
M1 General Physics
Particles

Relativistic kinematics

Exercise 1: Relative velocity

Consider two particles of momenta pµ and qµ. Provide a covariant expression of their relative
velocity, defined in a frame in which one of the two is at rest. It will be useful to compute
p · q in such a frame.

Exercise 2: Fixed target experiments versus collider experiments

1. We send a particle of mass m, of kinetic energy K (total energy minus energy at rest,
i.e K = E − m), on another identical particle at rest (so-called fixed target experiment).
Compute the energy in the center-of-mass frame.

2. We accelerate two particles of opposite momenta, of mass m and of kinetic energy K∗

(collider mode, the symbol ∗ is used to refer to the center-of-mass frame). What should be
the value of K in the fixed target experiment of question 1. in order to reach the same energy
in the center-of-mass frame? Discuss the limits K∗ ≪ m and K∗ ≫ m. Explain why most
of the modern experiments in high-energy physics are made using colliders (LEP at CERN,
HERA at Hamburg, Tevatron at Fermilab near Chicago, SLC in Stanford, LHC, future EIC
(2030), ILC e+e− projects, FCC-ee and FCC-pp).
The RHIC collider, at Brookhaven (near New-York) collides two beams of heavy ions, for
example Au-Au with 200 GeV per nucleon. Compute the energy K of a similar fixed target
experiment. One should compare this result to the highest possible energy available at SPS,
which was a fixed target experiment (beams of 160 GeV per nucleon).

3. One collides two beams of ultra-relativistic particles (E ≫ m) in the opposite direction,
of energies E1 and E2. Compute the center-of-mass energy.
The HERA collider (1992-2007) was colliding a beam of protons of 800 GeV with a beam of
electrons of 30 GeV. Compute the center-of-mass energy.

Exercise 3: Photoproduction of pions

Consider the reaction γp → π0p, where p means a proton, of mass M = 939 MeV, γ is a
photon and π0 a neutral pion, of mass m ≃ 135 MeV. We denote respectively P, k = (k0, ~k)
and q = (q0, ~q) the four-momenta of the incoming proton, of the incoming photon and of the
emitted pion.

1. We assume that the proton is initially at rest. Compute, literally and then numerically,
the minimal energy of the photon in order that the reaction γp → π0p would be possible.
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2. Compute the energy of the incident photon as a function of the emitted pion energy q0

and of the angle θ of the pion momenta with respect to the incident photon.

3. Simplify the previous results in the limit where m and k0 are very small with respect to
M. Comment on the result.

4. This reaction plays a crucial role in the physics of high energy cosmic rays: indeed, the
Universe is bathed with photon (the cosmological radiation at 3K) and protons of very high
energy can scatter with these photons and produce pions, thus slowing them down. Consider
thus the scattering of a proton of energy E and a photon of energy k0 = 10−3 eV of opposite
direction (this is the order of magnitude of the 3K radiation). Compute the minimal value
of E in order that the reaction would be possible. This cut is known under the name of
Greisen-Zatsepin-Kuzmin (1966). One of the enigma of current studies of cosmic rays is the
fact that there are signals of cosmic rays of higher energies.

Exercise 4: Compton effect

Compton scattering is the elastic scattering of a photon of momentum ~k with an electron
of mass m and of momentum ~p. We denote by ~k′ the momentum of the scattered photon,
E =

√

~p 2 +m2 the energy of the incoming electron, and θ the angle between ~k and ~p.

1. Check that P ·K = (P +K) ·K ′.
Infer that the energy of the scattered photon equals

|~k′| =
E − p cos θ

E + |~k| − ~̂k′ · (~p+ ~k)
|~k| (1)

where we denote as k̂′ ≡ ~k′/|~k′| the direction of ~k′.

2. We assume that the electron is at rest. Compute the wave length λ′ of the scattered
photon as a function of the wave length λ of the incoming photon, of the Compton wave
length defined as λC = h/mc, and of the angle θ′ between ~k and ~k′.

3. In the more general case where ~p 6= ~0, deduce from equation (1) the maximal energy of
the diffused photon for a given θ.

4. We assume the electron to be ultrarelativistic. Check that in the limit of a low energy
photon,

|~k′|max =

(

2E sin(θ/2)

m

)2

|~k| . (2)

Specify the condition on |~k| for this equation to be valid. Check the validity of the various

approximations and calculate |~k′|max in the case of a laser beam of energy 1 eV interacting
with an electron beam of energy E = 6 GeV, 12 GeV since 2016, in opposite direction. These
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are typical value of the Compton polarimeter used at Thomas Jefferson National Accelerator
Facility (JLab), located in Virginia (USA). Such a device allows, using a polarized laser, to
measure the polarization of the electron beam. It also allows to produce high energy photons
with a partial polarization (using the maximal energy of the produced photon corresponding
to the backscattering regime).

Exercise 5: Electron scattering

In this exercise, we consider the scattering, either elastic or inelastic, of an ultrarelativistic
electron (its mass will be neglected) on a target. We denote by K = (k,~k) and K ′ = (k′, ~k′)
the four-momenta of the electron before and after the collision, and P = (E, ~p) and P ′ those

of the target, which has a mass M. We assume that ~k and ~p are collinear and of opposite
directions.
If the scattering is elastic, the energy k′ of the outgoing electron is a function of the angle
between ~k and ~k′ (see the previous exercise). This angle will be denoted here by θ. In the
more general case of an inelastic scattering, k′ and θ are independent variables.

1. It turns out to be convenient to use, instead of k′ and θ, the Lorentz invariant variables
Q2 and P · q, where q ≡ K −K ′. Compute these two quantities as functions of k′, θ, E and
k. What is the sign of q2? Traditionally, one denotes Q2 = −q2.

2. Consider a scattering which transforms the target into a particle of mass M ′, with M ′ > M.
What is the relationship between Q2 and P · q? Infer the sign of P · q. Whenever M ′ is close
to M, such a scattering is named quasi-elastic.

3. We assume that the electron faces an elastic scattering off a part of a target, characterized
by a four-momentum xP, with 0 ≤ x ≤ 1, the rest of the target being spectator, not involved
in the collision. Express x as a function of Q2 and P · q. Such a scattering is named deep
inelastic (DIS) when Q2 is large (with respect to Λ2

QCD). In the case of DIS at high energy
(a few GeV or more) on a proton, x can be interpreted as the momentum fraction carried by
a quark (constituent of the proton) scattered by the incoming electron.

4. Draw, in the Q2, P · q plane, the lines corresponding to DIS at fixed x, as well as the lines
corresponding to quasi-elastic scattering.

5. The target is assumed to be at rest. Draw, again in the Q2, P · q plane, the lines corre-
sponding to fixed k′ as well as those corresponding to fixed θ. Deduce from that the allowed
kinematical region. Compute the maximal value of Q2 for a given x, in the limit k ≫ M.

6. Consider again the previous question, in the case of a collider, in which the target moves
at an ultra-relativistic energy E ≫ M. In the case of HERA (DESY, Hamburg, 1992-2007),
k = 30 GeV and the target was a proton of energy E = 800 GeV. Compute the maximal
value of Q2 for x = 10−4. Why is it interesting to accelerate protons? In the future (circa
2030), EIC will scatter electron beams on proton and ions beams.
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