2

3 −m2
4

2
√
s

,

E∗

2 =
s+m2

2 −m2
1

2
√
s

, E∗

4 =
s+m2

4 −m2
3

2
√
s

.

(18)

Hint: use Eqs. (15) and (16), in order to the calculation for E∗

1 , and explain how one can
then easily gets the three other above results.

(b) Prove that the following threshold conditions should be satisfied, in each indicated chan-
nel:

s-channel: 1 + 2 → 3 + 4 : s > (m1 +m2)
2 and s > (m3 +m4)

2

t-channel: 1 + 3̄ → 2̄ + 4 : t > (m1 +m3)
2 and s > (m2 +m4)

2

u-channel: 1 + 4̄ → 3 + 2̄ : u > (m1 +m4)
2 and s > (m2 +m3)

2

(19)
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4. The diffusion angle is by definition the scattering angle between the momenta of particles
1 and 3, i.e. the scattering angle in the s−channel.

(a) Prove that

cos θ =
t−m2

1 −m2
3 + 2E1E3

2 |~p1||~p3|
. (20)

(b) In an arbitrary reference frame, for fixed s and E1, explain why the discussion on the
maximal/minimal values of cos θ as a function of t is in general complicate.

(c) In the center-of-mass frame, one may write

cos θ∗ =
t−m2

1 −m2
3 + 2E∗

1E
∗

3

2 p∗1 p
∗

3

. (21)

(i) At fixed values of s and E1, to which limit in t corresponds the forward reaction θ∗ = 0?

(ii) At fixed values of s and E1, to which limit in u corresponds the backward reaction θ∗ = π?

(d) Show that

cos θ∗ =
s2 + s(2t−m2

1 −m2
2 −m2

3 −m2
4) + (m2

1 −m2
2)(m

2
3 −m2

4)
√

λ(s,m2
1, m

2
2) λ(s,m

2
3, m

2
4)

. (22)

(e) In the large energy limit where s ∼ −u ≫ −t, m2
i , called Regge limit, show that θ∗ → 0.

5. Physical region for t.

(a) For a given s, show that the physical region for t looks like t− 6 t 6 t+ and give the
values of t− and t+.

(b) In the case of equal masses (m2
i = m2), give the physical region in t.

(c) Still in the case of equal masses (m2
i = m2), express t and u as functions of s, m2 and

cos θ∗. Comment.
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